| /* |
| * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bakery_lock.h> |
| #include <bl31.h> |
| #include <debug.h> |
| #include <delay_timer.h> |
| #include <dfs.h> |
| #include <errno.h> |
| #include <gicv3.h> |
| #include <gpio.h> |
| #include <m0_ctl.h> |
| #include <mmio.h> |
| #include <plat_params.h> |
| #include <plat_private.h> |
| #include <platform.h> |
| #include <platform_def.h> |
| #include <pmu.h> |
| #include <pmu_com.h> |
| #include <pwm.h> |
| #include <rk3399_def.h> |
| #include <secure.h> |
| #include <soc.h> |
| #include <string.h> |
| #include <suspend.h> |
| |
| DEFINE_BAKERY_LOCK(rockchip_pd_lock); |
| |
| static uint32_t cpu_warm_boot_addr; |
| static char store_sram[SRAM_BIN_LIMIT + SRAM_TEXT_LIMIT + SRAM_DATA_LIMIT]; |
| static uint32_t store_cru[CRU_SDIO0_CON1 / 4 + 1]; |
| static uint32_t store_usbphy0[7]; |
| static uint32_t store_usbphy1[7]; |
| static uint32_t store_grf_io_vsel; |
| static uint32_t store_grf_soc_con0; |
| static uint32_t store_grf_soc_con1; |
| static uint32_t store_grf_soc_con2; |
| static uint32_t store_grf_soc_con3; |
| static uint32_t store_grf_soc_con4; |
| static uint32_t store_grf_soc_con7; |
| static uint32_t store_grf_ddrc_con[4]; |
| static uint32_t store_wdt0[2]; |
| static uint32_t store_wdt1[2]; |
| static gicv3_dist_ctx_t dist_ctx; |
| static gicv3_redist_ctx_t rdist_ctx; |
| |
| /* |
| * There are two ways to powering on or off on core. |
| * 1) Control it power domain into on or off in PMU_PWRDN_CON reg, |
| * it is core_pwr_pd mode |
| * 2) Enable the core power manage in PMU_CORE_PM_CON reg, |
| * then, if the core enter into wfi, it power domain will be |
| * powered off automatically. it is core_pwr_wfi or core_pwr_wfi_int mode |
| * so we need core_pm_cfg_info to distinguish which method be used now. |
| */ |
| |
| static uint32_t core_pm_cfg_info[PLATFORM_CORE_COUNT] |
| #if USE_COHERENT_MEM |
| __attribute__ ((section("tzfw_coherent_mem"))) |
| #endif |
| ;/* coheront */ |
| |
| static void pmu_bus_idle_req(uint32_t bus, uint32_t state) |
| { |
| uint32_t bus_id = BIT(bus); |
| uint32_t bus_req; |
| uint32_t wait_cnt = 0; |
| uint32_t bus_state, bus_ack; |
| |
| if (state) |
| bus_req = BIT(bus); |
| else |
| bus_req = 0; |
| |
| mmio_clrsetbits_32(PMU_BASE + PMU_BUS_IDLE_REQ, bus_id, bus_req); |
| |
| do { |
| bus_state = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & bus_id; |
| bus_ack = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK) & bus_id; |
| if (bus_state == bus_req && bus_ack == bus_req) |
| break; |
| |
| wait_cnt++; |
| udelay(1); |
| } while (wait_cnt < MAX_WAIT_COUNT); |
| |
| if (bus_state != bus_req || bus_ack != bus_req) { |
| INFO("%s:st=%x(%x)\n", __func__, |
| mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST), |
| bus_state); |
| INFO("%s:st=%x(%x)\n", __func__, |
| mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK), |
| bus_ack); |
| } |
| } |
| |
| struct pmu_slpdata_s pmu_slpdata; |
| |
| static void qos_restore(void) |
| { |
| if (pmu_power_domain_st(PD_GPU) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.gpu_qos, GPU); |
| if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0); |
| RESTORE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1); |
| } |
| if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0); |
| RESTORE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1); |
| } |
| if (pmu_power_domain_st(PD_VO) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R); |
| RESTORE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W); |
| RESTORE_QOS(pmu_slpdata.vop_little, VOP_LITTLE); |
| } |
| if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.hdcp_qos, HDCP); |
| if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.gmac_qos, GMAC); |
| if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0); |
| RESTORE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1); |
| } |
| if (pmu_power_domain_st(PD_SD) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.sdmmc_qos, SDMMC); |
| if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.emmc_qos, EMMC); |
| if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.sdio_qos, SDIO); |
| if (pmu_power_domain_st(PD_GIC) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.gic_qos, GIC); |
