blob: 508a82faccd899cc8de202a97ef97f395e3da4fc [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Authentication Framework & Chain of Trust
2=========================================
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Dan Handley610e7e12018-03-01 18:44:00 +00004The aim of this document is to describe the authentication framework
5implemented in Trusted Firmware-A (TF-A). This framework fulfills the
6following requirements:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01007
8#. It should be possible for a platform port to specify the Chain of Trust in
9 terms of certificate hierarchy and the mechanisms used to verify a
10 particular image/certificate.
11
12#. The framework should distinguish between:
13
14 - The mechanism used to encode and transport information, e.g. DER encoded
15 X.509v3 certificates to ferry Subject Public Keys, hashes and non-volatile
16 counters.
17
18 - The mechanism used to verify the transported information i.e. the
19 cryptographic libraries.
20
21The framework has been designed following a modular approach illustrated in the
22next diagram:
23
24::
25
26 +---------------+---------------+------------+
27 | Trusted | Trusted | Trusted |
28 | Firmware | Firmware | Firmware |
29 | Generic | IO Framework | Platform |
30 | Code i.e. | (IO) | Port |
31 | BL1/BL2 (GEN) | | (PP) |
32 +---------------+---------------+------------+
33 ^ ^ ^
34 | | |
35 v v v
36 +-----------+ +-----------+ +-----------+
37 | | | | | Image |
38 | Crypto | | Auth | | Parser |
39 | Module |<->| Module |<->| Module |
40 | (CM) | | (AM) | | (IPM) |
41 | | | | | |
42 +-----------+ +-----------+ +-----------+
43 ^ ^
44 | |
45 v v
46 +----------------+ +-----------------+
47 | Cryptographic | | Image Parser |
48 | Libraries (CL) | | Libraries (IPL) |
49 +----------------+ +-----------------+
50 | |
51 | |
52 | |
53 v v
54 +-----------------+
55 | Misc. Libs e.g. |
56 | ASN.1 decoder |
57 | |
58 +-----------------+
59
60 DIAGRAM 1.
61
62This document describes the inner details of the authentication framework and
63the abstraction mechanisms available to specify a Chain of Trust.
64
65Framework design
66----------------
67
68This section describes some aspects of the framework design and the rationale
69behind them. These aspects are key to verify a Chain of Trust.
70
71Chain of Trust
72~~~~~~~~~~~~~~
73
74A CoT is basically a sequence of authentication images which usually starts with
75a root of trust and culminates in a single data image. The following diagram
76illustrates how this maps to a CoT for the BL31 image described in the
Sandrine Bailleux30918422019-04-24 10:41:24 +020077`TBBR-Client specification`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010078
79::
80
81 +------------------+ +-------------------+
82 | ROTPK/ROTPK Hash |------>| Trusted Key |
83 +------------------+ | Certificate |
84 | (Auth Image) |
85 /+-------------------+
86 / |
87 / |
88 / |
89 / |
90 L v
91 +------------------+ +-------------------+
92 | Trusted World |------>| BL31 Key |
93 | Public Key | | Certificate |
94 +------------------+ | (Auth Image) |
95 +-------------------+
96 / |
97 / |
98 / |
99 / |
100 / v
101 +------------------+ L +-------------------+
102 | BL31 Content |------>| BL31 Content |
103 | Certificate PK | | Certificate |
104 +------------------+ | (Auth Image) |
105 +-------------------+
106 / |
107 / |
108 / |
109 / |
110 / v
111 +------------------+ L +-------------------+
112 | BL31 Hash |------>| BL31 Image |
113 | | | (Data Image) |
114 +------------------+ | |
115 +-------------------+
116
117 DIAGRAM 2.
118
119The root of trust is usually a public key (ROTPK) that has been burnt in the
120platform and cannot be modified.
121
122Image types
123~~~~~~~~~~~
124
125Images in a CoT are categorised as authentication and data images. An
126authentication image contains information to authenticate a data image or
127another authentication image. A data image is usually a boot loader binary, but
128it could be any other data that requires authentication.
129
130Component responsibilities
131~~~~~~~~~~~~~~~~~~~~~~~~~~
132
133For every image in a Chain of Trust, the following high level operations are
134performed to verify it:
135
136#. Allocate memory for the image either statically or at runtime.
137
138#. Identify the image and load it in the allocated memory.
139
140#. Check the integrity of the image as per its type.
141
142#. Authenticate the image as per the cryptographic algorithms used.
143
144#. If the image is an authentication image, extract the information that will
145 be used to authenticate the next image in the CoT.
146
147In Diagram 1, each component is responsible for one or more of these operations.
148The responsibilities are briefly described below.
149
Dan Handley610e7e12018-03-01 18:44:00 +0000150TF-A Generic code and IO framework (GEN/IO)
151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153These components are responsible for initiating the authentication process for a
154particular image in BL1 or BL2. For each BL image that requires authentication,
155the Generic code asks recursively the Authentication module what is the parent
156image until either an authenticated image or the ROT is reached. Then the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000157Generic code calls the IO framework to load the image and calls the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100158Authentication module to authenticate it, following the CoT from ROT to Image.
