blob: 9c84b00f7d19986c2612e4876955f14b995a2d18 [file] [log] [blame]
Pankaj Guptac518de42020-12-09 14:02:39 +05301/*
2 * Copyright 2021 NXP
3 * SPDX-License-Identifier: BSD-3-Clause
4 *
5 */
6
7#include <errno.h>
8#include <stdint.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <string.h>
12
13#include <common/debug.h>
14#include "csr.h"
15#include <ddr.h>
16#include "ddr4fw.h"
17#include <drivers/delay_timer.h>
18#ifdef NXP_WARM_BOOT
19#include <fspi_api.h>
20#endif
21#include "input.h"
22#include <lib/mmio.h>
23#include <lib/utils.h>
24#include <lib/xlat_tables/xlat_tables_v2.h>
25#ifdef DDR_PHY_DEBUG
26#include "messages.h"
27#endif
28#ifdef NXP_WARM_BOOT
29#include "phy.h"
30#endif
31#include "pie.h"
32
33#define TIMEOUTDEFAULT 500
34#define MAP_PHY_ADDR(pstate, n, instance, offset, c) \
35 ((((pstate * n) + instance + c) << 12) + offset)
36
37static uint32_t map_phy_addr_space(uint32_t addr)
38{
39 /* 23 bit addressing */
40 uint32_t pstate = (addr & U(0x700000)) >> 20U; /* bit 22:20 */
41 uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */
42 uint32_t instance = (addr & U(0x00f000)) >> 12U; /* bit 15:12 */
43 uint32_t offset = (addr & U(0x000fff)); /* bit 11:0 */
44
45 switch (block_type) {
46 case 0x0: /* 0x0 : ANIB */
47 return MAP_PHY_ADDR(pstate, 12, instance, offset, 0);
48 case 0x1: /* 0x1 : DBYTE */
49 return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30);
50 case 0x2: /* 0x2 : MASTER */
51 return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58);
52 case 0x4: /* 0x4 : ACSM */
53 return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c);
54 case 0x5: /* 0x5 : μCTL Memory */
55 return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60);
56 case 0x7: /* 0x7 : PPGC */
57 return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68);
58 case 0x9: /* 0x9 : INITENG */
59 return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69);
60 case 0xc: /* 0xC : DRTUB */
61 return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d);
62 case 0xd: /* 0xD : APB Only */
63 return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e);
64 default:
65 printf("ERR: Invalid block_type = 0x%x\n", block_type);
66 return 0;
67 }
68}
69
70static inline uint16_t *phy_io_addr(void *phy, uint32_t addr)
71{
72 return phy + (map_phy_addr_space(addr) << 2);
73}
74
75static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data)
76{
77 mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data);
78#ifdef DEBUG_PHY_IO
79 printf("0x%06x,0x%x\n", addr, data);
80#endif
81}
82
83static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr)
84{
85 uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr));
86
87#ifdef DEBUG_PHY_IO
88 printf("R: 0x%06x,0x%x\n", addr, reg);
89#endif
90
91 return reg;
92}
93
94#ifdef NXP_APPLY_MAX_CDD
95
96#define CDD_VAL_READ_ADDR (0x054012)
97#define CDD_DATA_LEN (60)
98
99static void read_phy_reg(uint16_t *phy, uint32_t addr,
100 uint16_t *buf, uint32_t len)
101{
102 uint32_t i = 0U;
103
104 for (i = 0U; i < len/2; i++) {
105 buf[i] = phy_io_read16(phy, (addr + i));
106 }
107}
108
109static uint32_t findrank(uint32_t cs_in_use)
110{
111 uint32_t val = 0U;
112
113 switch (cs_in_use) {
114 case U(0xf):
115 val = 4U;
116 break;
117 case U(0x3):
118 val = 2U;
119 break;
120 case U(0x1):
121 val = 1U;
122 break;
123 default:
124 printf("Error - Invalid cs_in_use value\n");
125 }
126 return val;
127}
128
129static uint8_t findmax(uint8_t *buf, uint32_t len)
130{
131 uint8_t max = 0U;
132 uint32_t i = 0U;
133
134 for (i = 0U; i < len; i++) {
135 if (buf[i] > max) {
136 max = buf[i];
137 }
138 }
139
140 return max;
141}
142
143static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq,
144 uint32_t *tcfg0, uint32_t *tcfg4)
145{
146 uint8_t cdd[CDD_DATA_LEN+4] = {0U};
147 uint32_t i, val = 0U;
148 uint16_t *phy;
149 uint8_t buf[16] = {U(0x0)};
150 uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U;
151 uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U;
152 uint8_t tmp = U(0x0);
153 uint8_t *c = NULL;
154
155 for (i = 0U; i < NUM_OF_DDRC; i++) {
156
157 phy = phy_ptr[i];
158 if (phy == NULL) {
159 continue;
160 }
161
162 phy_io_write16(phy, t_apbonly |
163 csr_micro_cont_mux_sel_addr, U(0x0));
164
165 read_phy_reg(phy, CDD_VAL_READ_ADDR,
166 (uint16_t *)&cdd, CDD_DATA_LEN);
167
168 phy_io_write16(phy, t_apbonly |
169 csr_micro_cont_mux_sel_addr, U(0x1));
170
171 /* CDD values and address
172 *
173 * 0x054012 0x24 cdd[0] CDD[X][X]
174 * 0x054012 0x25 cdd[1] RR[3][2]
175 * 0x054013 0x26 cdd[2] RR[3][1]
176 * 0x054013 0x27 cdd[3] RR[3][0]
177 * 0x054014 0x28 cdd[4] RR[2][3]
178 * 0x054014 0x29 cdd[5] RR[2][1]
179 * 0x054015 0x2a cdd[6] RR[2][0]
180 * 0x054015 0x2b cdd[7] RR[1][3]
181 * 0x054016 0x2c cdd[8] RR[1][2]
182 * 0x054016 0x2d cdd[9] RR[1][0]
183 * 0x054017 0x2e cdd[10] RR[0][3]
184 * 0x054017 0x2f cdd[11] RR[0][2]
185 * 0x054018 0x30 cdd[12] RR[0][1]
186
187 * 0x054018 0x31 cdd[13] WW[3][2]
188 * 0x054019 0x32 cdd[14] WW[3][1]
189 * 0x054019 0x33 cdd[15] WW[3][0]
190 * 0x05401a 0x34 cdd[16] WW[2][3]
191 * 0x05401a 0x35 cdd[17] WW[2][1]
192 * 0x05401b 0x36 cdd[18] WW[2][0]
193 * 0x05401b 0x37 cdd[19] WW[1][3]
194 * 0x05401c 0x38 cdd[20] WW[1][2]
195 * 0x05401c 0x39 cdd[21] WW[1][0]
196 * 0x05401d 0x3a cdd[22] WW[0][3]
197 * 0x05401d 0x3b cdd[23] WW[0][2]
198 * 0x05401e 0x3c cdd[24] WW[0][1]
199
200 * 0x05401e 0x3d cdd[25] RW[3][3]
201 * 0x05401f 0x3e cdd[26] RW[3][2]
202 * 0x05401f 0x3f cdd[27] RW[3][1]
203 * 0x054020 0x40 cdd[28] RW[3][0]
204 * 0x054020 0x41 cdd[29] RW[2][3]
205 * 0x054021 0x42 cdd[30] RW[2][2]
206 * 0x054021 0x43 cdd[31] RW[2][1]
207 * 0x054022 0x44 cdd[32] RW[2][0]
208 * 0x054022 0x45 cdd[33] RW[1][3]
209 * 0x054023 0x46 cdd[34] RW[1][2]
210 * 0x054023 0x47 cdd[35] RW[1][1]
211 * 0x054024 0x48 cdd[36] RW[1][0]
212 * 0x054024 0x49 cdd[37] RW[0][3]
213 * 0x054025 0x4a cdd[38] RW[0][2]
214 * 0x054025 0x4b cdd[39] RW[0][1]
215 * 0x054026 0x4c cdd[40] RW[0][0]
216
217 * 0x054026 0x4d cdd[41] WR[3][3]
218 * 0x054027 0x4e cdd[42] WR[3][2]
219 * 0x054027 0x4f cdd[43] WR[3][1]
220 * 0x054028 0x50 cdd[44] WR[3][0]
221 * 0x054028 0x51 cdd[45] WR[2][3]
222 * 0x054029 0x52 cdd[46] WR[2][2]
223 * 0x054029 0x53 cdd[47] WR[2][1]
224 * 0x05402a 0x54 cdd[48] WR[2][0]
225 * 0x05402a 0x55 cdd[49] WR[1][3]
226 * 0x05402b 0x56 cdd[50] WR[1][2]
227 * 0x05402b 0x57 cdd[51] WR[1][1]
228 * 0x05402c 0x58 cdd[52] WR[1][0]
229 * 0x05402c 0x59 cdd[53] WR[0][3]
230 * 0x05402d 0x5a cdd[54] WR[0][2]
231 * 0x05402d 0x5b cdd[55] WR[0][1]
232 * 0x05402e 0x5c cdd[56] WR[0][0]
233 * 0x05402e 0x5d cdd[57] CDD[Y][Y]
234 */
235
236 switch (rank) {
237 case 1U:
238 tmp = rwmax;
239 rwmax = cdd[40];
240 if (tmp > rwmax) {
241 rwmax = tmp;
242 }
243
244 tmp = wrmax;
245 wrmax = cdd[56];
246 if (tmp > wrmax) {
247 wrmax = tmp;
248 }
249
250 break;
251
252 case 2U:
253 buf[0] = cdd[12];
254 buf[1] = cdd[9];
255 tmp = rrmax;
256 rrmax = findmax(buf, 2U);
257 if (tmp > rrmax) {
258 rrmax = tmp;
259 }
260
261 buf[0] = cdd[24];
262 buf[1] = cdd[21];
263 tmp = wwmax;
264 wwmax = findmax(buf, 2U);
265 if (tmp > wwmax) {
266 wwmax = tmp;
267 }
268
269 buf[0] = cdd[40];
270 buf[1] = cdd[39];
271 buf[2] = cdd[36];
272 buf[3] = cdd[35];
273 tmp = rwmax;
274 rwmax = findmax(buf, 4U);
275 if (tmp > rwmax) {
276 rwmax = tmp;
277 }
278
279 buf[0] = cdd[56];
280 buf[1] = cdd[55];
281 buf[2] = cdd[52];
282 buf[3] = cdd[51];
283 tmp = wrmax;
284 wrmax = findmax(buf, 4U);
285 if (tmp > wrmax) {
286 wrmax = tmp;
287 }
288
289 break;
290
291 case 4U:
292 tmp = rrmax;
293 c = &cdd[1];
294 rrmax = findmax(c, 12U);
295 if (tmp > rrmax) {
296 rrmax = tmp;
297 }
298
299 tmp = wwmax;
300 c = &cdd[13];
301 wwmax = findmax(c, 12U);
302 if (tmp > wwmax) {
303 wwmax = tmp;
304 }
305
306 tmp = rwmax;
307 c = &cdd[25];
308 rwmax = findmax(c, 16U);
309 if (tmp > rwmax) {
310 rwmax = tmp;
311 }
312
313 tmp = wrmax;
314 c = &cdd[41];
315 wrmax = findmax(c, 16U);
316 if (tmp > wrmax) {
317 wrmax = tmp;
318 }
319
320 break;
321
322 }
323 }
324
325 rrmax += 3U;
326 wwmax += 4U;
327
328 if (wwmax > 7U) {
329 wwmax = 7U;
330 }
331
332 if (rrmax > 7U) {
333 rrmax = 7U;
334 }
335
336 if (wrmax > U(0xf)) {
337 wrmax = 0U;
338 }
339
340 if (rwmax > U(0x7)) {
341 rwmax = U(0x7);
342 }
343
344 val = *tcfg0;
345 tww = (val >> 24U) & U(0x3);
346 trr = (val >> 26U) & U(0x3);
347 twr = (val >> 28U) & U(0x3);
348 trw = (val >> 30U) & U(0x3);
349
350 val = *tcfg4;
351 tww = tww | (((val >> 8U) & U(0x1)) << 2U);
352 trr = trr | (((val >> 10U) & U(0x1)) << 2U);
353 twr = twr | (((val >> 12U) & U(0x1)) << 2U);
354 trw = trw | (((val >> 14U) & U(0x3)) << 2U);
355
356 if (trr > rrmax) {
357 rrmax = trr;
358 }
359
360 if (tww > wwmax) {
361 wwmax = tww;
362 }
363
364 if (trw > rwmax) {
365 rwmax = trw;
366 }
367
368 if (twr > wrmax) {
369 wrmax = twr;
370 }
371
372 debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n",
373 rrmax, wwmax, rwmax, wrmax);
374
375 val = ((wwmax & U(0x3)) << 24U)
376 | ((rrmax & U(0x3)) << 26U)
377 | ((wrmax & U(0x3)) << 28U)
378 | ((rwmax & U(0x3)) << 30U);
379
380 *tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val);
381
382 val = (((wwmax >> 2U) & U(0x1)) << 8U)
383 | (((rrmax >> 2U) & U(0x1)) << 10U)
384 | (((wrmax >> 2U) & U(0x1)) << 12U)
385 | (((rwmax >> 2U) & U(0x3)) << 14U);
386
387 *tcfg4 = (*tcfg4 & U(0xffff00ff)) | val;
388}
389#endif
390
391#ifdef NXP_WARM_BOOT
392int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store,
393 uint32_t num_of_phy, int train2d)
394{
395 uint16_t *phy = NULL, value = 0x0;
396 uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
397 int i = 0, j = 0, ret = -EINVAL;
398
399 ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE);
400 if (ret != 0) {
401 return -EINVAL;
402 }
403
404 for (j = 0; j < num_of_phy; j++) {
405 /* Save training values of all PHYs */
406 phy = phy_ptr[j];
407 size = sizeof(training_1D_values);
408 num_of_regs = ARRAY_SIZE(training_1D_values);
409
410 /* Enable access to the internal CSRs */
