blob: 5f9f313e2dc25d39483b0c1a66050800b1f8d1a7 [file] [log] [blame]
Jiafei Panb9d543c2022-02-18 15:26:08 +08001/*
2 * Copyright 2022 NXP
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <assert.h>
8
9#include <arch.h>
10#include <caam.h>
11#include <cci.h>
12#include <common/debug.h>
13#include <dcfg.h>
14#ifdef I2C_INIT
15#include <i2c.h>
16#endif
17#include <lib/mmio.h>
18#include <lib/xlat_tables/xlat_tables_v2.h>
19#include <ls_interconnect.h>
20#if TRUSTED_BOARD_BOOT
21#include <nxp_smmu.h>
22#endif
23#include <nxp_timer.h>
24#include <plat_console.h>
25#include <plat_gic.h>
26#include <plat_tzc400.h>
27#include <pmu.h>
28#if defined(NXP_SFP_ENABLED)
29#include <sfp.h>
30#endif
31
32#include <errata.h>
33#ifdef CONFIG_OCRAM_ECC_EN
34#include <ocram.h>
35#endif
36#include <plat_common.h>
37#include <platform_def.h>
38#include <soc.h>
39
40static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2];
41static struct soc_type soc_list[] = {
42 SOC_ENTRY(LS1044A, LS1044A, 1, 4),
43 SOC_ENTRY(LS1044AE, LS1044AE, 1, 4),
44 SOC_ENTRY(LS1048A, LS1048A, 1, 4),
45 SOC_ENTRY(LS1048AE, LS1048AE, 1, 4),
46 SOC_ENTRY(LS1084A, LS1084A, 2, 4),
47 SOC_ENTRY(LS1084AE, LS1084AE, 2, 4),
48 SOC_ENTRY(LS1088A, LS1088A, 2, 4),
49 SOC_ENTRY(LS1088AE, LS1088AE, 2, 4),
50};
51
52static dcfg_init_info_t dcfg_init_data = {
53 .g_nxp_dcfg_addr = NXP_DCFG_ADDR,
54 .nxp_sysclk_freq = NXP_SYSCLK_FREQ,
55 .nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
56 .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
57};
58
59/*
60 * This function dynamically constructs the topology according to
61 * SoC Flavor and returns it.
62 */
63const unsigned char *plat_get_power_domain_tree_desc(void)
64{
65 unsigned int i;
66 uint8_t num_clusters, cores_per_cluster;
67
68 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
69
70 /*
71 * The highest level is the system level. The next level is constituted
72 * by clusters and then cores in clusters.
73 */
74 _power_domain_tree_desc[0] = 1;
75 _power_domain_tree_desc[1] = num_clusters;
76
77 for (i = 0; i < _power_domain_tree_desc[1]; i++) {
78 _power_domain_tree_desc[i + 2] = cores_per_cluster;
79 }
80
81
82 return _power_domain_tree_desc;
83}
84
85CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
86 assert_invalid_ls1088a_cluster_count);
87
88/*
89 * This function returns the core count within the cluster corresponding to
90 * `mpidr`.
91 */
92unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
93{
94 return CORES_PER_CLUSTER;
95}
96
97/*
98 * This function returns the total number of cores in the SoC
99 */
100unsigned int get_tot_num_cores(void)
101{
102 uint8_t num_clusters, cores_per_cluster;
103
104 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
105
106 return (num_clusters * cores_per_cluster);
107}
108
109/*
110 * This function returns the PMU IDLE Cluster mask.
111 */
112unsigned int get_pmu_idle_cluster_mask(void)
113{
114 uint8_t num_clusters, cores_per_cluster;
115
116 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
117
118 return ((1 << num_clusters) - 2);
119}
120
121/*
122 * This function returns the PMU Flush Cluster mask.
123 */
124unsigned int get_pmu_flush_cluster_mask(void)
125{
126 uint8_t num_clusters, cores_per_cluster;
127
128 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
129
130 return ((1 << num_clusters) - 2);
131}
132
133/*
134 * This function returns the PMU IDLE Core mask.