159
Dan Handley610e7e12018-03-01 18:44:00 +0000160TF-A Platform Port (PP)
161^^^^^^^^^^^^^^^^^^^^^^^
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100162
163The platform is responsible for:
164
165#. Specifying the CoT for each image that needs to be authenticated. Details of
166 how a CoT can be specified by the platform are explained later. The platform
167 also specifies the authentication methods and the parsing method used for
168 each image.
169
170#. Statically allocating memory for each parameter in each image which is
171 used for verifying the CoT, e.g. memory for public keys, hashes etc.
172
173#. Providing the ROTPK or a hash of it.
174
175#. Providing additional information to the IPM to enable it to identify and
176 extract authentication parameters contained in an image, e.g. if the
177 parameters are stored as X509v3 extensions, the corresponding OID must be
178 provided.
179
180#. Fulfill any other memory requirements of the IPM and the CM (not currently
181 described in this document).
182
183#. Export functions to verify an image which uses an authentication method that
184 cannot be interpreted by the CM, e.g. if an image has to be verified using a
185 NV counter, then the value of the counter to compare with can only be
186 provided by the platform.
187
188#. Export a custom IPM if a proprietary image format is being used (described
189 later).
190
191Authentication Module (AM)
192^^^^^^^^^^^^^^^^^^^^^^^^^^
193
194It is responsible for:
195
196#. Providing the necessary abstraction mechanisms to describe a CoT. Amongst
197 other things, the authentication and image parsing methods must be specified
198 by the PP in the CoT.
199
200#. Verifying the CoT passed by GEN by utilising functionality exported by the
201 PP, IPM and CM.
202
203#. Tracking which images have been verified. In case an image is a part of
204 multiple CoTs then it should be verified only once e.g. the Trusted World
205 Key Certificate in the TBBR-Client spec. contains information to verify
Sandrine Bailleux15530dd2019-02-08 15:26:36 +0100206 SCP_BL2, BL31, BL32 each of which have a separate CoT. (This
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100207 responsibility has not been described in this document but should be
208 trivial to implement).
209
210#. Reusing memory meant for a data image to verify authentication images e.g.
211 in the CoT described in Diagram 2, each certificate can be loaded and
212 verified in the memory reserved by the platform for the BL31 image. By the
213 time BL31 (the data image) is loaded, all information to authenticate it
214 will have been extracted from the parent image i.e. BL31 content
215 certificate. It is assumed that the size of an authentication image will
216 never exceed the size of a data image. It should be possible to verify this
217 at build time using asserts.
218
219Cryptographic Module (CM)
220^^^^^^^^^^^^^^^^^^^^^^^^^
221
222The CM is responsible for providing an API to:
223
224#. Verify a digital signature.
225#. Verify a hash.
226
227The CM does not include any cryptography related code, but it relies on an
228external library to perform the cryptographic operations. A Crypto-Library (CL)
229linking the CM and the external library must be implemented. The following
230functions must be provided by the CL:
231
232.. code:: c
233
234 void (*init)(void);
235 int (*verify_signature)(void *data_ptr, unsigned int data_len,
236 void *sig_ptr, unsigned int sig_len,
237 void *sig_alg, unsigned int sig_alg_len,
238 void *pk_ptr, unsigned int pk_len);
Manish V Badarkhe149e8e02023-03-09 22:23:49 +0000239 int (*calc_hash)(enum crypto_md_algo alg, void *data_ptr,
240 unsigned int data_len,
241 unsigned char output[CRYPTO_MD_MAX_SIZE])
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242 int (*verify_hash)(void *data_ptr, unsigned int data_len,
243 void *digest_info_ptr, unsigned int digest_info_len);
Yann Gautier2c108bb2023-01-24 09:23:10 +0100244 int (*auth_decrypt)(enum crypto_dec_algo dec_algo, void *data_ptr,
245 size_t len, const void *key, unsigned int key_len,
246 unsigned int key_flags, const void *iv,
247 unsigned int iv_len, const void *tag,
248 unsigned int tag_len);
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100249
250These functions are registered in the CM using the macro:
251
252.. code:: c
253
Manish V Badarkhe149e8e02023-03-09 22:23:49 +0000254 REGISTER_CRYPTO_LIB(_name,
255 _init,
256 _verify_signature,
257 _calc_hash,
Yann Gautier2c108bb2023-01-24 09:23:10 +0100258 _verify_hash,
259 _auth_decrypt);
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261``_name`` must be a string containing the name of the CL. This name is used for
262debugging purposes.
263
Manish V Badarkhe149e8e02023-03-09 22:23:49 +0000264Crypto module provides a function ``_calc_hash`` to calculate and
265return the hash of the given data using the provided hash algorithm.
266This function is mainly used in the ``MEASURED_BOOT`` and ``DRTM_SUPPORT``
267features to calculate the hashes of various images/data.
268
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100269Image Parser Module (IPM)
270^^^^^^^^^^^^^^^^^^^^^^^^^
271
272The IPM is responsible for:
273
274#. Checking the integrity of each image loaded by the IO framework.