| if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.rga_r_qos, RGA_R); |
| RESTORE_QOS(pmu_slpdata.rga_w_qos, RGA_W); |
| } |
| if (pmu_power_domain_st(PD_IEP) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.iep_qos, IEP); |
| if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0); |
| RESTORE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1); |
| } |
| if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0); |
| RESTORE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1); |
| RESTORE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP); |
| } |
| if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.dmac0_qos, DMAC0); |
| RESTORE_QOS(pmu_slpdata.dmac1_qos, DMAC1); |
| RESTORE_QOS(pmu_slpdata.dcf_qos, DCF); |
| RESTORE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0); |
| RESTORE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1); |
| RESTORE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP); |
| RESTORE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP); |
| RESTORE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1); |
| } |
| if (pmu_power_domain_st(PD_VDU) == pmu_pd_on) |
| RESTORE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0); |
| if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) { |
| RESTORE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R); |
| RESTORE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W); |
| } |
| } |
| |
| static void qos_save(void) |
| { |
| if (pmu_power_domain_st(PD_GPU) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.gpu_qos, GPU); |
| if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0); |
| SAVE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1); |
| } |
| if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0); |
| SAVE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1); |
| } |
| if (pmu_power_domain_st(PD_VO) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R); |
| SAVE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W); |
| SAVE_QOS(pmu_slpdata.vop_little, VOP_LITTLE); |
| } |
| if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.hdcp_qos, HDCP); |
| if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.gmac_qos, GMAC); |
| if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0); |
| SAVE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1); |
| } |
| if (pmu_power_domain_st(PD_SD) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.sdmmc_qos, SDMMC); |
| if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.emmc_qos, EMMC); |
| if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.sdio_qos, SDIO); |
| if (pmu_power_domain_st(PD_GIC) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.gic_qos, GIC); |
| if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.rga_r_qos, RGA_R); |
| SAVE_QOS(pmu_slpdata.rga_w_qos, RGA_W); |
| } |
| if (pmu_power_domain_st(PD_IEP) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.iep_qos, IEP); |
| if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0); |
| SAVE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1); |
| } |
| if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0); |
| SAVE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1); |
| SAVE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP); |
| } |
| if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.dmac0_qos, DMAC0); |
| SAVE_QOS(pmu_slpdata.dmac1_qos, DMAC1); |
| SAVE_QOS(pmu_slpdata.dcf_qos, DCF); |
| SAVE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0); |
| SAVE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1); |
| SAVE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP); |
| SAVE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP); |
| SAVE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1); |
| } |
| if (pmu_power_domain_st(PD_VDU) == pmu_pd_on) |
| SAVE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0); |
| if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) { |
| SAVE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R); |
| SAVE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W); |
| } |
| } |
| |
| static int pmu_set_power_domain(uint32_t pd_id, uint32_t pd_state) |
| { |
| uint32_t state; |
| |
| if (pmu_power_domain_st(pd_id) == pd_state) |