135 */
136unsigned int get_pmu_idle_core_mask(void)
137{
138 return ((1 << get_tot_num_cores()) - 2);
139}
140
141#ifdef IMAGE_BL2
142
143void soc_bl2_prepare_exit(void)
144{
145#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
146 set_sfp_wr_disable();
147#endif
148}
149
150void soc_preload_setup(void)
151{
152
153}
154
155/*
156 * This function returns the boot device based on RCW_SRC
157 */
158enum boot_device get_boot_dev(void)
159{
160 enum boot_device src = BOOT_DEVICE_NONE;
161 uint32_t porsr1;
162 uint32_t rcw_src, val;
163
164 porsr1 = read_reg_porsr1();
165
166 rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
167
168 /* RCW SRC NOR */
169 val = rcw_src & RCW_SRC_TYPE_MASK;
170 if (val == NOR_16B_VAL) {
171 src = BOOT_DEVICE_IFC_NOR;
172 INFO("RCW BOOT SRC is IFC NOR\n");
173 } else {
174 val = rcw_src & RCW_SRC_SERIAL_MASK;
175 switch (val) {
176 case QSPI_VAL:
177 src = BOOT_DEVICE_QSPI;
178 INFO("RCW BOOT SRC is QSPI\n");
179 break;
180 case SDHC_VAL:
181 src = BOOT_DEVICE_EMMC;
182 INFO("RCW BOOT SRC is SD/EMMC\n");
183 break;
184 case EMMC_VAL:
185 src = BOOT_DEVICE_EMMC;
186 INFO("RCW BOOT SRC is SD/EMMC\n");
187 break;
188 default:
189 src = BOOT_DEVICE_NONE;
190 }
191 }
192
193 return src;
194}
195
196/*
197 * This function sets up access permissions on memory regions
198 */
199void soc_mem_access(void)
200{
201 dram_regions_info_t *info_dram_regions = get_dram_regions_info();
202 int i = 0;
203 struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
204 int dram_idx, index = 1;
205
206 for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions;
207 dram_idx++) {
208 if (info_dram_regions->region[i].size == 0) {
209 ERROR("DDR init failure, or");
210 ERROR("DRAM regions not populated correctly.\n");
211 break;
212 }
213
214 index = populate_tzc400_reg_list(tzc400_reg_list,
215 dram_idx, index,
216 info_dram_regions->region[dram_idx].addr,
217 info_dram_regions->region[dram_idx].size,
218 NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
219 }
220
221 mem_access_setup(NXP_TZC_ADDR, index,
222 tzc400_reg_list);
223}
224
225/*
226 * This function implements soc specific erratum
227 * This is called before DDR is initialized or MMU is enabled
228 */
229void soc_early_init(void)
230{
231 enum boot_device dev;
232 dram_regions_info_t *dram_regions_info = get_dram_regions_info();
233
234#ifdef CONFIG_OCRAM_ECC_EN
235 ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
236#endif
237 dcfg_init(&dcfg_init_data);
238#if LOG_LEVEL > 0
239 /* Initialize the console to provide early debug support */
240 plat_console_init(NXP_CONSOLE_ADDR,
241 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
242#endif
243 enable_timer_base_to_cluster(NXP_PMU_ADDR);
244 enable_core_tb(NXP_PMU_ADDR);
245
246 /*
247 * Use the region(NXP_SD_BLOCK_BUF_ADDR + NXP_SD_BLOCK_BUF_SIZE)
248 * as dma of sd
249 */
250 dev = get_boot_dev();
251 if (dev == BOOT_DEVICE_EMMC) {
252 mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
253 NXP_SD_BLOCK_BUF_SIZE,
254 MT_DEVICE | MT_RW | MT_NS);
255 }
256
257#if TRUSTED_BOARD_BOOT
258 uint32_t mode;
259
260 sfp_init(NXP_SFP_ADDR);
261 /*
262 * For secure boot disable SMMU.