275#. Extracting parameters used for authenticating an image based upon a
276 description provided by the platform in the CoT descriptor.
277
278Images may have different formats (for example, authentication images could be
279x509v3 certificates, signed ELF files or any other platform specific format).
280The IPM allows to register an Image Parser Library (IPL) for every image format
281used in the CoT. This library must implement the specific methods to parse the
282image. The IPM obtains the image format from the CoT and calls the right IPL to
283check the image integrity and extract the authentication parameters.
284
285See Section "Describing the image parsing methods" for more details about the
286mechanism the IPM provides to define and register IPLs.
287
288Authentication methods
289~~~~~~~~~~~~~~~~~~~~~~
290
291The AM supports the following authentication methods:
292
293#. Hash
294#. Digital signature
295
296The platform may specify these methods in the CoT in case it decides to define
297a custom CoT instead of reusing a predefined one.
298
299If a data image uses multiple methods, then all the methods must be a part of
300the same CoT. The number and type of parameters are method specific. These
301parameters should be obtained from the parent image using the IPM.
302
303#. Hash
304
305 Parameters:
306
307 #. A pointer to data to hash
308 #. Length of the data
309 #. A pointer to the hash
310 #. Length of the hash
311
312 The hash will be represented by the DER encoding of the following ASN.1
313 type:
314
315 ::
316
317 DigestInfo ::= SEQUENCE {
318 digestAlgorithm DigestAlgorithmIdentifier,
319 digest Digest
320 }
321
322 This ASN.1 structure makes it possible to remove any assumption about the
323 type of hash algorithm used as this information accompanies the hash. This
324 should allow the Cryptography Library (CL) to support multiple hash
325 algorithm implementations.
326
327#. Digital Signature
328
329 Parameters:
330
331 #. A pointer to data to sign
332 #. Length of the data
333 #. Public Key Algorithm
334 #. Public Key value
335 #. Digital Signature Algorithm
336 #. Digital Signature value
337
338 The Public Key parameters will be represented by the DER encoding of the
339 following ASN.1 type:
340
341 ::
342
343 SubjectPublicKeyInfo ::= SEQUENCE {
344 algorithm AlgorithmIdentifier{PUBLIC-KEY,{PublicKeyAlgorithms}},
345 subjectPublicKey BIT STRING }
346
347 The Digital Signature Algorithm will be represented by the DER encoding of
348 the following ASN.1 types.
349
350 ::
351
352 AlgorithmIdentifier {ALGORITHM:IOSet } ::= SEQUENCE {
353 algorithm ALGORITHM.&id({IOSet}),
354 parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL
355 }
356
357 The digital signature will be represented by:
358
359 ::
360
361 signature ::= BIT STRING
362
363The authentication framework will use the image descriptor to extract all the
364information related to authentication.
365
366Specifying a Chain of Trust
367---------------------------
368
369A CoT can be described as a set of image descriptors linked together in a
370particular order. The order dictates the sequence in which they must be
371verified. Each image has a set of properties which allow the AM to verify it.
372These properties are described below.
373
374The PP is responsible for defining a single or multiple CoTs for a data image.
375Unless otherwise specified, the data structures described in the following
376sections are populated by the PP statically.
377
378Describing the image parsing methods
379~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
380
381The parsing method refers to the format of a particular image. For example, an
382authentication image that represents a certificate could be in the X.509v3
383format. A data image that represents a boot loader stage could be in raw binary
384or ELF format. The IPM supports three parsing methods. An image has to use one
385of the three methods described below. An IPL is responsible for interpreting a
386single parsing method. There has to be one IPL for every method used by the
387platform.
388
389#. Raw format: This format is effectively a nop as an image using this method
Dan Handley610e7e12018-03-01 18:44:00 +0000390 is treated as being in raw binary format e.g. boot loader images used by
391 TF-A. This method should only be used by data images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392
393#. X509V3 method: This method uses industry standards like X.509 to represent
394 PKI certificates (authentication images). It is expected that open source
395 libraries will be available which can be used to parse an image represented
396 by this method. Such libraries can be used to write the corresponding IPL
397 e.g. the X.509 parsing library code in mbed TLS.
398
399#. Platform defined method: This method caters for platform specific
400 proprietary standards to represent authentication or data images. For
401 example, The signature of a data image could be appended to the data image
402 raw binary. A header could be prepended to the combined blob to specify the
403 extents of each component. The platform will have to implement the
404 corresponding IPL to interpret such a format.
405
406The following enum can be used to define these three methods.
407
408.. code:: c
409
410 typedef enum img_type_enum {
411 IMG_RAW, /* Binary image */
412 IMG_PLAT, /* Platform specific format */
413 IMG_CERT, /* X509v3 certificate */
414 IMG_MAX_TYPES,
415 } img_type_t;
416
417An IPL must provide functions with the following prototypes:
418
419.. code:: c
420
421 void init(void);
422 int check_integrity(void *img, unsigned int img_len);
423 int get_auth_param(const auth_param_type_desc_t *type_desc,
424 void *img, unsigned int img_len,
425 void **param, unsigned int *param_len);
426
427An IPL for each type must be registered using the following macro:
428
Paul Beesley493e3492019-03-13 15:11:04 +0000429.. code:: c
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100430
431 REGISTER_IMG_PARSER_LIB(_type, _name, _init, _check_int, _get_param)
432
433- ``_type``: one of the types described above.