411 phy_io_write16(phy, t_apbonly |
412 csr_micro_cont_mux_sel_addr, 0x0);
413 /* Enable clocks in case they were disabled. */
414 phy_io_write16(phy, t_drtub |
415 csr_ucclk_hclk_enables_addr, 0x3);
416 if (train2d != 0) {
417 /* Address to store training values is
418 * to be appended for next PHY
419 */
420 phy_store = address_to_store + (j *
421 (sizeof(training_1D_values) +
422 sizeof(training_2D_values)));
423 } else {
424 phy_store = address_to_store + (j *
425 (sizeof(training_1D_values)));
426 }
427 debug("Saving 1D Training reg val at: %d\n", phy_store);
428 for (i = 0; i < num_of_regs; i++) {
429 value = phy_io_read16(phy, training_1D_values[i].addr);
430#ifdef DEBUG_WARM_RESET
431 debug("%d. Reg: %x, value: %x PHY: %p\n", i,
432 training_1D_values[i].addr, value,
433 phy_io_addr(phy,
434 training_1D_values[i].addr));
435#endif
436 training_1D_values[i].data = value;
437 }
438 /* Storing 1D training values on flash */
439 ret = xspi_write(phy_store, (void *)training_1D_values, size);
440 if (train2d != 0) {
441 phy_store = phy_store+size;
442 size = sizeof(training_2D_values);
443 num_of_regs = ARRAY_SIZE(training_2D_values);
444 debug("Saving 2D Training reg val at:%d\n", phy_store);
445 for (i = 0; i < num_of_regs; i++) {
446 value = phy_io_read16(phy,
447 training_2D_values[i].addr);
448 training_2D_values[i].data = value;
449#ifdef DEBUG_WARM_RESET
450 debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n",
451 i, training_2D_values[i].addr,
452 value, phy_io_addr(phy,
453 training_2D_values[i].addr));
454#endif
455 }
456 /* Storing 2D training values on flash */
457 ret = xspi_write(phy_store, training_2D_values,
458 size);
459 }
460 /* Disable clocks in case they were disabled. */
461 phy_io_write16(phy, t_drtub |
462 csr_ucclk_hclk_enables_addr, 0x0);
463 /* Disable access to the internal CSRs */
464 phy_io_write16(phy, t_apbonly |
465 csr_micro_cont_mux_sel_addr, 0x1);
466 }
467 if (ret != 0) {
468 return -EINVAL;
469 }
470
471 return 0;
472}
473
474int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore,
475 uint32_t num_of_phy, int train2d)
476{
477 uint16_t *phy = NULL;
478 uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
479 int i = 0, j = 0, ret = -EINVAL;
480
481 debug("Restoring Training register values\n");
482 for (j = 0; j < num_of_phy; j++) {
483 phy = phy_ptr[j];
484 size = sizeof(training_1D_values);
485 num_of_regs = ARRAY_SIZE(training_1D_values);
486 if (train2d != 0) {
487 /* The address to restore training values is
488 * to be appended for next PHY
489 */
490 phy_store = address_to_restore + (j *
491 (sizeof(training_1D_values) +
492 sizeof(training_2D_values)));
493 } else {
494 phy_store = address_to_restore + (j *
495 (sizeof(training_1D_values)));
496 }
497 /* Enable access to the internal CSRs */
498 phy_io_write16(phy, t_apbonly |
499 csr_micro_cont_mux_sel_addr, 0x0);
500 /* Enable clocks in case they were disabled. */
501 phy_io_write16(phy, t_drtub |
502 csr_ucclk_hclk_enables_addr, 0x3);
503
504 /* Reading 1D training values from flash*/
505 ret = xspi_read(phy_store, (uint32_t *)training_1D_values,
506 size);
507 debug("Restoring 1D Training reg val at:%08x\n", phy_store);
508 for (i = 0; i < num_of_regs; i++) {
509 phy_io_write16(phy, training_1D_values[i].addr,
510 training_1D_values[i].data);
511#ifdef DEBUG_WARM_RESET
512 debug("%d. Reg: %x, value: %x PHY: %p\n", i,
513 training_1D_values[i].addr,
514 training_1D_values[i].data,
515 phy_io_addr(phy,
516 training_1D_values[i].addr));
517#endif
518 }
519 if (train2d != 0) {
520 phy_store = phy_store + size;
521 size = sizeof(training_2D_values);
522 num_of_regs = ARRAY_SIZE(training_2D_values);
523 /* Reading 2D training values from flash */
524 ret = xspi_read(phy_store,
525 (uint32_t *)training_2D_values, size);
526 debug("Restoring 2D Training reg val at:%08x\n",
527 phy_store);
528 for (i = 0; i < num_of_regs; i++) {
529 phy_io_write16(phy, training_2D_values[i].addr,
530 training_2D_values[i].data);
531#ifdef DEBUG_WARM_RESET
532 debug("%d. Reg: %x, value: %x PHY: %p\n", i,
533 training_2D_values[i].addr,
534 training_2D_values[i].data,
535 phy_io_addr(phy,
536 training_1D_values[i].addr));
537#endif
538 }
539 }
540 /* Disable clocks in case they were disabled. */
541 phy_io_write16(phy, t_drtub |
542 csr_ucclk_hclk_enables_addr, 0x0);
543 /* Disable access to the internal CSRs */
544 phy_io_write16(phy, t_apbonly |
545 csr_micro_cont_mux_sel_addr, 0x1);
546 }
547 if (ret != 0) {
548 return -EINVAL;
549 }
550 return 0;
551}
552#endif
553
554static void load_pieimage(uint16_t *phy,
555 enum dimm_types dimm_type)
556{
557 int i;
558 int size;
559 const struct pie *image = NULL;
560
561 switch (dimm_type) {
562 case UDIMM:
563 case SODIMM:
564 case NODIMM:
565 image = pie_udimm;
566 size = ARRAY_SIZE(pie_udimm);
567 break;
568 case RDIMM:
569 image = pie_rdimm;
570 size = ARRAY_SIZE(pie_rdimm);
571 break;
572 case LRDIMM:
573 image = pie_lrdimm;
574 size = ARRAY_SIZE(pie_lrdimm);
575 break;
576 default:
577 printf("Unsupported DIMM type\n");
578 break;
579 }
580
581 if (image != NULL) {
582 for (i = 0; i < size; i++)
583 phy_io_write16(phy, image[i].addr, image[i].data);
584 }
585}
586
587static void prog_acsm_playback(uint16_t *phy,
588 const struct input *input, const void *msg)
589{
590 int vec;
591 const struct ddr4r1d *msg_blk;
592 uint16_t acsmplayback[2][3];
593 uint32_t f0rc0a;
594 uint32_t f0rc3x;
595 uint32_t f0rc5x;
596
597 if (input->basic.dimm_type != RDIMM) {
598 return;
599 }
600
601 msg_blk = msg;
602 f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0);
603 f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300);
604 f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500);
605
606 acsmplayback[0][0] = U(0x3ff) & f0rc0a;
607 acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U;
608 acsmplayback[0][1] = U(0x3ff) & f0rc3x;
609 acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U;
610 acsmplayback[0][2] = U(0x3ff) & f0rc5x;
611 acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U;
612 for (vec = 0; vec < 3; vec++) {
613 phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr +
614 (vec << 1)), acsmplayback[0][vec]);
615 phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr +
616 (vec << 1)), acsmplayback[1][vec]);
617 }
618}
619
620static void prog_acsm_ctr(uint16_t *phy,
621 const struct input *input)
622{
623 if (input->basic.dimm_type != RDIMM) {
624 return;
625 }
626
627 phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr,
628 0xf << csr_acsm_cke_enb_lsb);
629
630 phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr,
631 csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask);
632}
633
634static void prog_cal_rate_run(uint16_t *phy,
635 const struct input *input)
636{
637 int cal_rate;
638 int cal_interval;
639 int cal_once;
640 uint32_t addr;
641
642 cal_interval = input->adv.cal_interval;
643 cal_once = input->adv.cal_once;
644 cal_rate = 0x1 << csr_cal_run_lsb |
645 cal_once << csr_cal_once_lsb |
646 cal_interval << csr_cal_interval_lsb;
647 addr = t_master | csr_cal_rate_addr;
648 phy_io_write16(phy, addr, cal_rate);
649}
650
651static void prog_seq0bdly0(uint16_t *phy,
652 const struct input *input)
653{
654 int ps_count[4];
655 int frq;
656 uint32_t addr;
657 int lower_freq_opt = 0;
658
659 __unused const soc_info_t *soc_info;
660
661 frq = input->basic.frequency >> 1;
662 ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/
663 if (input->basic.frequency < 400) {
664 lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3;
665 } else if (input->basic.frequency < 533) {
666 lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11;
667 }
668
669 /* 1.0 * frq / 4 - lower_freq */
670 ps_count[1] = (frq >> 2) - lower_freq_opt;
671 ps_count[2] = (frq << 1) + (frq >> 1); /* 10.0 * frq / 4 */
672
673#ifdef DDR_PLL_FIX
674 soc_info = get_soc_info();
Jiafei Panb27ac802021-07-20 17:14:32 +0800675 if (soc_info->svr_reg.bf.maj_ver == 1) {
Pankaj Guptac518de42020-12-09 14:02:39 +0530676 ps_count[0] = 0x520; /* seq0bdly0 */
677 ps_count[1] = 0xa41; /* seq0bdly1 */
678 ps_count[2] = 0x668a; /* seq0bdly2 */
679 }
680#endif
681 if (frq > 266) {
682 ps_count[3] = 44;
683 } else if (frq > 200) {
684 ps_count[3] = 33;
685 } else {
686 ps_count[3] = 16;
687 }
688
689 addr = t_master | csr_seq0bdly0_addr;
690 phy_io_write16(phy, addr, ps_count[0]);
691
692 debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr));
693
694 addr = t_master | csr_seq0bdly1_addr;
695 phy_io_write16(phy, addr, ps_count[1]);
696
697 debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr));
698
699 addr = t_master | csr_seq0bdly2_addr;
700 phy_io_write16(phy, addr, ps_count[2]);
701
702 debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr));
703
704 addr = t_master | csr_seq0bdly3_addr;
705 phy_io_write16(phy, addr, ps_count[3]);
706
707 debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr));
708}
709
710/* Only RDIMM requires msg_blk */
711static void i_load_pie(uint16_t **phy_ptr,
712 const struct input *input,
713 const void *msg)
714{
715 int i;
716 uint16_t *phy;
717
718 for (i = 0; i < NUM_OF_DDRC; i++) {
719 phy = phy_ptr[i];
720 if (phy == NULL) {
721 continue;
722 }
723
724 phy_io_write16(phy,
725 t_apbonly | csr_micro_cont_mux_sel_addr,
726 0U);
727
728 load_pieimage(phy, input->basic.dimm_type);
729
730 prog_seq0bdly0(phy, input);
731 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr,
732 U(0x0000));
733 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr,
734 U(0x0173));
735 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr,
736 U(0x0060));
737 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr,
738 U(0x6110));
739 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr,
740 U(0x2152));
741 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr,
742 U(0xdfbd));
743 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr,
744 input->basic.dimm_type == RDIMM &&
745 input->adv.phy_gen2_umctl_opt == 1U ?