263 * Later when platform security policy comes in picture,
264 * this might get modified based on the policy
265 */
266 if (check_boot_mode_secure(&mode) == true) {
267 bypass_smmu(NXP_SMMU_ADDR);
268 }
269
270 /*
271 * For Mbedtls currently crypto is not supported via CAAM
272 * enable it when that support is there. In tbbr.mk
273 * the CAAM_INTEG is set as 0.
274 */
275#ifndef MBEDTLS_X509
276 /* Initialize the crypto accelerator if enabled */
277 if (is_sec_enabled() == false) {
278 INFO("SEC is disabled.\n");
279 } else {
280 sec_init(NXP_CAAM_ADDR);
281 }
282#endif
283#endif
284
285 soc_errata();
286
287 delay_timer_init(NXP_TIMER_ADDR);
288 i2c_init(NXP_I2C_ADDR);
289 dram_regions_info->total_dram_size = init_ddr();
290}
291#else /* !IMAGE_BL2 */
292
293void soc_early_platform_setup2(void)
294{
295 dcfg_init(&dcfg_init_data);
296 /*
297 * Initialize system level generic timer for Socs
298 */
299 delay_timer_init(NXP_TIMER_ADDR);
300
301#if LOG_LEVEL > 0
302 /* Initialize the console to provide early debug support */
303 plat_console_init(NXP_CONSOLE_ADDR,
304 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
305#endif
306}
307
308void soc_platform_setup(void)
309{
310 /* Initialize the GIC driver, cpu and distributor interfaces */
311 static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
312 static interrupt_prop_t ls_interrupt_props[] = {
313 PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
314 PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
315 };
316
317 plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
318 PLATFORM_CORE_COUNT,
319 ls_interrupt_props,
320 ARRAY_SIZE(ls_interrupt_props),
321 target_mask_array,
322 plat_core_pos);
323
324 plat_ls_gic_init();
325 enable_init_timer();
326}
327
328/*
329 * This function initializes the soc from the BL31 module
330 */
331void soc_init(void)
332{
333 uint8_t num_clusters, cores_per_cluster;
334
335 /* low-level init of the soc */
336 soc_init_lowlevel();
337 _init_global_data();
338 soc_init_percpu();
339 _initialize_psci();
340
341 /*
342 * Initialize Interconnect for this cluster during cold boot.
343 * No need for locks as no other CPU is active.
344 */
345 cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
346
347 /*
348 * Enable Interconnect coherency for the primary CPU's cluster.
349 */
350 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
351 plat_ls_interconnect_enter_coherency(num_clusters);
352
353 /* set platform security policies */
354 _set_platform_security();
355
356 /* Initialize the crypto accelerator if enabled */
357 if (is_sec_enabled() == false) {
358 INFO("SEC is disabled.\n");
359 } else {
360 sec_init(NXP_CAAM_ADDR);
361 }
362}
363
364void soc_runtime_setup(void)
365{
366
367}
368#endif /* IMAGE_BL2 */
369
370/*
371 * Function to return the SoC SYS CLK
372 */
373unsigned int get_sys_clk(void)
374{
375 return NXP_SYSCLK_FREQ;
376}
377
378/*
379 * Function returns the base counter frequency
380 * after reading the first entry at CNTFID0 (0x20 offset).
381 *
382 * Function is used by:
383 * 1. ARM common code for PSCI management.
384 * 2. ARM Generic Timer init.
385 */
386unsigned int plat_get_syscnt_freq2(void)
387{
388 unsigned int counter_base_frequency;
389 /*
390 * Below register specifies the base frequency of the system counter.
391 * As per NXP Board Manuals:
392 * The system counter always works with SYS_REF_CLK/4 frequency clock.
393 */
394 counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
395
396 return counter_base_frequency;
397}