434- ``_name``: a string containing the IPL name for debugging purposes.
435- ``_init``: initialization function pointer.
436- ``_check_int``: check image integrity function pointer.
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000437- ``_get_param``: extract authentication parameter function pointer.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100438
439The ``init()`` function will be used to initialize the IPL.
440
441The ``check_integrity()`` function is passed a pointer to the memory where the
442image has been loaded by the IO framework and the image length. It should ensure
443that the image is in the format corresponding to the parsing method and has not
444been tampered with. For example, RFC-2459 describes a validation sequence for an
445X.509 certificate.
446
447The ``get_auth_param()`` function is passed a parameter descriptor containing
448information about the parameter (``type_desc`` and ``cookie``) to identify and
449extract the data corresponding to that parameter from an image. This data will
450be used to verify either the current or the next image in the CoT sequence.
451
452Each image in the CoT will specify the parsing method it uses. This information
453will be used by the IPM to find the right parser descriptor for the image.
454
455Describing the authentication method(s)
456~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
457
458As part of the CoT, each image has to specify one or more authentication methods
459which will be used to verify it. As described in the Section "Authentication
460methods", there are three methods supported by the AM.
461
462.. code:: c
463
464 typedef enum {
465 AUTH_METHOD_NONE,
466 AUTH_METHOD_HASH,
467 AUTH_METHOD_SIG,
468 AUTH_METHOD_NUM
469 } auth_method_type_t;
470
471The AM defines the type of each parameter used by an authentication method. It
472uses this information to:
473
474#. Specify to the ``get_auth_param()`` function exported by the IPM, which
475 parameter should be extracted from an image.
476
477#. Correctly marshall the parameters while calling the verification function
478 exported by the CM and PP.
479
480#. Extract authentication parameters from a parent image in order to verify a
481 child image e.g. to verify the certificate image, the public key has to be
482 obtained from the parent image.
483
484.. code:: c
485
486 typedef enum {
487 AUTH_PARAM_NONE,
488 AUTH_PARAM_RAW_DATA, /* Raw image data */
489 AUTH_PARAM_SIG, /* The image signature */
490 AUTH_PARAM_SIG_ALG, /* The image signature algorithm */
491 AUTH_PARAM_HASH, /* A hash (including the algorithm) */
492 AUTH_PARAM_PUB_KEY, /* A public key */
493 } auth_param_type_t;
494
495The AM defines the following structure to identify an authentication parameter
496required to verify an image.
497
498.. code:: c
499
500 typedef struct auth_param_type_desc_s {
501 auth_param_type_t type;
502 void *cookie;
503 } auth_param_type_desc_t;
504
505``cookie`` is used by the platform to specify additional information to the IPM
506which enables it to uniquely identify the parameter that should be extracted
507from an image. For example, the hash of a BL3x image in its corresponding
508content certificate is stored in an X509v3 custom extension field. An extension
509field can only be identified using an OID. In this case, the ``cookie`` could
510contain the pointer to the OID defined by the platform for the hash extension
511field while the ``type`` field could be set to ``AUTH_PARAM_HASH``. A value of 0 for
512the ``cookie`` field means that it is not used.
513
514For each method, the AM defines a structure with the parameters required to
515verify the image.
516
517.. code:: c
518
519 /*
520 * Parameters for authentication by hash matching
521 */
522 typedef struct auth_method_param_hash_s {
523 auth_param_type_desc_t *data; /* Data to hash */
524 auth_param_type_desc_t *hash; /* Hash to match with */
525 } auth_method_param_hash_t;
526
527 /*
528 * Parameters for authentication by signature
529 */
530 typedef struct auth_method_param_sig_s {
531 auth_param_type_desc_t *pk; /* Public key */
532 auth_param_type_desc_t *sig; /* Signature to check */
533 auth_param_type_desc_t *alg; /* Signature algorithm */
534 auth_param_type_desc_t *tbs; /* Data signed */
535 } auth_method_param_sig_t;
536
537The AM defines the following structure to describe an authentication method for
538verifying an image
539
540.. code:: c
541
542 /*
543 * Authentication method descriptor
544 */
545 typedef struct auth_method_desc_s {
546 auth_method_type_t type;
547 union {
548 auth_method_param_hash_t hash;
549 auth_method_param_sig_t sig;
550 } param;
551 } auth_method_desc_t;
552
553Using the method type specified in the ``type`` field, the AM finds out what field
554needs to access within the ``param`` union.
555
556Storing Authentication parameters
557~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
558
559A parameter described by ``auth_param_type_desc_t`` to verify an image could be
560obtained from either the image itself or its parent image. The memory allocated
561for loading the parent image will be reused for loading the child image. Hence
562parameters which are obtained from the parent for verifying a child image need
563to have memory allocated for them separately where they can be stored. This
564memory must be statically allocated by the platform port.
565
566The AM defines the following structure to store the data corresponding to an
567authentication parameter.