746 U(0x6000) : U(0xffff));
747 phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr,
748 U(0x6152));
749 prog_acsm_playback(phy, input, msg); /* rdimm */
750 prog_acsm_ctr(phy, input); /* rdimm */
751
752 phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1));
753 prog_cal_rate_run(phy, input);
754
755 phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr,
756 input->basic.dimm_type == RDIMM ? U(0x2) : 0U);
757
758 phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U);
759 }
760}
761
762static void phy_gen2_init_input(struct input *input)
763{
764 int i;
765
766 input->adv.dram_byte_swap = 0;
767 input->adv.ext_cal_res_val = 0;
768 input->adv.tx_slew_rise_dq = 0xf;
769 input->adv.tx_slew_fall_dq = 0xf;
770 input->adv.tx_slew_rise_ac = 0xf;
771 input->adv.tx_slew_fall_ac = 0xf;
772 input->adv.mem_alert_en = 0;
773 input->adv.mem_alert_puimp = 5;
774 input->adv.mem_alert_vref_level = 0x29;
775 input->adv.mem_alert_sync_bypass = 0;
776 input->adv.cal_interval = 0x9;
777 input->adv.cal_once = 0;
778 input->adv.dis_dyn_adr_tri = 0;
779 input->adv.is2ttiming = 0;
780 input->adv.d4rx_preamble_length = 0;
781 input->adv.d4tx_preamble_length = 0;
782
783 for (i = 0; i < 7; i++) {
784 debug("mr[%d] = 0x%x\n", i, input->mr[i]);
785 }
786
787 debug("input->cs_d0 = 0x%x\n", input->cs_d0);
788 debug("input->cs_d1 = 0x%x\n", input->cs_d1);
789 debug("input->mirror = 0x%x\n", input->mirror);
790 debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance);
791 debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance);
792 debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance);
793
794 for (i = 0; i < 4; i++) {
795 debug("odt[%d] = 0x%x\n", i, input->odt[i]);
796 }
797
798 if (input->basic.dimm_type == RDIMM) {
799 for (i = 0; i < 16; i++) {
800 debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]);
801 }
802 debug("input->rcw3x = 0x%x\n", input->rcw3x);
803 }
804}
805
806/*
807 * All protocols share the same base structure of message block.
808 * RDIMM and LRDIMM have more entries defined than UDIMM.
809 * Create message blocks for 1D and 2D training.
810 * Update len with message block size.
811 */
812static int phy_gen2_msg_init(void *msg_1d,
813 void *msg_2d,
814 const struct input *input)
815{
816 struct ddr4u1d *msg_blk = msg_1d;
817 struct ddr4u2d *msg_blk_2d = msg_2d;
818 struct ddr4r1d *msg_blk_r;
819 struct ddr4lr1d *msg_blk_lr;
820
821 switch (input->basic.dimm_type) {
822 case UDIMM:
823 case SODIMM:
824 case NODIMM:
825 msg_blk->dram_type = U(0x2);
826 break;
827 case RDIMM:
828 msg_blk->dram_type = U(0x4);
829 break;
830 case LRDIMM:
831 msg_blk->dram_type = U(0x5);
832 break;
833 default:
834 ERROR("Unsupported DIMM type\n");
835 return -EINVAL;
836 }
837 msg_blk->pstate = 0U;
838
839 /*Enable quickRd2D, a substage of read deskew, to 1D training.*/
840 msg_blk->reserved00 = U(0x20);
841
842 /*Enable High-Effort WrDQ1D.*/
843 msg_blk->reserved00 |= U(0x40);
844
845 /* Enable 1D extra effort training.*/
846 msg_blk->reserved1c[3] = U(0x3);
847
848 if (input->basic.dimm_type == LRDIMM) {
849 msg_blk->sequence_ctrl = U(0x3f1f);
850 } else {
851 msg_blk->sequence_ctrl = U(0x031f);
852 }
853 msg_blk->phy_config_override = 0U;
854#ifdef DDR_PHY_DEBUG
855 msg_blk->hdt_ctrl = U(0x5);
856#else
857 msg_blk->hdt_ctrl = U(0xc9);
858#endif
859 msg_blk->msg_misc = U(0x0);
860 msg_blk->dfimrlmargin = U(0x1);
861 msg_blk->phy_vref = input->vref ? input->vref : U(0x61);
862 msg_blk->cs_present = input->cs_d0 | input->cs_d1;
863 msg_blk->cs_present_d0 = input->cs_d0;
864 msg_blk->cs_present_d1 = input->cs_d1;
865 if (input->mirror != 0) {
866 msg_blk->addr_mirror = U(0x0a); /* odd CS are mirrored */
867 }
868 msg_blk->share2dvref_result = 1U;
869
870 msg_blk->acsm_odt_ctrl0 = input->odt[0];
871 msg_blk->acsm_odt_ctrl1 = input->odt[1];
872 msg_blk->acsm_odt_ctrl2 = input->odt[2];
873 msg_blk->acsm_odt_ctrl3 = input->odt[3];
874 msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 +
875 input->basic.num_active_dbyte_dfi1) * 8;
876 msg_blk->x16present = input->basic.dram_data_width == 0x10 ?
877 msg_blk->cs_present : 0;
878 msg_blk->d4misc = U(0x1);
879 msg_blk->cs_setup_gddec = U(0x1);
880 msg_blk->rtt_nom_wr_park0 = 0U;
881 msg_blk->rtt_nom_wr_park1 = 0U;
882 msg_blk->rtt_nom_wr_park2 = 0U;
883 msg_blk->rtt_nom_wr_park3 = 0U;
884 msg_blk->rtt_nom_wr_park4 = 0U;
885 msg_blk->rtt_nom_wr_park5 = 0U;
886 msg_blk->rtt_nom_wr_park6 = 0U;
887 msg_blk->rtt_nom_wr_park7 = 0U;
888 msg_blk->mr0 = input->mr[0];
889 msg_blk->mr1 = input->mr[1];
890 msg_blk->mr2 = input->mr[2];
891 msg_blk->mr3 = input->mr[3];
892 msg_blk->mr4 = input->mr[4];
893 msg_blk->mr5 = input->mr[5];
894 msg_blk->mr6 = input->mr[6];
895 if ((msg_blk->mr4 & U(0x1c0)) != 0U) {
896 ERROR("Setting DRAM CAL mode is not supported\n");
897 }
898
899 msg_blk->alt_cas_l = 0U;
900 msg_blk->alt_wcas_l = 0U;
901
902 msg_blk->dramfreq = input->basic.frequency * 2U;
903 msg_blk->pll_bypass_en = input->basic.pll_bypass;
904 msg_blk->dfi_freq_ratio = input->basic.dfi_freq_ratio == 0U ? 1U :
905 input->basic.dfi_freq_ratio == 1U ? 2U :
906 4U;
907 msg_blk->bpznres_val = input->adv.ext_cal_res_val;
908 msg_blk->disabled_dbyte = 0U;
909
910 debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type);
911 debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl);
912 debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg);
913 debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present);
914 debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq);
915 debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en);
916 debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio);
917 debug("msg_blk->phy_odt_impedance = 0x%x\n",
918 msg_blk->phy_odt_impedance);
919 debug("msg_blk->phy_drv_impedance = 0x%x\n",
920 msg_blk->phy_drv_impedance);
921 debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val);
922 debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs);
923 debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0);
924 debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1);
925 debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2);
926 debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3);
927
928 /* RDIMM only */
929 if (input->basic.dimm_type == RDIMM ||
930 input->basic.dimm_type == LRDIMM) {
931 msg_blk_r = (struct ddr4r1d *)msg_blk;
932 if (msg_blk_r->cs_present_d0 != 0U) {
933 msg_blk_r->f0rc00_d0 = input->rcw[0];
934 msg_blk_r->f0rc01_d0 = input->rcw[1];
935 msg_blk_r->f0rc02_d0 = input->rcw[2];
936 msg_blk_r->f0rc03_d0 = input->rcw[3];
937 msg_blk_r->f0rc04_d0 = input->rcw[4];
938 msg_blk_r->f0rc05_d0 = input->rcw[5];
939 msg_blk_r->f0rc06_d0 = input->rcw[6];
940 msg_blk_r->f0rc07_d0 = input->rcw[7];
941 msg_blk_r->f0rc08_d0 = input->rcw[8];
942 msg_blk_r->f0rc09_d0 = input->rcw[9];
943 msg_blk_r->f0rc0a_d0 = input->rcw[10];
944 msg_blk_r->f0rc0b_d0 = input->rcw[11];
945 msg_blk_r->f0rc0c_d0 = input->rcw[12];
946 msg_blk_r->f0rc0d_d0 = input->rcw[13];
947 msg_blk_r->f0rc0e_d0 = input->rcw[14];
948 msg_blk_r->f0rc0f_d0 = input->rcw[15];
949 msg_blk_r->f0rc3x_d0 = input->rcw3x;
950 }
951 if (msg_blk_r->cs_present_d1 != 0) {
952 msg_blk_r->f0rc00_d1 = input->rcw[0];
953 msg_blk_r->f0rc01_d1 = input->rcw[1];
954 msg_blk_r->f0rc02_d1 = input->rcw[2];
955 msg_blk_r->f0rc03_d1 = input->rcw[3];
956 msg_blk_r->f0rc04_d1 = input->rcw[4];
957 msg_blk_r->f0rc05_d1 = input->rcw[5];
958 msg_blk_r->f0rc06_d1 = input->rcw[6];
959 msg_blk_r->f0rc07_d1 = input->rcw[7];
960 msg_blk_r->f0rc08_d1 = input->rcw[8];
961 msg_blk_r->f0rc09_d1 = input->rcw[9];
962 msg_blk_r->f0rc0a_d1 = input->rcw[10];
963 msg_blk_r->f0rc0b_d1 = input->rcw[11];
964 msg_blk_r->f0rc0c_d1 = input->rcw[12];
965 msg_blk_r->f0rc0d_d1 = input->rcw[13];
966 msg_blk_r->f0rc0e_d1 = input->rcw[14];
967 msg_blk_r->f0rc0f_d1 = input->rcw[15];
968 msg_blk_r->f0rc3x_d1 = input->rcw3x;
969 }
970 if (input->basic.dimm_type == LRDIMM) {
971 msg_blk_lr = (struct ddr4lr1d *)msg_blk;
972 msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0;
973 msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1;
974 msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0;
975 msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1;
976 }
977 }
978
979 /* below is different for 1D and 2D message block */
980 if (input->basic.train2d != 0) {
981 memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d));
982 /*High-Effort WrDQ1D is applicable to 2D traning also*/
983 msg_blk_2d->reserved00 |= U(0x40);
984 msg_blk_2d->sequence_ctrl = U(0x0061);
985 msg_blk_2d->rx2d_train_opt = 0U;
986 msg_blk_2d->tx2d_train_opt = 0U;
987 msg_blk_2d->share2dvref_result = 1U;
988 msg_blk_2d->delay_weight2d = U(0x20);
989 msg_blk_2d->voltage_weight2d = U(0x80);
990 debug("rx2d_train_opt %d, tx2d_train_opt %d\n",
991 msg_blk_2d->rx2d_train_opt,
992 msg_blk_2d->tx2d_train_opt);
993 }
994
995 msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) ||
996 ((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U
997 : input->adv.is2ttiming;
998
999 return 0;
1000}
1001
1002static void prog_tx_pre_drv_mode(uint16_t *phy,
1003 const struct input *input)
1004{
1005 int lane, byte, b_addr, c_addr, p_addr;
1006 int tx_slew_rate, tx_pre_p, tx_pre_n;
1007 int tx_pre_drv_mode = 0x2;
1008 uint32_t addr;
1009
1010 /* Program TxPreDrvMode with 0x2 */
1011 /* FIXME: TxPreDrvMode depends on DramType? */
1012 tx_pre_p = input->adv.tx_slew_rise_dq;
1013 tx_pre_n = input->adv.tx_slew_fall_dq;
1014 tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb |
1015 tx_pre_p << csr_tx_pre_p_lsb |
1016 tx_pre_n << csr_tx_pre_n_lsb;
1017 p_addr = 0;
1018 for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1019 c_addr = byte << 12;
1020 for (lane = 0; lane <= 1; lane++) {
1021 b_addr = lane << 8;
1022 addr = p_addr | t_dbyte | c_addr | b_addr |
1023 csr_tx_slew_rate_addr;
1024 phy_io_write16(phy, addr, tx_slew_rate);
1025 }
1026 }
1027}
1028
