blob: 5c5144fb94babc97dc634b192d483fa0666a7873 [file] [log] [blame]
Jens Wiklanderc2888862014-08-04 15:39:58 +02001/*
2 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31
32/*******************************************************************************
33 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34 * plug-in component to the Secure Monitor, registered as a runtime service. The
35 * SPD is expected to be a functional extension of the Secure Payload (SP) that
36 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37 * the Trusted OS/Applications range to the dispatcher. The SPD will either
38 * handle the request locally or delegate it to the Secure Payload. It is also
39 * responsible for initialising and maintaining communication with the SP.
40 ******************************************************************************/
41#include <arch_helpers.h>
42#include <assert.h>
43#include <bl_common.h>
44#include <bl31.h>
45#include <context_mgmt.h>
46#include <debug.h>
47#include <errno.h>
48#include <platform.h>
49#include <runtime_svc.h>
50#include <stddef.h>
51#include <uuid.h>
52#include "opteed_private.h"
53#include "teesmc_opteed_macros.h"
54#include "teesmc_opteed.h"
55
56/*******************************************************************************
57 * Address of the entrypoint vector table in OPTEE. It is
58 * initialised once on the primary core after a cold boot.
59 ******************************************************************************/
60optee_vectors_t *optee_vectors;
61
62/*******************************************************************************
63 * Array to keep track of per-cpu OPTEE state
64 ******************************************************************************/
65optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
66uint32_t opteed_rw;
67
68
69
70static int32_t opteed_init(void);
71
72/*******************************************************************************
73 * This function is the handler registered for S-EL1 interrupts by the
74 * OPTEED. It validates the interrupt and upon success arranges entry into
75 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
76 ******************************************************************************/
77static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
78 uint32_t flags,
79 void *handle,
80 void *cookie)
81{
82 uint32_t linear_id;
83 uint64_t mpidr;
84 optee_context_t *optee_ctx;
85
86 /* Check the security state when the exception was generated */
87 assert(get_interrupt_src_ss(flags) == NON_SECURE);
88
89#if IMF_READ_INTERRUPT_ID
90 /* Check the security status of the interrupt */
91 assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
92#endif
93
94 /* Sanity check the pointer to this cpu's context */
95 mpidr = read_mpidr();
96 assert(handle == cm_get_context(NON_SECURE));
97
98 /* Save the non-secure context before entering the OPTEE */
99 cm_el1_sysregs_context_save(NON_SECURE);
100
101 /* Get a reference to this cpu's OPTEE context */
102 linear_id = platform_get_core_pos(mpidr);
103 optee_ctx = &opteed_sp_context[linear_id];
104 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
105
106 cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
107 cm_el1_sysregs_context_restore(SECURE);
108 cm_set_next_eret_context(SECURE);
109
110 /*
111 * Tell the OPTEE that it has to handle an FIQ (synchronously).
112 * Also the instruction in normal world where the interrupt was
113 * generated is passed for debugging purposes. It is safe to
114 * retrieve this address from ELR_EL3 as the secure context will
115 * not take effect until el3_exit().
116 */
117 SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
118}
119
120/*******************************************************************************
121 * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
122 * (aarch32/aarch64) if not already known and initialises the context for entry
123 * into OPTEE for its initialization.
124 ******************************************************************************/
125int32_t opteed_setup(void)
126{
127 entry_point_info_t *optee_ep_info;
128 uint64_t mpidr = read_mpidr();
129 uint32_t linear_id;
130
131 linear_id = platform_get_core_pos(mpidr);
132
133 /*
134 * Get information about the Secure Payload (BL32) image. Its
135 * absence is a critical failure. TODO: Add support to
136 * conditionally include the SPD service
137 */
138 optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
139 if (!optee_ep_info) {
140 WARN("No OPTEE provided by BL2 boot loader, Booting device"
141 " without OPTEE initialization. SMC`s destined for OPTEE"
142 " will return SMC_UNK\n");
143 return 1;
144 }
145
146 /*
147 * If there's no valid entry point for SP, we return a non-zero value
148 * signalling failure initializing the service. We bail out without
149 * registering any handlers
150 */
151 if (!optee_ep_info->pc)
152 return 1;
153
154 /*
155 * We could inspect the SP image and determine it's execution
156 * state i.e whether AArch32 or AArch64. Assuming it's AArch32
157 * for the time being.