568
569.. code:: c
570
571 typedef struct auth_param_data_desc_s {
572 void *auth_param_ptr;
573 unsigned int auth_param_len;
574 } auth_param_data_desc_t;
575
576The ``auth_param_ptr`` field is initialized by the platform. The ``auth_param_len``
577field is used to specify the length of the data in the memory.
578
579For parameters that can be obtained from the child image itself, the IPM is
580responsible for populating the ``auth_param_ptr`` and ``auth_param_len`` fields
581while executing the ``img_get_auth_param()`` function.
582
583The AM defines the following structure to enable an image to describe the
584parameters that should be extracted from it and used to verify the next image
585(child) in a CoT.
586
587.. code:: c
588
589 typedef struct auth_param_desc_s {
590 auth_param_type_desc_t type_desc;
591 auth_param_data_desc_t data;
592 } auth_param_desc_t;
593
594Describing an image in a CoT
595~~~~~~~~~~~~~~~~~~~~~~~~~~~~
596
597An image in a CoT is a consolidation of the following aspects of a CoT described
598above.
599
600#. A unique identifier specified by the platform which allows the IO framework
601 to locate the image in a FIP and load it in the memory reserved for the data
602 image in the CoT.
603
604#. A parsing method which is used by the AM to find the appropriate IPM.
605
606#. Authentication methods and their parameters as described in the previous
607 section. These are used to verify the current image.
608
609#. Parameters which are used to verify the next image in the current CoT. These
610 parameters are specified only by authentication images and can be extracted
611 from the current image once it has been verified.
612
613The following data structure describes an image in a CoT.
614
615.. code:: c
616
617 typedef struct auth_img_desc_s {
618 unsigned int img_id;
619 const struct auth_img_desc_s *parent;
620 img_type_t img_type;
Joel Hutton1fdcc902019-02-22 16:40:16 +0000621 const auth_method_desc_t *const img_auth_methods;
622 const auth_param_desc_t *const authenticated_data;
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100623 } auth_img_desc_t;
624
Joel Hutton1fdcc902019-02-22 16:40:16 +0000625A CoT is defined as an array of pointers to ``auth_image_desc_t`` structures
626linked together by the ``parent`` field. Those nodes with no parent must be
627authenticated using the ROTPK stored in the platform.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100628
629Implementation example
630----------------------
631
632This section is a detailed guide explaining a trusted boot implementation using
633the authentication framework. This example corresponds to the Applicative
634Functional Mode (AFM) as specified in the TBBR-Client document. It is
635recommended to read this guide along with the source code.
636
637The TBBR CoT
638~~~~~~~~~~~~
639
Manish V Badarkhe043fd622020-05-16 16:36:39 +0100640CoT specific to BL1 and BL2 can be found in ``drivers/auth/tbbr/tbbr_cot_bl1.c``
641and ``drivers/auth/tbbr/tbbr_cot_bl2.c`` respectively. The common CoT used across
642BL1 and BL2 can be found in ``drivers/auth/tbbr/tbbr_cot_common.c``.
643This CoT consists of an array of pointers to image descriptors and it is
644registered in the framework using the macro ``REGISTER_COT(cot_desc)``, where
645``cot_desc`` must be the name of the array (passing a pointer or any other
646type of indirection will cause the registration process to fail).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100647
Joel Hutton1fdcc902019-02-22 16:40:16 +0000648The number of images participating in the boot process depends on the CoT.
649There is, however, a minimum set of images that are mandatory in TF-A and thus
650all CoTs must present:
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100651
652- ``BL2``
653- ``SCP_BL2`` (platform specific)
654- ``BL31``
655- ``BL32`` (optional)
656- ``BL33``
657
658The TBBR specifies the additional certificates that must accompany these images
659for a proper authentication. Details about the TBBR CoT may be found in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100660:ref:`Trusted Board Boot` document.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100661
Paul Beesleyf8640672019-04-12 14:19:42 +0100662Following the :ref:`Porting Guide`, a platform must provide unique
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100663identifiers for all the images and certificates that will be loaded during the
664boot process. If a platform is using the TBBR as a reference for trusted boot,
665these identifiers can be obtained from ``include/common/tbbr/tbbr_img_def.h``.
Dan Handley610e7e12018-03-01 18:44:00 +0000666Arm platforms include this file in ``include/plat/arm/common/arm_def.h``. Other
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100667platforms may also include this file or provide their own identifiers.
668
669**Important**: the authentication module uses these identifiers to index the
670CoT array, so the descriptors location in the array must match the identifiers.
671
672Each image descriptor must specify:
673
674- ``img_id``: the corresponding image unique identifier defined by the platform.
675- ``img_type``: the image parser module uses the image type to call the proper
676 parsing library to check the image integrity and extract the required
677 authentication parameters. Three types of images are currently supported:
678
679 - ``IMG_RAW``: image is a raw binary. No parsing functions are available,
680 other than reading the whole image.
681 - ``IMG_PLAT``: image format is platform specific. The platform may use this
682 type for custom images not directly supported by the authentication
683 framework.
684 - ``IMG_CERT``: image is an x509v3 certificate.