1029static void prog_atx_pre_drv_mode(uint16_t *phy,
1030 const struct input *input)
1031{
1032 int anib, c_addr;
1033 int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode,
1034 ck_anib_inst[2];
1035 uint32_t addr;
1036
1037 atx_pre_n = input->adv.tx_slew_fall_ac;
1038 atx_pre_p = input->adv.tx_slew_rise_ac;
1039
1040 if (input->basic.num_anib == 8) {
1041 ck_anib_inst[0] = 1;
1042 ck_anib_inst[1] = 1;
1043 } else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 ||
1044 input->basic.num_anib == 13) {
1045 ck_anib_inst[0] = 4;
1046 ck_anib_inst[1] = 5;
1047 } else {
1048 ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib);
1049 return;
1050 }
1051
1052 for (anib = 0; anib < input->basic.num_anib; anib++) {
1053 c_addr = anib << 12;
1054 if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) {
1055 atx_pre_drv_mode = 0;
1056 } else {
1057 atx_pre_drv_mode = 3;
1058 }
1059 atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb |
1060 atx_pre_n << csr_atx_pre_n_lsb |
1061 atx_pre_p << csr_atx_pre_p_lsb;
1062 addr = t_anib | c_addr | csr_atx_slew_rate_addr;
1063 phy_io_write16(phy, addr, atx_slew_rate);
1064 }
1065}
1066
1067static void prog_enable_cs_multicast(uint16_t *phy,
1068 const struct input *input)
1069{
1070 uint32_t addr = t_master | csr_enable_cs_multicast_addr;
1071
1072 if (input->basic.dimm_type != RDIMM &&
1073 input->basic.dimm_type != LRDIMM) {
1074 return;
1075 }
1076
1077 phy_io_write16(phy, addr, input->adv.cast_cs_to_cid);
1078}
1079
1080static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy,
1081 unsigned int ip_rev,
1082 const struct input *input,
1083 const struct ddr4lr1d *msg)
1084{
1085 const struct ddr4lr1d *msg_blk;
1086 uint16_t dfi_xxdestm0 = 0U;
1087 uint16_t dfi_xxdestm1 = 0U;
1088 uint16_t dfi_xxdestm2 = 0U;
1089 uint16_t dfi_xxdestm3 = 0U;
1090 uint16_t dfi_rd_data_cs_dest_map;
1091 uint16_t dfi_wr_data_cs_dest_map;
1092 __unused const soc_info_t *soc_info;
1093
1094#ifdef ERRATA_DDR_A011396
1095 /* Only apply to DDRC 5.05.00 */
Jiafei Panb27ac802021-07-20 17:14:32 +08001096 soc_info = get_soc_info();
1097 if ((soc_info->svr_reg.bf.maj_ver == 1U) && (ip_rev == U(0x50500))) {
Pankaj Guptac518de42020-12-09 14:02:39 +05301098 phy_io_write16(phy,
1099 t_master | csr_dfi_rd_data_cs_dest_map_addr,
1100 0U);
1101 return;
1102 }
1103#endif
1104
1105 msg_blk = msg;
1106
1107 switch (input->basic.dimm_type) {
1108 case UDIMM:
1109 case SODIMM:
1110 case NODIMM:
1111 if ((msg_blk->msg_misc & U(0x40)) != 0U) {
1112 dfi_rd_data_cs_dest_map = U(0xa0);
1113 dfi_wr_data_cs_dest_map = U(0xa0);
1114
1115 phy_io_write16(phy,
1116 t_master | csr_dfi_rd_data_cs_dest_map_addr,
1117 dfi_rd_data_cs_dest_map);
1118 phy_io_write16(phy,
1119 t_master | csr_dfi_wr_data_cs_dest_map_addr,
1120 dfi_wr_data_cs_dest_map);
1121 }
1122 break;
1123 case LRDIMM:
1124 if (msg->cs_present_d1 != 0U) {
1125 dfi_xxdestm2 = 1U;
1126 dfi_xxdestm3 = 1U;
1127 }
1128
1129 dfi_rd_data_cs_dest_map =
1130 dfi_xxdestm0 << csr_dfi_rd_destm0_lsb |
1131 dfi_xxdestm1 << csr_dfi_rd_destm1_lsb |
1132 dfi_xxdestm2 << csr_dfi_rd_destm2_lsb |
1133 dfi_xxdestm3 << csr_dfi_rd_destm3_lsb;
1134 dfi_wr_data_cs_dest_map =
1135 dfi_xxdestm0 << csr_dfi_wr_destm0_lsb |
1136 dfi_xxdestm1 << csr_dfi_wr_destm1_lsb |
1137 dfi_xxdestm2 << csr_dfi_wr_destm2_lsb |
1138 dfi_xxdestm3 << csr_dfi_wr_destm3_lsb;
1139 phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr,
1140 dfi_rd_data_cs_dest_map);
1141 phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr,
1142 dfi_wr_data_cs_dest_map);
1143
1144 break;
1145 default:
1146 break;
1147 }
1148}
1149
1150static void prog_pll_ctrl(uint16_t *phy,
1151 const struct input *input)
1152{
1153 uint32_t addr;
1154 int pll_ctrl1 = 0x21; /* 000100001b */
1155 int pll_ctrl4 = 0x17f; /* 101111111b */
1156 int pll_test_mode = 0x24; /* 00100100b */
1157
1158 addr = t_master | csr_pll_ctrl1_addr;
1159 phy_io_write16(phy, addr, pll_ctrl1);
1160
1161 debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr));
1162
1163 addr = t_master | csr_pll_test_mode_addr;
1164 phy_io_write16(phy, addr, pll_test_mode);
1165
1166 debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr));
1167
1168 addr = t_master | csr_pll_ctrl4_addr;
1169 phy_io_write16(phy, addr, pll_ctrl4);
1170
1171 debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr));
1172}
1173
1174static void prog_pll_ctrl2(uint16_t *phy,
1175 const struct input *input)
1176{
1177 int pll_ctrl2;
1178 uint32_t addr = t_master | csr_pll_ctrl2_addr;
1179
1180 if (input->basic.frequency / 2 < 235) {
1181 pll_ctrl2 = 0x7;
1182 } else if (input->basic.frequency / 2 < 313) {
1183 pll_ctrl2 = 0x6;
1184 } else if (input->basic.frequency / 2 < 469) {
1185 pll_ctrl2 = 0xb;
1186 } else if (input->basic.frequency / 2 < 625) {
1187 pll_ctrl2 = 0xa;
1188 } else if (input->basic.frequency / 2 < 938) {
1189 pll_ctrl2 = 0x19;
1190 } else if (input->basic.frequency / 2 < 1067) {
1191 pll_ctrl2 = 0x18;
1192 } else {
1193 pll_ctrl2 = 0x19;
1194 }
1195
1196 phy_io_write16(phy, addr, pll_ctrl2);
1197
1198 debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr));
1199}
1200
1201static void prog_dll_lck_param(uint16_t *phy, const struct input *input)
1202{
1203 uint32_t addr = t_master | csr_dll_lockparam_addr;
1204
1205 phy_io_write16(phy, addr, U(0x212));
1206 debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr));
1207}
1208
1209static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input)
1210{
1211 uint32_t addr = t_master | csr_dll_gain_ctl_addr;
1212
1213 phy_io_write16(phy, addr, U(0x61));
1214 debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr));
1215}
1216
1217static void prog_pll_pwr_dn(uint16_t *phy,
1218 const struct input *input)
1219{
1220 uint32_t addr;
1221
1222 addr = t_master | csr_pll_pwr_dn_addr;
1223 phy_io_write16(phy, addr, 0U);
1224
1225 debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr));
1226}
1227
1228static void prog_ard_ptr_init_val(uint16_t *phy,
1229 const struct input *input)
1230{
1231 int ard_ptr_init_val;
1232 uint32_t addr = t_master | csr_ard_ptr_init_val_addr;
1233
1234 if (input->basic.frequency >= 933) {
1235 ard_ptr_init_val = 0x2;
1236 } else {
1237 ard_ptr_init_val = 0x1;
1238 }
1239
1240 phy_io_write16(phy, addr, ard_ptr_init_val);
1241}
1242
1243static void prog_dqs_preamble_control(uint16_t *phy,
1244 const struct input *input)
1245{
1246 int data;
1247 uint32_t addr = t_master | csr_dqs_preamble_control_addr;
1248 const int wdqsextension = 0;
1249 const int lp4sttc_pre_bridge_rx_en = 0;
1250 const int lp4postamble_ext = 0;
1251 const int lp4tgl_two_tck_tx_dqs_pre = 0;
1252 const int position_dfe_init = 2;
1253 const int dll_rx_preamble_mode = 1;
1254 int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length;
1255 int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length;
1256
1257 data = wdqsextension << csr_wdqsextension_lsb |
1258 lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb |
1259 lp4postamble_ext << csr_lp4postamble_ext_lsb |
1260 lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb |
1261 position_dfe_init << csr_position_dfe_init_lsb |
1262 two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb |
1263 two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb;
1264 phy_io_write16(phy, addr, data);
1265
1266 data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb;
1267 addr = t_master | csr_dbyte_dll_mode_cntrl_addr;
1268 phy_io_write16(phy, addr, data);
1269}
1270
1271static void prog_proc_odt_time_ctl(uint16_t *phy,
1272 const struct input *input)
1273{
1274 int proc_odt_time_ctl;
1275 uint32_t addr = t_master | csr_proc_odt_time_ctl_addr;
1276
1277 if (input->adv.wdqsext != 0) {
1278 proc_odt_time_ctl = 0x3;
1279 } else if (input->basic.frequency <= 933) {
1280 proc_odt_time_ctl = 0xa;
1281 } else if (input->basic.frequency <= 1200) {
1282 if (input->adv.d4rx_preamble_length == 1) {
1283 proc_odt_time_ctl = 0x2;
1284 } else {
1285 proc_odt_time_ctl = 0x6;
1286 }
1287 } else {
1288 if (input->adv.d4rx_preamble_length == 1) {
1289 proc_odt_time_ctl = 0x3;
1290 } else {
1291 proc_odt_time_ctl = 0x7;
1292 }
1293 }
1294 phy_io_write16(phy, addr, proc_odt_time_ctl);
1295}
1296
1297static const struct impedance_mapping map[] = {
1298 { 29, 0x3f },
1299 { 31, 0x3e },
1300 { 33, 0x3b },
1301 { 36, 0x3a },
1302 { 39, 0x39 },
1303 { 42, 0x38 },
1304 { 46, 0x1b },
1305 { 51, 0x1a },
1306 { 57, 0x19 },
1307 { 64, 0x18 },
1308 { 74, 0x0b },
1309 { 88, 0x0a },
1310 { 108, 0x09 },
1311 { 140, 0x08 },
1312 { 200, 0x03 },
1313 { 360, 0x02 },
1314 { 481, 0x01 },
1315 {}
1316};
1317
1318static int map_impedance(int strength)
1319{
1320 const struct impedance_mapping *tbl = map;
1321 int val = 0;
1322
1323 if (strength == 0) {
1324 return 0;
1325 }
1326
1327 while (tbl->ohm != 0U) {
1328 if (strength < tbl->ohm) {
1329 val = tbl->code;
1330 break;
1331 }
1332 tbl++;
1333 }
1334
1335 return val;
1336}
1337
1338static int map_odtstren_p(int strength, int hard_macro_ver)
1339{
1340 int val = -1;
1341
1342 if (hard_macro_ver == 4) {
1343 if (strength == 0) {
1344 val = 0;
1345 } else if (strength == 120) {
1346 val = 0x8;
1347 } else if (strength == 60) {
1348 val = 0x18;
1349 } else if (strength == 40) {
1350 val = 0x38;
1351 } else {
1352 printf("error: unsupported ODTStrenP %d\n", strength);
1353 }
1354 } else {
1355 val = map_impedance(strength);
1356 }
1357
1358 return val;
1359}
1360
1361static void prog_tx_odt_drv_stren(uint16_t *phy,
1362 const struct input *input)
1363{
1364 int lane, byte, b_addr, c_addr;
1365 int tx_odt_drv_stren;
1366 int odtstren_p, odtstren_n;
1367 uint32_t addr;
1368
1369 odtstren_p = map_odtstren_p(input->adv.odtimpedance,
1370 input->basic.hard_macro_ver);
1371 if (odtstren_p < 0) {
1372 return;
1373 }
1374
1375 odtstren_n = 0; /* always high-z */
1376 tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p;
1377 for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1378 c_addr = byte << 12;
