blob: 6915ded7a32063b6ae2fe6a4b6d56cfe51091f35 [file] [log] [blame]
Soby Mathew748be1d2016-05-05 14:10:46 +01001/*
2 * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <arch.h>
32#include <arch_helpers.h>
33#include <assert.h>
34#include <bl_common.h>
35#include <context.h>
36#include <context_mgmt.h>
37#include <platform.h>
38#include <platform_def.h>
39#include <smcc_helpers.h>
40#include <string.h>
41
42/*******************************************************************************
43 * Context management library initialisation routine. This library is used by
44 * runtime services to share pointers to 'cpu_context' structures for the secure
45 * and non-secure states. Management of the structures and their associated
46 * memory is not done by the context management library e.g. the PSCI service
47 * manages the cpu context used for entry from and exit to the non-secure state.
48 * The Secure payload manages the context(s) corresponding to the secure state.
49 * It also uses this library to get access to the non-secure
50 * state cpu context pointers.
51 ******************************************************************************/
52void cm_init(void)
53{
54 /*
55 * The context management library has only global data to initialize, but
56 * that will be done when the BSS is zeroed out
57 */
58}
59
60/*******************************************************************************
61 * The following function initializes the cpu_context 'ctx' for
62 * first use, and sets the initial entrypoint state as specified by the
63 * entry_point_info structure.
64 *
65 * The security state to initialize is determined by the SECURE attribute
66 * of the entry_point_info. The function returns a pointer to the initialized
67 * context and sets this as the next context to return to.
68 *
69 * The EE and ST attributes are used to configure the endianness and secure
70 * timer availability for the new execution context.
71 *
72 * To prepare the register state for entry call cm_prepare_el3_exit() and
73 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
74 * cm_e1_sysreg_context_restore().
75 ******************************************************************************/
76static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
77{
78 unsigned int security_state;
79 uint32_t scr, sctlr;
80 regs_t *reg_ctx;
81
82 assert(ctx);
83
84 security_state = GET_SECURITY_STATE(ep->h.attr);
85
86 /* Clear any residual register values from the context */
87 memset(ctx, 0, sizeof(*ctx));
88
89 /*
90 * Base the context SCR on the current value, adjust for entry point
91 * specific requirements
92 */
93 scr = read_scr();
94 scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
95
96 if (security_state != SECURE)
97 scr |= SCR_NS_BIT;
98
99 /*
100 * Set up SCTLR for the Non Secure context.
101 * EE bit is taken from the entrypoint attributes
102 * M, C and I bits must be zero (as required by PSCI specification)
103 *
104 * The target exception level is based on the spsr mode requested.
105 * If execution is requested to hyp mode, HVC is enabled
106 * via SCR.HCE.
107 *
108 * Always compute the SCTLR_EL1 value and save in the cpu_context
109 * - the HYP registers are set up by cm_preapre_ns_entry() as they
110 * are not part of the stored cpu_context
111 *
112 * TODO: In debug builds the spsr should be validated and checked
113 * against the CPU support, security state, endianness and pc
114 */
115 if (security_state != SECURE) {
116 sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
117 sctlr |= SCTLR_RES1;
118 write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
119 }
120
121 if (GET_M32(ep->spsr) == MODE32_hyp)
122 scr |= SCR_HCE_BIT;
123
124 reg_ctx = get_regs_ctx(ctx);
125
126 write_ctx_reg(reg_ctx, CTX_SCR, scr);
127 write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
128 write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
129
130 /*
131 * Store the r0-r3 value from the entrypoint into the context
132 * Use memcpy as we are in control of the layout of the structures
133 */
134 memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
135}
136
137/*******************************************************************************
138 * The following function initializes the cpu_context for a CPU specified by
139 * its `cpu_idx` for first use, and sets the initial entrypoint state as
140 * specified by the entry_point_info structure.
141 ******************************************************************************/
142void cm_init_context_by_index(unsigned int cpu_idx,
143 const entry_point_info_t *ep)
144{
145 cpu_context_t *ctx;
146 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
147 cm_init_context_common(ctx, ep);
148}
149
150/*******************************************************************************
151 * The following function initializes the cpu_context for the current CPU
152 * for first use, and sets the initial entrypoint state as specified by the
153 * entry_point_info structure.
154 ******************************************************************************/
155void cm_init_my_context(const entry_point_info_t *ep)
156{
157 cpu_context_t *ctx;
158 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
159 cm_init_context_common(ctx, ep);
160}
161
162/*******************************************************************************
163 * Prepare the CPU system registers for first entry into secure or normal world
164 *
165 * If execution is requested to hyp mode, HSCTLR is initialized
166 * If execution is requested to non-secure PL1, and the CPU supports
167 * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
168 * registers.
169 ******************************************************************************/
170void cm_prepare_el3_exit(uint32_t security_state)
171{
172 uint32_t sctlr, scr, hcptr;
173 cpu_context_t *ctx = cm_get_context(security_state);
174
175 assert(ctx);
176
177 if (security_state == NON_SECURE) {
178 scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
179 if (scr & SCR_HCE_BIT) {
180 /* Use SCTLR value to initialize HSCTLR */
181 sctlr = read_ctx_reg(get_regs_ctx(ctx),
182 CTX_NS_SCTLR);
183 sctlr |= HSCTLR_RES1;
184 /* Temporarily set the NS bit to access HSCTLR */
185 write_scr(read_scr() | SCR_NS_BIT);
186 /*
187 * Make sure the write to SCR is complete so that
188 * we can access HSCTLR
189 */
190 isb();
191 write_hsctlr(sctlr);
192 isb();
193
194 write_scr(read_scr() & ~SCR_NS_BIT);
195 isb();
196 } else if (read_id_pfr1() &
197 (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) {
198 /* Set the NS bit to access HCR, HCPTR, CNTHCTL, VPIDR, VMPIDR */
199 write_scr(read_scr() | SCR_NS_BIT);
200 isb();
201
202 /* PL2 present but unused, need to disable safely */
203 write_hcr(0);
204
205 /* HSCTLR : can be ignored when bypassing */
206
207 /* HCPTR : disable all traps TCPAC, TTA, TCP */
208 hcptr = read_hcptr();
209 hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT);
210 write_hcptr(hcptr);
211
212 /* Enable EL1 access to timer */
213 write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT);
214
215 /* Reset CNTVOFF_EL2 */
216 write64_cntvoff(0);
217
218 /* Set VPIDR, VMPIDR to match MIDR, MPIDR */
219 write_vpidr(read_midr());
220 write_vmpidr(read_mpidr());
221
222 /*
223 * Reset VTTBR.
224 * Needed because cache maintenance operations depend on
225 * the VMID even when non-secure EL1&0 stage 2 address
226 * translation are disabled.
227 */
228 write64_vttbr(0);
229 isb();
230
231 write_scr(read_scr() & ~SCR_NS_BIT);
232 isb();
233 }
234 }
235}