685
686- ``parent``: pointer to the parent image descriptor. The parent will contain
687 the information required to authenticate the current image. If the parent
688 is NULL, the authentication parameters will be obtained from the platform
689 (i.e. the BL2 and Trusted Key certificates are signed with the ROT private
690 key, whose public part is stored in the platform).
Joel Hutton1fdcc902019-02-22 16:40:16 +0000691- ``img_auth_methods``: this points to an array which defines the
692 authentication methods that must be checked to consider an image
693 authenticated. Each method consists of a type and a list of parameter
694 descriptors. A parameter descriptor consists of a type and a cookie which
695 will point to specific information required to extract that parameter from
696 the image (i.e. if the parameter is stored in an x509v3 extension, the
697 cookie will point to the extension OID). Depending on the method type, a
698 different number of parameters must be specified. This pointer should not be
699 NULL.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100700 Supported methods are:
701
702 - ``AUTH_METHOD_HASH``: the hash of the image must match the hash extracted
703 from the parent image. The following parameter descriptors must be
704 specified:
705
706 - ``data``: data to be hashed (obtained from current image)
707 - ``hash``: reference hash (obtained from parent image)
708
709 - ``AUTH_METHOD_SIG``: the image (usually a certificate) must be signed with
710 the private key whose public part is extracted from the parent image (or
711 the platform if the parent is NULL). The following parameter descriptors
712 must be specified:
713
714 - ``pk``: the public key (obtained from parent image)
715 - ``sig``: the digital signature (obtained from current image)
716 - ``alg``: the signature algorithm used (obtained from current image)
717 - ``data``: the data to be signed (obtained from current image)
718
Joel Hutton1fdcc902019-02-22 16:40:16 +0000719- ``authenticated_data``: this array pointer indicates what authentication
720 parameters must be extracted from an image once it has been authenticated.
721 Each parameter consists of a parameter descriptor and the buffer
722 address/size to store the parameter. The CoT is responsible for allocating
723 the required memory to store the parameters. This pointer may be NULL.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100724
Manish V Badarkhe043fd622020-05-16 16:36:39 +0100725In the ``tbbr_cot*.c`` file, a set of buffers are allocated to store the parameters
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100726extracted from the certificates. In the case of the TBBR CoT, these parameters
Justin Chadwell82b06b32019-07-29 17:18:21 +0100727are hashes and public keys. In DER format, an RSA-4096 public key requires 550
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100728bytes, and a hash requires 51 bytes. Depending on the CoT and the authentication
729process, some of the buffers may be reused at different stages during the boot.
730
731Next in that file, the parameter descriptors are defined. These descriptors will
732be used to extract the parameter data from the corresponding image.
733
734Example: the BL31 Chain of Trust
735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
736
737Four image descriptors form the BL31 Chain of Trust:
738
Sandrine Bailleuxf5a91002019-02-08 10:50:28 +0100739.. code:: c
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100740
Joel Hutton1fdcc902019-02-22 16:40:16 +0000741 static const auth_img_desc_t trusted_key_cert = {
742 .img_id = TRUSTED_KEY_CERT_ID,
743 .img_type = IMG_CERT,
744 .parent = NULL,
745 .img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
746 [0] = {
747 .type = AUTH_METHOD_SIG,
748 .param.sig = {
749 .pk = &subject_pk,
750 .sig = &sig,
751 .alg = &sig_alg,
752 .data = &raw_data
753 }
754 },
755 [1] = {
756 .type = AUTH_METHOD_NV_CTR,
757 .param.nv_ctr = {
758 .cert_nv_ctr = &trusted_nv_ctr,
759 .plat_nv_ctr = &trusted_nv_ctr
760 }
761 }
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100762 },
Joel Hutton1fdcc902019-02-22 16:40:16 +0000763 .authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
764 [0] = {
765 .type_desc = &trusted_world_pk,
766 .data = {
767 .ptr = (void *)trusted_world_pk_buf,
768 .len = (unsigned int)PK_DER_LEN
769 }
770 },
771 [1] = {
772 .type_desc = &non_trusted_world_pk,
773 .data = {
774 .ptr = (void *)non_trusted_world_pk_buf,
775 .len = (unsigned int)PK_DER_LEN
776 }
777 }
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100778 }
Joel Hutton1fdcc902019-02-22 16:40:16 +0000779 };
780 static const auth_img_desc_t soc_fw_key_cert = {
781 .img_id = SOC_FW_KEY_CERT_ID,
782 .img_type = IMG_CERT,
783 .parent = &trusted_key_cert,
784 .img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
785 [0] = {
786 .type = AUTH_METHOD_SIG,
787 .param.sig = {
788 .pk = &trusted_world_pk,
789 .sig = &sig,
790 .alg = &sig_alg,
791 .data = &raw_data
792 }
793 },
794 [1] = {
795 .type = AUTH_METHOD_NV_CTR,
796 .param.nv_ctr = {