1379 for (lane = 0; lane <= 1; lane++) {
1380 b_addr = lane << 8;
1381 addr = t_dbyte | c_addr | b_addr |
1382 csr_tx_odt_drv_stren_addr;
1383 phy_io_write16(phy, addr, tx_odt_drv_stren);
1384 }
1385 }
1386}
1387
1388static int map_drvstren_fsdq_p(int strength, int hard_macro_ver)
1389{
1390 int val = -1;
1391
1392 if (hard_macro_ver == 4) {
1393 if (strength == 0) {
1394 val = 0x07;
1395 } else if (strength == 120) {
1396 val = 0x0F;
1397 } else if (strength == 60) {
1398 val = 0x1F;
1399 } else if (strength == 40) {
1400 val = 0x3F;
1401 } else {
1402 printf("error: unsupported drv_stren_fSDq_p %d\n",
1403 strength);
1404 }
1405 } else {
1406 val = map_impedance(strength);
1407 }
1408
1409 return val;
1410}
1411
1412static int map_drvstren_fsdq_n(int strength, int hard_macro_ver)
1413{
1414 int val = -1;
1415
1416 if (hard_macro_ver == 4) {
1417 if (strength == 0) {
1418 val = 0x00;
1419 } else if (strength == 120) {
1420 val = 0x08;
1421 } else if (strength == 60) {
1422 val = 0x18;
1423 } else if (strength == 40) {
1424 val = 0x38;
1425 } else {
1426 printf("error: unsupported drvStrenFSDqN %d\n",
1427 strength);
1428 }
1429 } else {
1430 val = map_impedance(strength);
1431 }
1432
1433 return val;
1434}
1435
1436static void prog_tx_impedance_ctrl1(uint16_t *phy,
1437 const struct input *input)
1438{
1439 int lane, byte, b_addr, c_addr;
1440 int tx_impedance_ctrl1;
1441 int drv_stren_fsdq_p, drv_stren_fsdq_n;
1442 uint32_t addr;
1443
1444 drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance,
1445 input->basic.hard_macro_ver);
1446 drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance,
1447 input->basic.hard_macro_ver);
1448 tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb |
1449 drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb;
1450
1451 for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1452 c_addr = byte << 12;
1453 for (lane = 0; lane <= 1; lane++) {
1454 b_addr = lane << 8;
1455 addr = t_dbyte | c_addr | b_addr |
1456 csr_tx_impedance_ctrl1_addr;
1457 phy_io_write16(phy, addr, tx_impedance_ctrl1);
1458 }
1459 }
1460}
1461
1462static int map_adrv_stren_p(int strength, int hard_macro_ver)
1463{
1464 int val = -1;
1465
1466 if (hard_macro_ver == 4) {
1467 if (strength == 120) {
1468 val = 0x1c;
1469 } else if (strength == 60) {
1470 val = 0x1d;
1471 } else if (strength == 40) {
1472 val = 0x1f;
1473 } else {
1474 printf("error: unsupported aDrv_stren_p %d\n",
1475 strength);
1476 }
1477 } else {
1478 if (strength == 120) {
1479 val = 0x00;
1480 } else if (strength == 60) {
1481 val = 0x01;
1482 } else if (strength == 40) {
1483 val = 0x03;
1484 } else if (strength == 30) {
1485 val = 0x07;
1486 } else if (strength == 24) {
1487 val = 0x0f;
1488 } else if (strength == 20) {
1489 val = 0x1f;
1490 } else {
1491 printf("error: unsupported aDrv_stren_p %d\n",
1492 strength);
1493 }
1494 }
1495
1496 return val;
1497}
1498
1499static int map_adrv_stren_n(int strength, int hard_macro_ver)
1500{
1501 int val = -1;
1502
1503 if (hard_macro_ver == 4) {
1504 if (strength == 120) {
1505 val = 0x00;
1506 } else if (strength == 60) {
1507 val = 0x01;
1508 } else if (strength == 40) {
1509 val = 0x03;
1510 } else {
1511 printf("Error: unsupported ADrvStrenP %d\n", strength);
1512 }
1513 } else {
1514 if (strength == 120) {
1515 val = 0x00;
1516 } else if (strength == 60) {
1517 val = 0x01;
1518 } else if (strength == 40) {
1519 val = 0x03;
1520 } else if (strength == 30) {
1521 val = 0x07;
1522 } else if (strength == 24) {
1523 val = 0x0f;
1524 } else if (strength == 20) {
1525 val = 0x1f;
1526 } else {
1527 printf("Error: unsupported ADrvStrenP %d\n", strength);
1528 }
1529 }
1530
1531 return val;
1532}
1533
1534static void prog_atx_impedance(uint16_t *phy,
1535 const struct input *input)
1536{
1537 int anib, c_addr;
1538 int atx_impedance;
1539 int adrv_stren_p;
1540 int adrv_stren_n;
1541 uint32_t addr;
1542
1543 if (input->basic.hard_macro_ver == 4 &&
1544 input->adv.atx_impedance == 20) {
1545 printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n");
1546 return;
1547 }
1548
1549 adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance,
1550 input->basic.hard_macro_ver);
1551 adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance,
1552 input->basic.hard_macro_ver);
1553 atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb |
1554 adrv_stren_p << csr_adrv_stren_p_lsb;
1555 for (anib = 0; anib < input->basic.num_anib; anib++) {
1556 c_addr = anib << 12;
1557 addr = t_anib | c_addr | csr_atx_impedance_addr;
1558 phy_io_write16(phy, addr, atx_impedance);
1559 }
1560}
1561
1562static void prog_dfi_mode(uint16_t *phy,
1563 const struct input *input)
1564{
1565 int dfi_mode;
1566 uint32_t addr;
1567
1568 if (input->basic.dfi1exists == 1) {
1569 dfi_mode = 0x5; /* DFI1 exists but disabled */
1570 } else {
1571 dfi_mode = 0x1; /* DFI1 does not physically exists */
1572 }
1573 addr = t_master | csr_dfi_mode_addr;
1574 phy_io_write16(phy, addr, dfi_mode);
1575}
1576
1577static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input)
1578{
1579 uint32_t addr;
1580
1581 addr = t_master | csr_acx4_anib_dis_addr;
1582 phy_io_write16(phy, addr, 0x0);
1583 debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr));
1584}
1585
1586static void prog_dfi_camode(uint16_t *phy,
1587 const struct input *input)
1588{
1589 int dfi_camode = 2;
1590 uint32_t addr = t_master | csr_dfi_camode_addr;
1591
1592 phy_io_write16(phy, addr, dfi_camode);
1593}
1594
1595static void prog_cal_drv_str0(uint16_t *phy,
1596 const struct input *input)
1597{
1598 int cal_drv_str0;
1599 int cal_drv_str_pd50;
1600 int cal_drv_str_pu50;
1601 uint32_t addr;
1602
1603 cal_drv_str_pu50 = input->adv.ext_cal_res_val;
1604 cal_drv_str_pd50 = cal_drv_str_pu50;
1605 cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb |
1606 cal_drv_str_pd50;
1607 addr = t_master | csr_cal_drv_str0_addr;
1608 phy_io_write16(phy, addr, cal_drv_str0);
1609}
1610
1611static void prog_cal_uclk_info(uint16_t *phy,
1612 const struct input *input)
1613{
1614 int cal_uclk_ticks_per1u_s;
1615 uint32_t addr;
1616
1617 cal_uclk_ticks_per1u_s = input->basic.frequency >> 1;
1618 if (cal_uclk_ticks_per1u_s < 24) {
1619 cal_uclk_ticks_per1u_s = 24;
1620 }
1621
1622 addr = t_master | csr_cal_uclk_info_addr;
1623 phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s);
1624}
1625
1626static void prog_cal_rate(uint16_t *phy,
1627 const struct input *input)
1628{
1629 int cal_rate;
1630 int cal_interval;
1631 int cal_once;
1632 uint32_t addr;
1633
1634 cal_interval = input->adv.cal_interval;
1635 cal_once = input->adv.cal_once;
1636 cal_rate = cal_once << csr_cal_once_lsb |
1637 cal_interval << csr_cal_interval_lsb;
1638 addr = t_master | csr_cal_rate_addr;
1639 phy_io_write16(phy, addr, cal_rate);
1640}
1641
1642static void prog_vref_in_global(uint16_t *phy,
1643 const struct input *input,
1644 const struct ddr4u1d *msg)
1645{
1646 int vref_in_global;
1647 int global_vref_in_dac = 0;
1648 int global_vref_in_sel = 0;
1649 uint32_t addr;
1650
1651 /*
1652 * phy_vref_prcnt = msg->phy_vref / 128.0
1653 * global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005;
1654 */
1655 global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) /
1656 (5 * 128);
1657
1658 vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb |
1659 global_vref_in_sel;
1660 addr = t_master | csr_vref_in_global_addr;
1661 phy_io_write16(phy, addr, vref_in_global);
1662}
1663
1664static void prog_dq_dqs_rcv_cntrl(uint16_t *phy,
1665 const struct input *input)
1666{
1667 int lane, byte, b_addr, c_addr;
1668 int dq_dqs_rcv_cntrl;
1669 int gain_curr_adj_defval = 0xb;
1670 int major_mode_dbyte = 3;
1671 int dfe_ctrl_defval = 0;
1672 int ext_vref_range_defval = 0;
1673 int sel_analog_vref = 1;
1674 uint32_t addr;
1675
1676 dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb |
1677 major_mode_dbyte << csr_major_mode_dbyte_lsb |
1678 dfe_ctrl_defval << csr_dfe_ctrl_lsb |
1679 ext_vref_range_defval << csr_ext_vref_range_lsb |
1680 sel_analog_vref << csr_sel_analog_vref_lsb;
1681 for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1682 c_addr = byte << 12;
1683 for (lane = 0; lane <= 1; lane++) {
1684 b_addr = lane << 8;
1685 addr = t_dbyte | c_addr | b_addr |
1686 csr_dq_dqs_rcv_cntrl_addr;
1687 phy_io_write16(phy, addr, dq_dqs_rcv_cntrl);
1688 }
1689 }
1690}
1691
1692static void prog_mem_alert_control(uint16_t *phy,
1693 const struct input *input)
1694{
1695 int mem_alert_control;
1696 int mem_alert_control2;
1697 int malertpu_en;
1698 int malertrx_en;
1699 int malertvref_level;
1700 int malertpu_stren;
1701 int malertsync_bypass;
1702 int malertdisable_val_defval = 1;
1703 uint32_t addr;
1704
1705 if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) {
1706 malertpu_en = 1;
1707 malertrx_en = 1;
1708 malertpu_stren = input->adv.mem_alert_puimp;
1709 malertvref_level = input->adv.mem_alert_vref_level;
1710 malertsync_bypass = input->adv.mem_alert_sync_bypass;
1711 mem_alert_control = malertdisable_val_defval << 14 |
1712 malertrx_en << 13 |
1713 malertpu_en << 12 |
1714 malertpu_stren << 8 |
1715 malertvref_level;
1716 mem_alert_control2 = malertsync_bypass <<
1717 csr_malertsync_bypass_lsb;
1718 addr = t_master | csr_mem_alert_control_addr;
1719 phy_io_write16(phy, addr, mem_alert_control);
1720 addr = t_master | csr_mem_alert_control2_addr;
1721 phy_io_write16(phy, addr, mem_alert_control2);
1722 }
1723}
1724
1725static void prog_dfi_freq_ratio(uint16_t *phy,
1726 const struct input *input)
1727{
1728 int dfi_freq_ratio;
1729 uint32_t addr = t_master | csr_dfi_freq_ratio_addr;
1730
1731 dfi_freq_ratio = input->basic.dfi_freq_ratio;
1732 phy_io_write16(phy, addr, dfi_freq_ratio);
1733}
1734
1735static void prog_tristate_mode_ca(uint16_t *phy,
1736 const struct input *input)
1737{
1738 int tristate_mode_ca;
1739 int dis_dyn_adr_tri;
1740 int ddr2tmode;
1741 int ck_dis_val_def = 1;
1742 uint32_t addr = t_master | csr_tristate_mode_ca_addr;