158 */
159 opteed_rw = OPTEE_AARCH32;
160 opteed_init_optee_ep_state(optee_ep_info,
161 opteed_rw,
162 optee_ep_info->pc,
163 &opteed_sp_context[linear_id]);
164
165 /*
166 * All OPTEED initialization done. Now register our init function with
167 * BL31 for deferred invocation
168 */
169 bl31_register_bl32_init(&opteed_init);
170
171 return 0;
172}
173
174/*******************************************************************************
175 * This function passes control to the OPTEE image (BL32) for the first time
176 * on the primary cpu after a cold boot. It assumes that a valid secure
177 * context has already been created by opteed_setup() which can be directly
178 * used. It also assumes that a valid non-secure context has been
179 * initialised by PSCI so it does not need to save and restore any
180 * non-secure state. This function performs a synchronous entry into
181 * OPTEE. OPTEE passes control back to this routine through a SMC.
182 ******************************************************************************/
183static int32_t opteed_init(void)
184{
185 uint64_t mpidr = read_mpidr();
186 uint32_t linear_id = platform_get_core_pos(mpidr);
187 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
188 entry_point_info_t *optee_entry_point;
189 uint64_t rc;
190
191 /*
192 * Get information about the OPTEE (BL32) image. Its
193 * absence is a critical failure.
194 */
195 optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
196 assert(optee_entry_point);
197
198 cm_init_context(mpidr, optee_entry_point);
199
200 /*
201 * Arrange for an entry into OPTEE. It will be returned via
202 * OPTEE_ENTRY_DONE case
203 */
204 rc = opteed_synchronous_sp_entry(optee_ctx);
205 assert(rc != 0);
206
207 return rc;
208}
209
210
211/*******************************************************************************
212 * This function is responsible for handling all SMCs in the Trusted OS/App
213 * range from the non-secure state as defined in the SMC Calling Convention
214 * Document. It is also responsible for communicating with the Secure
215 * payload to delegate work and return results back to the non-secure
216 * state. Lastly it will also return any information that OPTEE needs to do
217 * the work assigned to it.
218 ******************************************************************************/
219uint64_t opteed_smc_handler(uint32_t smc_fid,
220 uint64_t x1,
221 uint64_t x2,
222 uint64_t x3,
223 uint64_t x4,
224 void *cookie,
225 void *handle,
226 uint64_t flags)
227{
228 cpu_context_t *ns_cpu_context;
229 unsigned long mpidr = read_mpidr();
230 uint32_t linear_id = platform_get_core_pos(mpidr);
231 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
232 uint64_t rc;
233
234 /*
235 * Determine which security state this SMC originated from
236 */
237
238 if (is_caller_non_secure(flags)) {
239 /*
240 * This is a fresh request from the non-secure client.
241 * The parameters are in x1 and x2. Figure out which
242 * registers need to be preserved, save the non-secure
243 * state and send the request to the secure payload.
244 */
245 assert(handle == cm_get_context(NON_SECURE));
246
247 cm_el1_sysregs_context_save(NON_SECURE);
248
249 /*
250 * We are done stashing the non-secure context. Ask the
251 * OPTEE to do the work now.
252 */
253
254 /*
255 * Verify if there is a valid context to use, copy the
256 * operation type and parameters to the secure context
257 * and jump to the fast smc entry point in the secure
258 * payload. Entry into S-EL1 will take place upon exit
259 * from this function.
260 */
261 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
262
263 /* Set appropriate entry for SMC.
264 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
265 * flags as appropriate.
266 */
267 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
268 cm_set_elr_el3(SECURE, (uint64_t)
269 &optee_vectors->fast_smc_entry);
270 } else {
271 cm_set_elr_el3(SECURE, (uint64_t)
272 &optee_vectors->std_smc_entry);
273 }
274
275 cm_el1_sysregs_context_restore(SECURE);
276 cm_set_next_eret_context(SECURE);
277
278 /* Propagate hypervisor client ID */
279 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
280 CTX_GPREG_X7,
281 read_ctx_reg(get_gpregs_ctx(handle),
282 CTX_GPREG_X7));
283
284 SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
285 }
286
287 /*
288 * Returning from OPTEE
289 */
290
291 switch (smc_fid) {
292 /*
293 * OPTEE has finished initialising itself after a cold boot
294 */
295 case TEESMC_OPTEED_RETURN_ENTRY_DONE:
296 /*
297 * Stash the OPTEE entry points information. This is done
298 * only once on the primary cpu
299 */
300 assert(optee_vectors == NULL);
301 optee_vectors = (optee_vectors_t *) x1;
302
303 if (optee_vectors) {
304 set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
305
306 /*
307 * OPTEE has been successfully initialized.