797 .cert_nv_ctr = &trusted_nv_ctr,
798 .plat_nv_ctr = &trusted_nv_ctr
799 }
800 }
801 },
802 .authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
803 [0] = {
804 .type_desc = &soc_fw_content_pk,
805 .data = {
806 .ptr = (void *)content_pk_buf,
807 .len = (unsigned int)PK_DER_LEN
808 }
809 }
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100810 }
Joel Hutton1fdcc902019-02-22 16:40:16 +0000811 };
812 static const auth_img_desc_t soc_fw_content_cert = {
813 .img_id = SOC_FW_CONTENT_CERT_ID,
814 .img_type = IMG_CERT,
815 .parent = &soc_fw_key_cert,
816 .img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
817 [0] = {
818 .type = AUTH_METHOD_SIG,
819 .param.sig = {
820 .pk = &soc_fw_content_pk,
821 .sig = &sig,
822 .alg = &sig_alg,
823 .data = &raw_data
824 }
825 },
826 [1] = {
827 .type = AUTH_METHOD_NV_CTR,
828 .param.nv_ctr = {
829 .cert_nv_ctr = &trusted_nv_ctr,
830 .plat_nv_ctr = &trusted_nv_ctr
831 }
832 }
833 },
834 .authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
835 [0] = {
836 .type_desc = &soc_fw_hash,
837 .data = {
838 .ptr = (void *)soc_fw_hash_buf,
839 .len = (unsigned int)HASH_DER_LEN
840 }
841 },
842 [1] = {
843 .type_desc = &soc_fw_config_hash,
844 .data = {
845 .ptr = (void *)soc_fw_config_hash_buf,
846 .len = (unsigned int)HASH_DER_LEN
847 }
848 }
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100849 }
Joel Hutton1fdcc902019-02-22 16:40:16 +0000850 };
851 static const auth_img_desc_t bl31_image = {
852 .img_id = BL31_IMAGE_ID,
853 .img_type = IMG_RAW,
854 .parent = &soc_fw_content_cert,
855 .img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
856 [0] = {
857 .type = AUTH_METHOD_HASH,
858 .param.hash = {
859 .data = &raw_data,
860 .hash = &soc_fw_hash
861 }
862 }
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100863 }
Joel Hutton1fdcc902019-02-22 16:40:16 +0000864 };
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100865
866The **Trusted Key certificate** is signed with the ROT private key and contains
867the Trusted World public key and the Non-Trusted World public key as x509v3
868extensions. This must be specified in the image descriptor using the
869``img_auth_methods`` and ``authenticated_data`` arrays, respectively.
870
871The Trusted Key certificate is authenticated by checking its digital signature
872using the ROTPK. Four parameters are required to check a signature: the public
873key, the algorithm, the signature and the data that has been signed. Therefore,
874four parameter descriptors must be specified with the authentication method:
875
876- ``subject_pk``: parameter descriptor of type ``AUTH_PARAM_PUB_KEY``. This type
877 is used to extract a public key from the parent image. If the cookie is an
878 OID, the key is extracted from the corresponding x509v3 extension. If the
879 cookie is NULL, the subject public key is retrieved. In this case, because
880 the parent image is NULL, the public key is obtained from the platform
881 (this key will be the ROTPK).
882- ``sig``: parameter descriptor of type ``AUTH_PARAM_SIG``. It is used to extract
883 the signature from the certificate.
884- ``sig_alg``: parameter descriptor of type ``AUTH_PARAM_SIG``. It is used to
885 extract the signature algorithm from the certificate.
886- ``raw_data``: parameter descriptor of type ``AUTH_PARAM_RAW_DATA``. It is used
887 to extract the data to be signed from the certificate.
888
889Once the signature has been checked and the certificate authenticated, the
890Trusted World public key needs to be extracted from the certificate. A new entry
891is created in the ``authenticated_data`` array for that purpose. In that entry,
892the corresponding parameter descriptor must be specified along with the buffer
Sandrine Bailleuxaf0f9602020-03-02 13:09:22 +0100893address to store the parameter value. In this case, the ``trusted_world_pk``
894descriptor is used to extract the public key from an x509v3 extension with OID
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100895``TRUSTED_WORLD_PK_OID``. The BL31 key certificate will use this descriptor as
896parameter in the signature authentication method. The key is stored in the
Sandrine Bailleuxaf0f9602020-03-02 13:09:22 +0100897``trusted_world_pk_buf`` buffer.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100898
899The **BL31 Key certificate** is authenticated by checking its digital signature
900using the Trusted World public key obtained previously from the Trusted Key
901certificate. In the image descriptor, we specify a single authentication method
Sandrine Bailleuxaf0f9602020-03-02 13:09:22 +0100902by signature whose public key is the ``trusted_world_pk``. Once this certificate
903has been authenticated, we have to extract the BL31 public key, stored in the
904extension specified by ``soc_fw_content_pk``. This key will be copied to the
905``content_pk_buf`` buffer.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100906
907The **BL31 certificate** is authenticated by checking its digital signature
908using the BL31 public key obtained previously from the BL31 Key certificate.