1743
1744 dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri;
1745 ddr2tmode = input->adv.is2ttiming;
1746 tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb |
1747 ddr2tmode << csr_ddr2tmode_lsb |
1748 dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb;
1749 phy_io_write16(phy, addr, tristate_mode_ca);
1750}
1751
1752static void prog_dfi_xlat(uint16_t *phy,
1753 const struct input *input)
1754{
1755 uint16_t loop_vector;
1756 int dfifreqxlat_dat;
1757 int pllbypass_dat;
1758 uint32_t addr;
1759
1760 /* fIXME: Shall unused P1, P2, P3 be bypassed? */
1761 pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */
1762 for (loop_vector = 0; loop_vector < 8; loop_vector++) {
1763 if (loop_vector == 0) {
1764 dfifreqxlat_dat = pllbypass_dat + 0x5555;
1765 } else if (loop_vector == 7) {
1766 dfifreqxlat_dat = 0xf000;
1767 } else {
1768 dfifreqxlat_dat = 0x5555;
1769 }
1770 addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector);
1771 phy_io_write16(phy, addr, dfifreqxlat_dat);
1772 }
1773}
1774
1775static void prog_dbyte_misc_mode(uint16_t *phy,
1776 const struct input *input,
1777 const struct ddr4u1d *msg)
1778{
1779 int dbyte_misc_mode;
1780 int dq_dqs_rcv_cntrl1;
1781 int dq_dqs_rcv_cntrl1_1;
1782 int byte, c_addr;
1783 uint32_t addr;
1784
1785 dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb;
1786 dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb |
1787 0x1 << csr_power_down_rcvr_dqs_lsb |
1788 0x1 << csr_rx_pad_standby_en_lsb;
1789 dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb |
1790 csr_rx_pad_standby_en_mask);
1791 for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1792 c_addr = byte << 12;
1793 if (byte <= input->basic.num_active_dbyte_dfi0 - 1) {
1794 /* disable RDBI lane if not used. */
1795 if ((input->basic.dram_data_width != 4) &&
1796 (((msg->mr5 >> 12) & 0x1) == 0)) {
1797 addr = t_dbyte
1798 | c_addr
1799 | csr_dq_dqs_rcv_cntrl1_addr;
1800 phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1);
1801 }
1802 } else {
1803 addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr;
1804 phy_io_write16(phy, addr, dbyte_misc_mode);
1805 addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr;
1806 phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1);
1807 }
1808 }
1809}
1810
1811static void prog_master_x4config(uint16_t *phy,
1812 const struct input *input)
1813{
1814 int master_x4config;
1815 int x4tg;
1816 uint32_t addr = t_master | csr_master_x4config_addr;
1817
1818 x4tg = input->basic.dram_data_width == 4 ? 0xf : 0;
1819 master_x4config = x4tg << csr_x4tg_lsb;
1820 phy_io_write16(phy, addr, master_x4config);
1821}
1822
1823static void prog_dmipin_present(uint16_t *phy,
1824 const struct input *input,
1825 const struct ddr4u1d *msg)
1826{
1827 int dmipin_present;
1828 uint32_t addr = t_master | csr_dmipin_present_addr;
1829
1830 dmipin_present = (msg->mr5 >> 12) & 0x1;
1831 phy_io_write16(phy, addr, dmipin_present);
1832}
1833
1834static void prog_dfi_phyupd(uint16_t *phy,
1835 const struct input *input)
1836{
1837 int dfiphyupd_dat;
1838 uint32_t addr;
1839
1840 addr = t_master | (csr_dfiphyupd_addr);
1841 dfiphyupd_dat = phy_io_read16(phy, addr) &
1842 ~csr_dfiphyupd_threshold_mask;
1843
1844 phy_io_write16(phy, addr, dfiphyupd_dat);
1845}
1846
1847static void prog_cal_misc2(uint16_t *phy,
1848 const struct input *input)
1849{
1850 int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat;
1851 uint32_t addr;
1852
1853 addr = t_master | (csr_cal_misc2_addr);
1854 cal_misc2_dat = phy_io_read16(phy, addr) |
1855 (1 << csr_cal_misc2_err_dis);
1856
1857 phy_io_write16(phy, addr, cal_misc2_dat);
1858
1859 addr = t_master | (csr_cal_offsets_addr);
1860
1861 cal_drv_pdth_data = 0x9 << 6;
1862 cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask)
1863 | cal_drv_pdth_data;
1864
1865 phy_io_write16(phy, addr, cal_offsets_dat);
1866}
1867
1868static int c_init_phy_config(uint16_t **phy_ptr,
1869 unsigned int ip_rev,
1870 const struct input *input,
1871 const void *msg)
1872{
1873 int i;
1874 uint16_t *phy;
1875 __unused const soc_info_t *soc_info;
1876
1877 for (i = 0; i < NUM_OF_DDRC; i++) {
1878 phy = phy_ptr[i];
1879 if (phy == NULL) {
1880 continue;
1881 }
1882
1883 debug("Initialize PHY %d config\n", i);
1884 prog_dfi_phyupd(phy, input);
1885 prog_cal_misc2(phy, input);
1886 prog_tx_pre_drv_mode(phy, input);
1887 prog_atx_pre_drv_mode(phy, input);
1888 prog_enable_cs_multicast(phy, input); /* rdimm and lrdimm */
1889 prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg);
1890 prog_pll_ctrl2(phy, input);
1891#ifdef DDR_PLL_FIX
1892 soc_info = get_soc_info();
Jiafei Panb27ac802021-07-20 17:14:32 +08001893 debug("SOC_SI_REV = %x\n", soc_info->svr_reg.bf.maj_ver);
1894 if (soc_info->svr_reg.bf.maj_ver == 1) {
Pankaj Guptac518de42020-12-09 14:02:39 +05301895 prog_pll_pwr_dn(phy, input);
1896
1897 /*Enable FFE aka TxEqualizationMode for rev1 SI*/
1898 phy_io_write16(phy, 0x010048, 0x1);
1899 }
1900#endif
1901 prog_ard_ptr_init_val(phy, input);
1902 prog_dqs_preamble_control(phy, input);
1903 prog_dll_lck_param(phy, input);
1904 prog_dll_gain_ctl(phy, input);
1905 prog_proc_odt_time_ctl(phy, input);
1906 prog_tx_odt_drv_stren(phy, input);
1907 prog_tx_impedance_ctrl1(phy, input);
1908 prog_atx_impedance(phy, input);
1909 prog_dfi_mode(phy, input);
1910 prog_dfi_camode(phy, input);
1911 prog_cal_drv_str0(phy, input);
1912 prog_cal_uclk_info(phy, input);
1913 prog_cal_rate(phy, input);
1914 prog_vref_in_global(phy, input, msg);
1915 prog_dq_dqs_rcv_cntrl(phy, input);
1916 prog_mem_alert_control(phy, input);
1917 prog_dfi_freq_ratio(phy, input);
1918 prog_tristate_mode_ca(phy, input);
1919 prog_dfi_xlat(phy, input);
1920 prog_dbyte_misc_mode(phy, input, msg);
1921 prog_master_x4config(phy, input);
1922 prog_dmipin_present(phy, input, msg);
1923 prog_acx4_anib_dis(phy, input);
1924 }
1925
1926 return 0;
1927}
1928
1929static uint32_t get_mail(uint16_t *phy, int stream)
1930{
1931 int timeout;
1932 uint32_t mail = 0U;
1933
1934 timeout = TIMEOUTDEFAULT;
1935 while (((--timeout) != 0) &&
1936 ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
1937 & uct_write_prot_shadow_mask) != 0)) {
1938 mdelay(10);
1939 }
1940 if (timeout == 0) {
1941 ERROR("Timeout getting mail from PHY\n");
1942 return 0xFFFF;
1943 }
1944
1945 mail = phy_io_read16(phy, t_apbonly |
1946 csr_uct_write_only_shadow);
1947 if (stream != 0) {
1948 mail |= phy_io_read16(phy, t_apbonly |
1949 csr_uct_dat_write_only_shadow) << 16;
1950 }
1951
1952 /* Ack */
1953 phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0);
1954
1955 timeout = TIMEOUTDEFAULT;
1956 while (((--timeout) != 0) &&
1957 ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
1958 & uct_write_prot_shadow_mask) == 0)) {
1959 mdelay(1);
1960 }
1961 if (timeout == 0) {
1962 ERROR("Timeout ack PHY mail\n");
1963 }
1964
1965 /* completed */
1966 phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U);
1967
1968 return mail;
1969}
1970
1971#ifdef DDR_PHY_DEBUG
1972static const char *lookup_msg(uint32_t index, int train2d)
1973{
1974 int i;
1975 int size;
1976 const struct phy_msg *messages;
1977 const char *ptr = NULL;
1978
1979 if (train2d != 0) {
1980 messages = messages_2d;
1981 size = ARRAY_SIZE(messages_2d);
1982 } else {
1983 messages = messages_1d;
1984 size = ARRAY_SIZE(messages_1d);
1985 }
1986 for (i = 0; i < size; i++) {
1987 if (messages[i].index == index) {
1988 ptr = messages[i].msg;
1989 break;
1990 }
1991 }
1992
1993 return ptr;
1994}
1995#endif
1996
1997#define MAX_ARGS 32
1998static void decode_stream_message(uint16_t *phy, int train2d)
1999{
2000 uint32_t index __unused;
2001
2002 __unused const char *format;
2003 __unused uint32_t args[MAX_ARGS];
2004 __unused int i;
2005
2006#ifdef DDR_PHY_DEBUG
2007 index = get_mail(phy, 1);
2008 if ((index & 0xffff) > MAX_ARGS) { /* up to MAX_ARGS args so far */
2009 printf("Program error in %s\n", __func__);
2010 }
2011 for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) {
2012 args[i] = get_mail(phy, 1);
2013 }
2014
2015 format = lookup_msg(index, train2d);
2016 if (format != NULL) {
2017 printf("0x%08x: ", index);
2018 printf(format, args[0], args[1], args[2], args[3], args[4],
2019 args[5], args[6], args[7], args[8], args[9], args[10],
2020 args[11], args[12], args[13], args[14], args[15],
2021 args[16], args[17], args[18], args[19], args[20],
2022 args[21], args[22], args[23], args[24], args[25],
2023 args[26], args[27], args[28], args[29], args[30],
2024 args[31]);
2025 }
2026#endif
2027}
2028
2029static int wait_fw_done(uint16_t *phy, int train2d)
2030{
2031 uint32_t mail = 0U;
2032
2033 while (mail == U(0x0)) {
2034 mail = get_mail(phy, 0);
2035 switch (mail) {
2036 case U(0x7):
2037 debug("%s Training completed\n", train2d ? "2D" : "1D");
2038 break;
2039 case U(0xff):
2040 debug("%s Training failure\n", train2d ? "2D" : "1D");
2041 break;
2042 case U(0x0):
2043 debug("End of initialization\n");
2044 mail = 0U;
2045 break;
2046 case U(0x1):
2047 debug("End of fine write leveling\n");
2048 mail = 0U;
2049 break;
2050 case U(0x2):
2051 debug("End of read enable training\n");
2052 mail = 0U;
2053 break;
2054 case U(0x3):
2055 debug("End of read delay center optimization\n");
2056 mail = 0U;
2057 break;
2058 case U(0x4):
2059 debug("End of write delay center optimization\n");
2060 mail = 0U;
2061 break;
2062 case U(0x5):
2063 debug("End of 2D read delay/voltage center optimztn\n");
2064 mail = 0U;
2065 break;
2066 case U(0x6):
2067 debug("End of 2D write delay/voltage center optmztn\n");
2068 mail = 0U;
2069 break;
2070 case U(0x8):
2071 decode_stream_message(phy, train2d);
2072 mail = 0U;
2073 break;
2074 case U(0x9):
2075 debug("End of max read latency training\n");
2076 mail = 0U;
2077 break;
2078 case U(0xa):
2079 debug("End of read dq deskew training\n");
2080 mail = 0U;
2081 break;
2082 case U(0xc):
2083 debug("End of LRDIMM Specific training, including:\n");
