blob: 99c4aa1b29adabf65d82e4cd472850593b6a43ad [file] [log] [blame]
Florian Lugou71d33be2021-09-08 12:42:54 +02001/*
2 * Copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7/*******************************************************************************
8 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
9 * plug-in component to the Secure Monitor, registered as a runtime service. The
10 * SPD is expected to be a functional extension of the Secure Payload (SP) that
11 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
12 * the Trusted OS/Applications range to the dispatcher. The SPD will either
13 * handle the request locally or delegate it to the Secure Payload. It is also
14 * responsible for initialising and maintaining communication with the SP.
15 ******************************************************************************/
16
17#include <assert.h>
18#include <errno.h>
19#include <stddef.h>
20#include <string.h>
21
22#include <arch_helpers.h>
23#include <bl31/bl31.h>
24#include <bl31/interrupt_mgmt.h>
25#include <bl_common.h>
26#include <common/debug.h>
27#include <common/ep_info.h>
28#include <drivers/arm/gic_common.h>
29#include <lib/el3_runtime/context_mgmt.h>
30#include <lib/spinlock.h>
31#include <plat/common/platform.h>
32#include <pnc.h>
33#include "pncd_private.h"
34#include <runtime_svc.h>
35#include <tools_share/uuid.h>
36
37/*******************************************************************************
38 * Structure to keep track of ProvenCore state
39 ******************************************************************************/
40static pnc_context_t pncd_sp_context;
41
42static bool ree_info;
43static uint64_t ree_base_addr;
44static uint64_t ree_length;
45static uint64_t ree_tag;
46
47static bool pnc_initialized;
48
49static spinlock_t smc_handler_lock;
50
51static int pncd_init(void);
52
53static void context_save(unsigned long security_state)
54{
55 assert(sec_state_is_valid(security_state));
56
57 cm_el1_sysregs_context_save((uint32_t) security_state);
58#if CTX_INCLUDE_FPREGS
59 fpregs_context_save(get_fpregs_ctx(cm_get_context(security_state)));
60#endif
61}
62
63static void *context_restore(unsigned long security_state)
64{
65 void *handle;
66
67 assert(sec_state_is_valid(security_state));
68
69 /* Get a reference to the next context */
70 handle = cm_get_context((uint32_t) security_state);
71 assert(handle);
72
73 /* Restore state */
74 cm_el1_sysregs_context_restore((uint32_t) security_state);
75#if CTX_INCLUDE_FPREGS
76 fpregs_context_restore(get_fpregs_ctx(cm_get_context(security_state)));
77#endif
78
79 cm_set_next_eret_context((uint32_t) security_state);
80
81 return handle;
82}
83
84static uint64_t pncd_sel1_interrupt_handler(uint32_t id,
85 uint32_t flags, void *handle, void *cookie);
86
87/*******************************************************************************
88 * Switch context to the specified security state and return the targeted
89 * handle. Note that the context may remain unchanged if the switch is not
90 * allowed.
91 ******************************************************************************/
92void *pncd_context_switch_to(unsigned long security_state)
93{
94 unsigned long sec_state_from =
95 security_state == SECURE ? NON_SECURE : SECURE;
96
97 assert(sec_state_is_valid(security_state));
98
99 /* Check if this is the first world switch */
100 if (!pnc_initialized) {
101 int rc;
102 uint32_t flags;
103
104 assert(sec_state_from == SECURE);
105
106 INFO("PnC initialization done\n");
107
108 /*
109 * Register an interrupt handler for S-EL1 interrupts
110 * when generated during code executing in the
111 * non-secure state.
112 */
113 flags = 0U;
114 set_interrupt_rm_flag(flags, NON_SECURE);
115 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
116 pncd_sel1_interrupt_handler,
117 flags);
118 if (rc != 0) {
119 ERROR("Failed to register S-EL1 interrupt handler (%d)\n",
120 rc);
121 panic();
122 }
123
124 context_save(SECURE);
125
126 pnc_initialized = true;
127
128 /*
129 * Release the lock before restoring the EL3 context to
130 * bl31_main.
131 */
132 spin_unlock(&smc_handler_lock);
133
134 /*
135 * SP reports completion. The SPD must have initiated
136 * the original request through a synchronous entry
137 * into the SP. Jump back to the original C runtime
138 * context.
139 */
140 pncd_synchronous_sp_exit(&pncd_sp_context, (uint64_t) 0x0);
141
142 /* Unreachable */
143 ERROR("Returned from pncd_synchronous_sp_exit... Should not happen\n");
144 panic();
145 }
146
147 /* Check that the world switch is allowed */
148 if (read_mpidr() != pncd_sp_context.mpidr) {
149 if (sec_state_from == SECURE) {
150 /*
151 * Secure -> Non-Secure world switch initiated on a CPU where there
152 * should be no Trusted OS running
153 */
154 WARN("Secure to Non-Secure switch requested on CPU where ProvenCore is not supposed to be running...\n");
155 }
156
157 /*
158 * Secure or Non-Secure world wants to switch world but there is no Secure
159 * software on this core
160 */
161 return cm_get_context((uint32_t) sec_state_from);
162 }
163
164 context_save(sec_state_from);
165
166 return context_restore(security_state);
167}
168
169/*******************************************************************************
170 * This function is the handler registered for S-EL1 interrupts by the PNCD. It
171 * validates the interrupt and upon success arranges entry into the PNC at
172 * 'pnc_sel1_intr_entry()' for handling the interrupt.