Sandrine Bailleuxaf0f9602020-03-02 13:09:22 +0100909We specify the authentication method using ``soc_fw_content_pk`` as public key.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100910After authentication, we need to extract the BL31 hash, stored in the extension
Sandrine Bailleuxaf0f9602020-03-02 13:09:22 +0100911specified by ``soc_fw_hash``. This hash will be copied to the
912``soc_fw_hash_buf`` buffer.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100913
914The **BL31 image** is authenticated by calculating its hash and matching it
915with the hash obtained from the BL31 certificate. The image descriptor contains
916a single authentication method by hash. The parameters to the hash method are
Sandrine Bailleuxaf0f9602020-03-02 13:09:22 +0100917the reference hash, ``soc_fw_hash``, and the data to be hashed. In this case,
918it is the whole image, so we specify ``raw_data``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100919
920The image parser library
921~~~~~~~~~~~~~~~~~~~~~~~~
922
923The image parser module relies on libraries to check the image integrity and
924extract the authentication parameters. The number and type of parser libraries
925depend on the images used in the CoT. Raw images do not need a library, so
926only an x509v3 library is required for the TBBR CoT.
927
Dan Handley610e7e12018-03-01 18:44:00 +0000928Arm platforms will use an x509v3 library based on mbed TLS. This library may be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100929found in ``drivers/auth/mbedtls/mbedtls_x509_parser.c``. It exports three
930functions:
931
932.. code:: c
933
934 void init(void);
935 int check_integrity(void *img, unsigned int img_len);
936 int get_auth_param(const auth_param_type_desc_t *type_desc,
937 void *img, unsigned int img_len,
938 void **param, unsigned int *param_len);
939
940The library is registered in the framework using the macro
941``REGISTER_IMG_PARSER_LIB()``. Each time the image parser module needs to access
942an image of type ``IMG_CERT``, it will call the corresponding function exported
943in this file.
944
945The build system must be updated to include the corresponding library and
Dan Handley610e7e12018-03-01 18:44:00 +0000946mbed TLS sources. Arm platforms use the ``arm_common.mk`` file to pull the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100947sources.
948
949The cryptographic library
950~~~~~~~~~~~~~~~~~~~~~~~~~
951
952The cryptographic module relies on a library to perform the required operations,
Dan Handley610e7e12018-03-01 18:44:00 +0000953i.e. verify a hash or a digital signature. Arm platforms will use a library
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100954based on mbed TLS, which can be found in
955``drivers/auth/mbedtls/mbedtls_crypto.c``. This library is registered in the
956authentication framework using the macro ``REGISTER_CRYPTO_LIB()`` and exports
Manish V Badarkhe149e8e02023-03-09 22:23:49 +0000957below functions:
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100958
959.. code:: c
960
961 void init(void);
962 int verify_signature(void *data_ptr, unsigned int data_len,
963 void *sig_ptr, unsigned int sig_len,
964 void *sig_alg, unsigned int sig_alg_len,
965 void *pk_ptr, unsigned int pk_len);
Manish V Badarkhe149e8e02023-03-09 22:23:49 +0000966 int crypto_mod_calc_hash(enum crypto_md_algo alg, void *data_ptr,
967 unsigned int data_len,
968 unsigned char output[CRYPTO_MD_MAX_SIZE])
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100969 int verify_hash(void *data_ptr, unsigned int data_len,
970 void *digest_info_ptr, unsigned int digest_info_len);
Sumit Gargc0c369c2019-11-15 18:47:53 +0530971 int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr,
972 size_t len, const void *key, unsigned int key_len,
973 unsigned int key_flags, const void *iv,
974 unsigned int iv_len, const void *tag,
975 unsigned int tag_len)
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100976
Justin Chadwell82b06b32019-07-29 17:18:21 +0100977The mbedTLS library algorithm support is configured by both the
978``TF_MBEDTLS_KEY_ALG`` and ``TF_MBEDTLS_KEY_SIZE`` variables.
979
980- ``TF_MBEDTLS_KEY_ALG`` can take in 3 values: `rsa`, `ecdsa` or `rsa+ecdsa`.
981 This variable allows the Makefile to include the corresponding sources in
982 the build for the various algorithms. Setting the variable to `rsa+ecdsa`
983 enables support for both rsa and ecdsa algorithms in the mbedTLS library.
984
985- ``TF_MBEDTLS_KEY_SIZE`` sets the supported RSA key size for TFA. Valid values
986 include 1024, 2048, 3072 and 4096.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100987
Sumit Gargc0c369c2019-11-15 18:47:53 +0530988- ``TF_MBEDTLS_USE_AES_GCM`` enables the authenticated decryption support based
989 on AES-GCM algorithm. Valid values are 0 and 1.
990
Paul Beesleyba3ed402019-03-13 16:20:44 +0000991.. note::
992 If code size is a concern, the build option ``MBEDTLS_SHA256_SMALLER`` can
993 be defined in the platform Makefile. It will make mbed TLS use an
994 implementation of SHA-256 with smaller memory footprint (~1.5 KB less) but
995 slower (~30%).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100996
997--------------
998
Manish V Badarkhe149e8e02023-03-09 22:23:49 +0000999*Copyright (c) 2017-2023, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001000
Sandrine Bailleux30918422019-04-24 10:41:24 +02001001.. _TBBR-Client specification: https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a