2084 debug("/tDWL, MREP, MRD and MWD\n");
2085 mail = 0U;
2086 break;
2087 case U(0xd):
2088 debug("End of CA training\n");
2089 mail = 0U;
2090 break;
2091 case U(0xfd):
2092 debug("End of MPR read delay center optimization\n");
2093 mail = 0U;
2094 break;
2095 case U(0xfe):
2096 debug("End of Write leveling coarse delay\n");
2097 mail = 0U;
2098 break;
2099 case U(0xffff):
2100 debug("Timed out\n");
2101 break;
2102 default:
2103 mail = 0U;
2104 break;
2105 }
2106 }
2107
2108 if (mail == U(0x7)) {
2109 return 0;
2110 } else if (mail == U(0xff)) {
2111 return -EIO;
2112 } else if (mail == U(0xffff)) {
2113 return -ETIMEDOUT;
2114 }
2115
2116 debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail);
2117
2118 return -EINVAL;
2119}
2120
2121static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input)
2122{
2123 int ret = -EINVAL;
2124 int i;
2125 uint16_t *phy;
2126
2127 for (i = 0; i < NUM_OF_DDRC; i++) {
2128 phy = phy_ptr[i];
2129 if (phy == NULL) {
2130 continue;
2131 }
2132 debug("Applying PLL optimal settings\n");
2133 prog_pll_ctrl2(phy, input);
2134 prog_pll_ctrl(phy, input);
2135 phy_io_write16(phy,
2136 t_apbonly | csr_micro_cont_mux_sel_addr,
2137 0x1);
2138 phy_io_write16(phy,
2139 t_apbonly | csr_micro_reset_addr,
2140 csr_reset_to_micro_mask |
2141 csr_stall_to_micro_mask);
2142 phy_io_write16(phy,
2143 t_apbonly | csr_micro_reset_addr,
2144 csr_stall_to_micro_mask);
2145 phy_io_write16(phy,
2146 t_apbonly | csr_micro_reset_addr,
2147 0);
2148
2149 ret = wait_fw_done(phy, train2d);
2150 if (ret == -ETIMEDOUT) {
2151 ERROR("Wait timed out: Firmware execution on PHY %d\n",
2152 i);
2153 }
2154 }
2155 return ret;
2156}
2157
2158static inline int send_fw(uint16_t *phy,
2159 uint32_t dst,
2160 uint16_t *img,
2161 uint32_t size)
2162{
2163 uint32_t i;
2164
2165 if ((size % 2U) != 0U) {
2166 ERROR("Wrong image size 0x%x\n", size);
2167 return -EINVAL;
2168 }
2169
2170 for (i = 0U; i < size / 2; i++) {
2171 phy_io_write16(phy, dst + i, *(img + i));
2172 }
2173
2174 return 0;
2175}
2176
2177static int load_fw(uint16_t **phy_ptr,
2178 struct input *input,
2179 int train2d,
2180 void *msg,
2181 size_t len,
2182 uintptr_t phy_gen2_fw_img_buf,
2183 int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *),
2184 uint32_t warm_boot_flag)
2185{
2186 uint32_t imem_id, dmem_id;
2187 uintptr_t image_buf;
2188 uint32_t size;
2189 int ret;
2190 int i;
2191 uint16_t *phy;
2192
2193 switch (input->basic.dimm_type) {
2194 case UDIMM:
2195 case SODIMM:
2196 case NODIMM:
2197 imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID :
2198 DDR_IMEM_UDIMM_1D_IMAGE_ID;
2199 dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID :
2200 DDR_DMEM_UDIMM_1D_IMAGE_ID;
2201 break;
2202 case RDIMM:
2203 imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID :
2204 DDR_IMEM_RDIMM_1D_IMAGE_ID;
2205 dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID :
2206 DDR_DMEM_RDIMM_1D_IMAGE_ID;
2207 break;
2208 default:
2209 ERROR("Unsupported DIMM type\n");
2210 return -EINVAL;
2211 }
2212
2213 size = PHY_GEN2_MAX_IMAGE_SIZE;
2214 image_buf = (uintptr_t)phy_gen2_fw_img_buf;
2215 mmap_add_dynamic_region(phy_gen2_fw_img_buf,
2216 phy_gen2_fw_img_buf,
2217 PHY_GEN2_MAX_IMAGE_SIZE,
2218 MT_MEMORY | MT_RW | MT_SECURE);
2219 ret = img_loadr(imem_id, &image_buf, &size);
2220 if (ret != 0) {
2221 ERROR("Failed to load %d firmware.\n", imem_id);
2222 return ret;
2223 }
2224 debug("Loaded Imaged id %d of size %x at address %lx\n",
2225 imem_id, size, image_buf);
2226
2227 for (i = 0; i < NUM_OF_DDRC; i++) {
2228 phy = phy_ptr[i];
2229 if (phy == NULL) {
2230 continue;
2231 }
2232
2233 if (warm_boot_flag != DDR_WARM_BOOT) {
2234 if (train2d == 0) {
2235 phy_io_write16(phy, t_master |
2236 csr_mem_reset_l_addr,
2237 csr_protect_mem_reset_mask);
2238 }
2239 }
2240 /* Enable access to the internal CSRs */
2241 phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0);
2242
2243 ret = send_fw(phy, PHY_GEN2_IMEM_ADDR,
2244 (uint16_t *)image_buf, size);
2245 if (ret != 0) {
2246 return ret;
2247 }
2248 }
2249
2250 size = PHY_GEN2_MAX_IMAGE_SIZE;
2251 image_buf = (uintptr_t)phy_gen2_fw_img_buf;
2252 ret = img_loadr(dmem_id, &image_buf, &size);
2253 if (ret != 0) {
2254 ERROR("Failed to load %d firmware.\n", dmem_id);
2255 return ret;
2256 }
2257 debug("Loaded Imaged id %d of size %x at address %lx\n",
2258 dmem_id, size, image_buf);
2259 image_buf += len;
2260 size -= len;
2261
2262 for (i = 0; i < NUM_OF_DDRC; i++) {
2263 phy = phy_ptr[i];
2264 if (phy == NULL) {
2265 continue;
2266 }
2267
2268 ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len);
2269 if (ret != 0) {
2270 return ret;
2271 }
2272
2273 ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2,
2274 (uint16_t *)image_buf, size);
2275 if (ret != 0) {
2276 return ret;
2277 }
2278 }
2279
2280 return ret;
2281}
2282
2283static void parse_odt(const unsigned int val,
2284 const int read,
2285 const int i,
2286 const unsigned int cs_d0,
2287 const unsigned int cs_d1,
2288 unsigned int *odt)
2289{
2290 int shift = read ? 4 : 0;
2291 int j;
2292
2293 if (i < 0 || i > 3) {
2294 printf("Error: invalid chip-select value\n");
2295 }
2296 switch (val) {
2297 case DDR_ODT_CS:
2298 odt[i] |= (1 << i) << shift;
2299 break;
2300 case DDR_ODT_ALL_OTHER_CS:
2301 for (j = 0; j < DDRC_NUM_CS; j++) {
2302 if (i == j) {
2303 continue;
2304 }
2305 if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
2306 continue;
2307 }
2308 odt[j] |= (1 << i) << shift;
2309 }
2310 break;
2311 case DDR_ODT_CS_AND_OTHER_DIMM:
2312 odt[i] |= (1 << i) << 4;
2313 /* fallthrough */
2314 case DDR_ODT_OTHER_DIMM:
2315 for (j = 0; j < DDRC_NUM_CS; j++) {
2316 if ((((cs_d0 & (1 << i)) != 0) &&
2317 ((cs_d1 & (1 << j)) != 0)) ||
2318 (((cs_d1 & (1 << i)) != 0) &&
2319 ((cs_d0 & (1 << j)) != 0))) {
2320 odt[j] |= (1 << i) << shift;
2321 }
2322 }
2323 break;
2324 case DDR_ODT_ALL:
2325 for (j = 0; j < DDRC_NUM_CS; j++) {
2326 if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
2327 continue;
2328 }
2329 odt[j] |= (1 << i) << shift;
2330 }
2331 break;
2332 case DDR_ODT_SAME_DIMM:
2333 for (j = 0; j < DDRC_NUM_CS; j++) {
2334 if ((((cs_d0 & (1 << i)) != 0) &&
2335 ((cs_d0 & (1 << j)) != 0)) ||
2336 (((cs_d1 & (1 << i)) != 0) &&
2337 ((cs_d1 & (1 << j)) != 0))) {
2338 odt[j] |= (1 << i) << shift;
2339 }
2340 }
2341 break;
2342 case DDR_ODT_OTHER_CS_ONSAMEDIMM:
2343 for (j = 0; j < DDRC_NUM_CS; j++) {
2344 if (i == j) {
2345 continue;
2346 }
2347 if ((((cs_d0 & (1 << i)) != 0) &&
2348 ((cs_d0 & (1 << j)) != 0)) ||
2349 (((cs_d1 & (1 << i)) != 0) &&
2350 ((cs_d1 & (1 << j)) != 0))) {
2351 odt[j] |= (1 << i) << shift;
2352 }
2353 }
2354 break;
2355 case DDR_ODT_NEVER:
2356 break;
2357 default:
2358 break;
2359 }
2360}
2361
2362#ifdef DEBUG_DDR_INPUT_CONFIG
2363char *dram_types_str[] = {
2364 "DDR4",
2365 "DDR3",
2366 "LDDDR4",
2367 "LPDDR3",
2368 "LPDDR2",
2369 "DDR5"
2370};
2371
2372char *dimm_types_str[] = {
2373 "UDIMM",
2374 "SODIMM",
2375 "RDIMM",
2376 "LRDIMM",
2377 "NODIMM",
2378};
2379
2380
2381static void print_jason_format(struct input *input,
2382 struct ddr4u1d *msg_1d,
2383 struct ddr4u2d *msg_2d)
2384{
2385
2386 printf("\n{");
2387 printf("\n \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]);
2388 printf("\n \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]);
2389 printf("\n \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver);
2390 printf("\n \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte);
2391 printf("\n \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0);
2392 printf("\n \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib);
2393 printf("\n \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0);
2394 printf("\n \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates);
2395 printf("\n \"frequency\": \"%d\",", input->basic.frequency);
2396 printf("\n \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
2397 printf("\n \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
2398 printf("\n \"dfi1_exists\": \"0x%04x\",", (unsigned int)input->basic.dfi1exists);
2399 printf("\n \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width);
2400 printf("\n \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap);
2401 printf("\n \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val);
2402 printf("\n \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq);
2403 printf("\n \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq);
2404 printf("\n \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac);
2405 printf("\n \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac);
2406 printf("\n \"odt_impedance\": \"%d\",", input->adv.odtimpedance);
2407 printf("\n \"tx_impedance\": \"%d\",", input->adv.tx_impedance);
2408 printf("\n \"atx_impedance\": \"%d\",", input->adv.atx_impedance);
2409 printf("\n \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en);
2410 printf("\n \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp);
2411 printf("\n \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level);
2412 printf("\n \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass);
2413 printf("\n \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval);
2414 printf("\n \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once);
2415 printf("\n \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri);
2416 printf("\n \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming);
2417 printf("\n \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length);
2418 printf("\n \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length);
2419 printf("\n \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc);
2420 printf("\n \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00);
2421 printf("\n \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl);
2422 printf("\n \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present);
2423 printf("\n \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref);