308 * Register power management hooks with PSCI
309 */
310 psci_register_spd_pm_hook(&opteed_pm);
311
312 /*
313 * Register an interrupt handler for S-EL1 interrupts
314 * when generated during code executing in the
315 * non-secure state.
316 */
317 flags = 0;
318 set_interrupt_rm_flag(flags, NON_SECURE);
319 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
320 opteed_sel1_interrupt_handler,
321 flags);
322 if (rc)
323 panic();
324 }
325
326 /*
327 * OPTEE reports completion. The OPTEED must have initiated
328 * the original request through a synchronous entry into
329 * OPTEE. Jump back to the original C runtime context.
330 */
331 opteed_synchronous_sp_exit(optee_ctx, x1);
332
333
334 /*
335 * These function IDs is used only by OP-TEE to indicate it has
336 * finished:
337 * 1. turning itself on in response to an earlier psci
338 * cpu_on request
339 * 2. resuming itself after an earlier psci cpu_suspend
340 * request.
341 */
342 case TEESMC_OPTEED_RETURN_ON_DONE:
343 case TEESMC_OPTEED_RETURN_RESUME_DONE:
344
345
346 /*
347 * These function IDs is used only by the SP to indicate it has
348 * finished:
349 * 1. suspending itself after an earlier psci cpu_suspend
350 * request.
351 * 2. turning itself off in response to an earlier psci
352 * cpu_off request.
353 */
354 case TEESMC_OPTEED_RETURN_OFF_DONE:
355 case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
356 case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
357 case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
358
359 /*
360 * OPTEE reports completion. The OPTEED must have initiated the
361 * original request through a synchronous entry into OPTEE.
362 * Jump back to the original C runtime context, and pass x1 as
363 * return value to the caller
364 */
365 opteed_synchronous_sp_exit(optee_ctx, x1);
366
367 /*
368 * OPTEE is returning from a call or being preempted from a call, in
369 * either case execution should resume in the normal world.
370 */
371 case TEESMC_OPTEED_RETURN_CALL_DONE:
372 /*
373 * This is the result from the secure client of an
374 * earlier request. The results are in x0-x3. Copy it
375 * into the non-secure context, save the secure state
376 * and return to the non-secure state.
377 */
378 assert(handle == cm_get_context(SECURE));
379 cm_el1_sysregs_context_save(SECURE);
380
381 /* Get a reference to the non-secure context */
382 ns_cpu_context = cm_get_context(NON_SECURE);
383 assert(ns_cpu_context);
384
385 /* Restore non-secure state */
386 cm_el1_sysregs_context_restore(NON_SECURE);
387 cm_set_next_eret_context(NON_SECURE);
388
389 SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
390
391 /*
392 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
393 * should resume in the normal world.
394 */
395 case TEESMC_OPTEED_RETURN_FIQ_DONE:
396 /* Get a reference to the non-secure context */
397 ns_cpu_context = cm_get_context(NON_SECURE);
398 assert(ns_cpu_context);
399
400 /*
401 * Restore non-secure state. There is no need to save the
402 * secure system register context since OPTEE was supposed
403 * to preserve it during S-EL1 interrupt handling.
404 */
405 cm_el1_sysregs_context_restore(NON_SECURE);
406 cm_set_next_eret_context(NON_SECURE);
407
408 SMC_RET0((uint64_t) ns_cpu_context);
409
410 default:
411 panic();
412 }
413}
414
415/* Define an OPTEED runtime service descriptor for fast SMC calls */
416DECLARE_RT_SVC(
417 opteed_fast,
418
419 OEN_TOS_START,
420 OEN_TOS_END,
421 SMC_TYPE_FAST,
422 opteed_setup,
423 opteed_smc_handler
424);
425
426/* Define an OPTEED runtime service descriptor for standard SMC calls */
427DECLARE_RT_SVC(
428 opteed_std,
429
430 OEN_TOS_START,
431 OEN_TOS_END,
432 SMC_TYPE_STD,
433 NULL,
434 opteed_smc_handler
435);