173 ******************************************************************************/
174static uint64_t pncd_sel1_interrupt_handler(uint32_t id,
175 uint32_t flags,
176 void *handle,
177 void *cookie)
178{
179 /* Check the security state when the exception was generated */
180 assert(get_interrupt_src_ss(flags) == NON_SECURE);
181
182 /* Sanity check the pointer to this cpu's context */
183 assert(handle == cm_get_context(NON_SECURE));
184
185 /* switch to PnC */
186 handle = pncd_context_switch_to(SECURE);
187
188 assert(handle != NULL);
189
190 SMC_RET0(handle);
191}
192
193#pragma weak plat_pncd_setup
194int plat_pncd_setup(void)
195{
196 return 0;
197}
198
199/*******************************************************************************
200 * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
201 * (aarch32/aarch64) if not already known and initialises the context for entry
202 * into the SP for its initialisation.
203 ******************************************************************************/
204static int pncd_setup(void)
205{
206 entry_point_info_t *pnc_ep_info;
207
208 /*
209 * Get information about the Secure Payload (BL32) image. Its
210 * absence is a critical failure.
211 *
212 * TODO: Add support to conditionally include the SPD service
213 */
214 pnc_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
215 if (!pnc_ep_info) {
216 WARN("No PNC provided by BL2 boot loader, Booting device without PNC initialization. SMC`s destined for PNC will return SMC_UNK\n");
217 return 1;
218 }
219
220 /*
221 * If there's no valid entry point for SP, we return a non-zero value
222 * signalling failure initializing the service. We bail out without
223 * registering any handlers
224 */
225 if (!pnc_ep_info->pc) {
226 return 1;
227 }
228
229 pncd_init_pnc_ep_state(pnc_ep_info,
230 pnc_ep_info->pc,
231 &pncd_sp_context);
232
233 /*
234 * All PNCD initialization done. Now register our init function with
235 * BL31 for deferred invocation
236 */
237 bl31_register_bl32_init(&pncd_init);
238 bl31_set_next_image_type(NON_SECURE);
239
240 return plat_pncd_setup();
241}
242
243/*******************************************************************************
244 * This function passes control to the Secure Payload image (BL32) for the first
245 * time on the primary cpu after a cold boot. It assumes that a valid secure
246 * context has already been created by pncd_setup() which can be directly used.
247 * It also assumes that a valid non-secure context has been initialised by PSCI
248 * so it does not need to save and restore any non-secure state. This function
249 * performs a synchronous entry into the Secure payload. The SP passes control
250 * back to this routine through a SMC.
251 ******************************************************************************/
252static int32_t pncd_init(void)
253{
254 entry_point_info_t *pnc_entry_point;
255 uint64_t rc = 0;
256
257 /*
258 * Get information about the Secure Payload (BL32) image. Its
259 * absence is a critical failure.
260 */
261 pnc_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
262 assert(pnc_entry_point);
263
264 cm_init_my_context(pnc_entry_point);
265
266 /*
267 * Arrange for an entry into the test secure payload. It will be
268 * returned via PNC_ENTRY_DONE case
269 */
270 rc = pncd_synchronous_sp_entry(&pncd_sp_context);
271
272 /*
273 * If everything went well at this point, the return value should be 0.
274 */
275 return rc == 0;
276}
277
278#pragma weak plat_pncd_smc_handler
279/*******************************************************************************
280 * This function is responsible for handling the platform-specific SMCs in the
281 * Trusted OS/App range as defined in the SMC Calling Convention Document.
282 ******************************************************************************/
283uintptr_t plat_pncd_smc_handler(uint32_t smc_fid,
284 u_register_t x1,
285 u_register_t x2,
286 u_register_t x3,
287 u_register_t x4,
288 void *cookie,
289 void *handle,
290 u_register_t flags)
291{
292 (void) smc_fid;
293 (void) x1;
294 (void) x2;
295 (void) x3;
296 (void) x4;
297 (void) cookie;
298 (void) flags;
299
300 SMC_RET1(handle, SMC_UNK);
301}
302
303/*******************************************************************************
304 * This function is responsible for handling all SMCs in the Trusted OS/App
305 * range as defined in the SMC Calling Convention Document. It is also
306 * responsible for communicating with the Secure payload to delegate work and
307 * return results back to the non-secure state. Lastly it will also return any
308 * information that the secure payload needs to do the work assigned to it.
309 *
310 * It should only be called with the smc_handler_lock held.