2424 printf("\n \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin);
2425 printf("\n \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror);
2426 printf("\n \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f));
2427 printf("\n \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f));
2428 printf("\n \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f));
2429 printf("\n \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f));
2430 printf("\n \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0));
2431 printf("\n \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0));
2432 printf("\n \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0));
2433 printf("\n \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0));
2434 printf("\n \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc);
2435 printf("\n \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result);
2436 printf("\n \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl);
2437 printf("\n \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0);
2438 printf("\n \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1);
2439 printf("\n \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2);
2440 printf("\n \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3);
2441 printf("\n \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4);
2442 printf("\n \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5);
2443 printf("\n \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6);
2444 printf("\n \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l);
2445 printf("\n \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l);
2446 printf("\n \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl);
2447 printf("\n \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0);
2448 printf("\n \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1);
2449 printf("\n \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2);
2450 printf("\n \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3);
2451 printf("\n \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4);
2452 printf("\n \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5);
2453 printf("\n \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6);
2454 printf("\n \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7);
2455 printf("\n}");
2456 printf("\n");
2457}
2458#endif
2459
2460int compute_ddr_phy(struct ddr_info *priv)
2461{
2462 const unsigned long clk = priv->clk;
2463 const struct memctl_opt *popts = &priv->opt;
2464 const struct ddr_conf *conf = &priv->conf;
2465 const struct dimm_params *dimm_param = &priv->dimm;
2466 struct ddr_cfg_regs *regs = &priv->ddr_reg;
2467 int ret;
2468 static struct input input;
2469 static struct ddr4u1d msg_1d;
2470 static struct ddr4u2d msg_2d;
2471 unsigned int i;
2472 unsigned int odt_rd, odt_wr;
2473 __unused const soc_info_t *soc_info;
2474#ifdef NXP_APPLY_MAX_CDD
2475 unsigned int tcfg0, tcfg4, rank;
2476#endif
2477
2478 if (dimm_param == NULL) {
2479 ERROR("Empty DIMM parameters.\n");
2480 return -EINVAL;
2481 }
2482
2483 zeromem(&input, sizeof(input));
2484 zeromem(&msg_1d, sizeof(msg_1d));
2485 zeromem(&msg_2d, sizeof(msg_2d));
2486
2487 input.basic.dram_type = DDR4;
2488 /* FIXME: Add condition for LRDIMM */
2489 input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM;
2490 input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 +
2491 dimm_param->ec_sdram_width / 8;
2492 input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte;
2493 input.basic.num_rank_dfi0 = dimm_param->n_ranks;
2494 input.basic.dram_data_width = dimm_param->device_width;
2495 input.basic.hard_macro_ver = 0xa;
2496 input.basic.num_pstates = 1;
2497 input.basic.dfi_freq_ratio = 1;
2498 input.basic.num_anib = 0xc;
2499 input.basic.train2d = popts->skip2d ? 0 : 1;
2500 input.basic.frequency = (int) (clk / 2000000ul);
2501 debug("frequency = %dMHz\n", input.basic.frequency);
2502 input.cs_d0 = conf->cs_on_dimm[0];
2503#if DDRC_NUM_DIMM > 1
2504 input.cs_d1 = conf->cs_on_dimm[1];
2505#endif
2506 input.mirror = dimm_param->mirrored_dimm;
2507 input.mr[0] = regs->sdram_mode[0] & U(0xffff);
2508 input.mr[1] = regs->sdram_mode[0] >> 16U;
2509 input.mr[2] = regs->sdram_mode[1] >> 16U;
2510 input.mr[3] = regs->sdram_mode[1] & U(0xffff);
2511 input.mr[4] = regs->sdram_mode[8] >> 16U;
2512 input.mr[5] = regs->sdram_mode[8] & U(0xffff);
2513 input.mr[6] = regs->sdram_mode[9] >> 16U;
2514 input.vref = popts->vref_phy;
2515 debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U);
2516 for (i = 0U; i < DDRC_NUM_CS; i++) {
2517 if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) {
2518 continue;
2519 }
2520 odt_rd = (regs->cs[i].config >> 20U) & U(0x7);
2521 odt_wr = (regs->cs[i].config >> 16U) & U(0x7);
2522 parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1,
2523 input.odt);
2524 parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1,
2525 input.odt);
2526 }
2527
2528 /* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */
2529 if (dimm_param->rdimm != 0U) {
2530 regs->sdram_cfg[0] &= ~(1 << 28U);
2531 regs->sdram_cfg[1] &= ~(1 << 2U);
2532 input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf);
2533 input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf);
2534 input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf);
2535 input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf);
2536 input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf);
2537 input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf);
2538 input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf);
2539 input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf);
2540 input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf);
2541 input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf);
2542 input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf);
2543 input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf);
2544 input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf);
2545 input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf);
2546 input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf);
2547 input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf);
2548 input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff);
2549 }
2550
2551 input.adv.odtimpedance = popts->odt ? popts->odt : 60;
2552 input.adv.tx_impedance = popts->phy_tx_impedance ?
2553 popts->phy_tx_impedance : 28;
2554 input.adv.atx_impedance = popts->phy_atx_impedance ?
2555 popts->phy_atx_impedance : 30;
2556
2557 debug("Initializing input adv data structure\n");
2558 phy_gen2_init_input(&input);
2559
2560 debug("Initializing message block\n");
2561 ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input);
2562 if (ret != 0) {
2563 ERROR("Init msg failed (error code %d)\n", ret);
2564 return ret;
2565 }
2566
2567 ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d);
2568 if (ret != 0) {
2569 ERROR("Init PHY failed (error code %d)\n", ret);
2570 return ret;
2571 }
2572#ifdef NXP_WARM_BOOT
2573 debug("Warm boot flag value %0x\n", priv->warm_boot_flag);
2574 if (priv->warm_boot_flag == DDR_WARM_BOOT) {
2575 debug("Restoring the Phy training data\n");
2576 // Restore the training data
2577 ret = restore_phy_training_values(priv->phy,
2578 PHY_TRAINING_REGS_ON_FLASH,
2579 priv->num_ctlrs,
2580 input.basic.train2d);
2581 if (ret != 0) {
2582 ERROR("Restoring of training data failed %d\n", ret);
2583 return ret;
2584 }
2585 } else {
2586#endif
2587
2588 debug("Load 1D firmware\n");
2589 ret = load_fw(priv->phy, &input, 0, &msg_1d,
2590 sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf,
2591 priv->img_loadr, priv->warm_boot_flag);
2592 if (ret != 0) {
2593 ERROR("Loading firmware failed (error code %d)\n", ret);
2594 return ret;
2595 }
2596
2597 debug("Execute firmware\n");
2598 ret = g_exec_fw(priv->phy, 0, &input);
2599 if (ret != 0) {
2600 ERROR("Execution FW failed (error code %d)\n", ret);
2601 }
2602
2603#ifdef NXP_APPLY_MAX_CDD
Jiafei Panb27ac802021-07-20 17:14:32 +08002604 soc_info = get_soc_info();
2605 if (soc_info->svr_reg.bf.maj_ver == 2) {
Pankaj Guptac518de42020-12-09 14:02:39 +05302606 tcfg0 = regs->timing_cfg[0];
2607 tcfg4 = regs->timing_cfg[4];
2608 rank = findrank(conf->cs_in_use);
2609 get_cdd_val(priv->phy, rank, input.basic.frequency,
2610 &tcfg0, &tcfg4);
2611 regs->timing_cfg[0] = tcfg0;
2612 regs->timing_cfg[4] = tcfg4;
2613 }
2614#endif
2615
2616 if ((ret == 0) && (input.basic.train2d != 0)) {
2617 /* 2D training starts here */
2618 debug("Load 2D firmware\n");
2619 ret = load_fw(priv->phy, &input, 1, &msg_2d,
2620 sizeof(struct ddr4u2d),
2621 priv->phy_gen2_fw_img_buf,
2622 priv->img_loadr,
2623 priv->warm_boot_flag);
2624 if (ret != 0) {
2625 ERROR("Loading fw failed (err code %d)\n", ret);
2626 } else {
2627 debug("Execute 2D firmware\n");
2628 ret = g_exec_fw(priv->phy, 1, &input);
2629 if (ret != 0) {
2630 ERROR("Execution FW failed (err %d)\n",
2631 ret);
2632 }
2633 }
2634 }
2635#ifdef NXP_WARM_BOOT
2636 if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED &&
2637 ret == 0) {
2638 debug("save the phy training data\n");
2639 //Save training data TBD
2640 ret = save_phy_training_values(priv->phy,
2641 PHY_TRAINING_REGS_ON_FLASH,
2642 priv->num_ctlrs,
2643 input.basic.train2d);
2644 if (ret != 0) {
2645 ERROR("Saving training data failed.");
2646 ERROR("Warm boot will fail. Error=%d.\n", ret);
2647 }
2648 }
2649 } /* else */
2650#endif
2651
2652 if (ret == 0) {
2653 debug("Load PIE\n");
2654 i_load_pie(priv->phy, &input, &msg_1d);
2655
2656 NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n",
2657 input.basic.dimm_type == RDIMM ? "RDIMM" :
2658 input.basic.dimm_type == LRDIMM ? "LRDIMM" :
2659 "UDIMM",
2660 dimm_param->n_ranks,
2661 dimm_param->primary_sdram_width,
2662 dimm_param->device_width);
2663 }
2664#ifdef DEBUG_DDR_INPUT_CONFIG
2665 print_jason_format(&input, &msg_1d, &msg_2d);
2666#endif
2667
2668 return ret;
2669}