311 ******************************************************************************/
312static uintptr_t pncd_smc_handler_unsafe(uint32_t smc_fid,
313 u_register_t x1,
314 u_register_t x2,
315 u_register_t x3,
316 u_register_t x4,
317 void *cookie,
318 void *handle,
319 u_register_t flags)
320{
321 uint32_t ns;
322
323 /* Determine which security state this SMC originated from */
324 ns = is_caller_non_secure(flags);
325
326 assert(ns != 0 || read_mpidr() == pncd_sp_context.mpidr);
327
328 switch (smc_fid) {
329 case SMC_CONFIG_SHAREDMEM:
330 if (ree_info) {
331 /* Do not Yield */
332 SMC_RET0(handle);
333 }
334
335 /*
336 * Fetch the physical base address (x1) and size (x2) of the
337 * shared memory allocated by the Non-Secure world. This memory
338 * will be used by PNC to communicate with the Non-Secure world.
339 * Verifying the validity of these values is up to the Trusted
340 * OS.
341 */
342 ree_base_addr = x1 | (x2 << 32);
343 ree_length = x3;
344 ree_tag = x4;
345
346 INFO("IN SMC_CONFIG_SHAREDMEM: addr=%lx, length=%lx, tag=%lx\n",
347 (unsigned long) ree_base_addr,
348 (unsigned long) ree_length,
349 (unsigned long) ree_tag);
350
351 if ((ree_base_addr % 0x200000) != 0) {
352 SMC_RET1(handle, SMC_UNK);
353 }
354
355 if ((ree_length % 0x200000) != 0) {
356 SMC_RET1(handle, SMC_UNK);
357 }
358
359 ree_info = true;
360
361 /* Do not Yield */
362 SMC_RET4(handle, 0, 0, 0, 0);
363
364 break;
365
366 case SMC_GET_SHAREDMEM:
367 if (ree_info) {
368 x1 = (1U << 16) | ree_tag;
369 x2 = ree_base_addr & 0xFFFFFFFF;
370 x3 = (ree_base_addr >> 32) & 0xFFFFFFFF;
371 x4 = ree_length & 0xFFFFFFFF;
372 SMC_RET4(handle, x1, x2, x3, x4);
373 } else {
374 SMC_RET4(handle, 0, 0, 0, 0);
375 }
376
377 break;
378
379 case SMC_ACTION_FROM_NS:
380 if (ns == 0) {
381 SMC_RET1(handle, SMC_UNK);
382 }
383
384 if (SPD_PNCD_S_IRQ < MIN_PPI_ID) {
385 plat_ic_raise_s_el1_sgi(SPD_PNCD_S_IRQ,
386 pncd_sp_context.mpidr);
387 } else {
388 plat_ic_set_interrupt_pending(SPD_PNCD_S_IRQ);
389 }
390
391 SMC_RET0(handle);
392
393 break;
394
395 case SMC_ACTION_FROM_S:
396 if (ns != 0) {
397 SMC_RET1(handle, SMC_UNK);
398 }
399
400 if (SPD_PNCD_NS_IRQ < MIN_PPI_ID) {
401 /*
402 * NS SGI is sent to the same core as the one running
403 * PNC
404 */
405 plat_ic_raise_ns_sgi(SPD_PNCD_NS_IRQ, read_mpidr());
406 } else {
407 plat_ic_set_interrupt_pending(SPD_PNCD_NS_IRQ);
408 }
409
410 SMC_RET0(handle);
411
412 break;
413
414 case SMC_YIELD:
415 assert(handle == cm_get_context(ns != 0 ? NON_SECURE : SECURE));
416 handle = pncd_context_switch_to(ns != 0 ? SECURE : NON_SECURE);
417
418 assert(handle != NULL);
419
420 SMC_RET0(handle);
421
422 break;
423
424 default:
425 INFO("Unknown smc: %x\n", smc_fid);
426 break;
427 }
428
429 return plat_pncd_smc_handler(smc_fid, x1, x2, x3, x4,
430 cookie, handle, flags);
431}
432
433static uintptr_t pncd_smc_handler(uint32_t smc_fid,
434 u_register_t x1,
435 u_register_t x2,
436 u_register_t x3,
437 u_register_t x4,
438 void *cookie,
439 void *handle,
440 u_register_t flags)
441{
442 uintptr_t ret;
443
444 /* SMC handling is serialized */
445 spin_lock(&smc_handler_lock);
446 ret = pncd_smc_handler_unsafe(smc_fid, x1, x2, x3, x4, cookie, handle,
447 flags);
448 spin_unlock(&smc_handler_lock);
449
450 return ret;
451}
452
453/* Define a SPD runtime service descriptor for fast SMC calls */
454DECLARE_RT_SVC(
455 pncd_fast,
456 OEN_TOS_START,
457 OEN_TOS_END,
458 SMC_TYPE_FAST,
459 pncd_setup,
460 pncd_smc_handler
461);
462
463/* Define a SPD runtime service descriptor for standard SMC calls */
464DECLARE_RT_SVC(
465 pncd_std,
466 OEN_TOS_START,
467 OEN_TOS_END,
468 SMC_TYPE_YIELD,
469 NULL,
470 pncd_smc_handler
471);