| goto out; |
| |
| if (pd_state == pmu_pd_on) |
| pmu_power_domain_ctr(pd_id, pd_state); |
| |
| state = (pd_state == pmu_pd_off) ? BUS_IDLE : BUS_ACTIVE; |
| |
| switch (pd_id) { |
| case PD_GPU: |
| pmu_bus_idle_req(BUS_ID_GPU, state); |
| break; |
| case PD_VIO: |
| pmu_bus_idle_req(BUS_ID_VIO, state); |
| break; |
| case PD_ISP0: |
| pmu_bus_idle_req(BUS_ID_ISP0, state); |
| break; |
| case PD_ISP1: |
| pmu_bus_idle_req(BUS_ID_ISP1, state); |
| break; |
| case PD_VO: |
| pmu_bus_idle_req(BUS_ID_VOPB, state); |
| pmu_bus_idle_req(BUS_ID_VOPL, state); |
| break; |
| case PD_HDCP: |
| pmu_bus_idle_req(BUS_ID_HDCP, state); |
| break; |
| case PD_TCPD0: |
| break; |
| case PD_TCPD1: |
| break; |
| case PD_GMAC: |
| pmu_bus_idle_req(BUS_ID_GMAC, state); |
| break; |
| case PD_CCI: |
| pmu_bus_idle_req(BUS_ID_CCIM0, state); |
| pmu_bus_idle_req(BUS_ID_CCIM1, state); |
| break; |
| case PD_SD: |
| pmu_bus_idle_req(BUS_ID_SD, state); |
| break; |
| case PD_EMMC: |
| pmu_bus_idle_req(BUS_ID_EMMC, state); |
| break; |
| case PD_EDP: |
| pmu_bus_idle_req(BUS_ID_EDP, state); |
| break; |
| case PD_SDIOAUDIO: |
| pmu_bus_idle_req(BUS_ID_SDIOAUDIO, state); |
| break; |
| case PD_GIC: |
| pmu_bus_idle_req(BUS_ID_GIC, state); |
| break; |
| case PD_RGA: |
| pmu_bus_idle_req(BUS_ID_RGA, state); |
| break; |
| case PD_VCODEC: |
| pmu_bus_idle_req(BUS_ID_VCODEC, state); |
| break; |
| case PD_VDU: |
| pmu_bus_idle_req(BUS_ID_VDU, state); |
| break; |
| case PD_IEP: |
| pmu_bus_idle_req(BUS_ID_IEP, state); |
| break; |
| case PD_USB3: |
| pmu_bus_idle_req(BUS_ID_USB3, state); |
| break; |
| case PD_PERIHP: |
| pmu_bus_idle_req(BUS_ID_PERIHP, state); |
| break; |
| default: |
| /* Do nothing in default case */ |
| break; |
| } |
| |
| if (pd_state == pmu_pd_off) |
| pmu_power_domain_ctr(pd_id, pd_state); |
| |
| out: |
| return 0; |
| } |
| |
| static uint32_t pmu_powerdomain_state; |
| |
| static void pmu_power_domains_suspend(void) |
| { |
| clk_gate_con_save(); |
| clk_gate_con_disable(); |
| qos_save(); |
| pmu_powerdomain_state = mmio_read_32(PMU_BASE + PMU_PWRDN_ST); |
| pmu_set_power_domain(PD_GPU, pmu_pd_off); |
| pmu_set_power_domain(PD_TCPD0, pmu_pd_off); |
| pmu_set_power_domain(PD_TCPD1, pmu_pd_off); |
| pmu_set_power_domain(PD_VO, pmu_pd_off); |
| pmu_set_power_domain(PD_ISP0, pmu_pd_off); |
| pmu_set_power_domain(PD_ISP1, pmu_pd_off); |
| pmu_set_power_domain(PD_HDCP, pmu_pd_off); |
| pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_off); |
| pmu_set_power_domain(PD_GMAC, pmu_pd_off); |
| pmu_set_power_domain(PD_EDP, pmu_pd_off); |
| pmu_set_power_domain(PD_IEP, pmu_pd_off); |
| pmu_set_power_domain(PD_RGA, pmu_pd_off); |
| pmu_set_power_domain(PD_VCODEC, pmu_pd_off); |
| pmu_set_power_domain(PD_VDU, pmu_pd_off); |
| pmu_set_power_domain(PD_USB3, pmu_pd_off); |
| pmu_set_power_domain(PD_EMMC, pmu_pd_off); |
| pmu_set_power_domain(PD_VIO, pmu_pd_off); |
| pmu_set_power_domain(PD_SD, pmu_pd_off); |
| pmu_set_power_domain(PD_PERIHP, pmu_pd_off); |
| clk_gate_con_restore(); |
| } |
| |
| static void pmu_power_domains_resume(void) |
| { |
| clk_gate_con_save(); |
| clk_gate_con_disable(); |
| if (!(pmu_powerdomain_state & BIT(PD_VDU))) |
| pmu_set_power_domain(PD_VDU, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_VCODEC))) |
| pmu_set_power_domain(PD_VCODEC, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_RGA))) |
| pmu_set_power_domain(PD_RGA, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_IEP))) |
| pmu_set_power_domain(PD_IEP, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_EDP))) |
| pmu_set_power_domain(PD_EDP, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_GMAC))) |
| pmu_set_power_domain(PD_GMAC, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_SDIOAUDIO))) |
| pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_HDCP))) |
| pmu_set_power_domain(PD_HDCP, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_ISP1))) |
| pmu_set_power_domain(PD_ISP1, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_ISP0))) |
| pmu_set_power_domain(PD_ISP0, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_VO))) |
| pmu_set_power_domain(PD_VO, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_TCPD1))) |
| pmu_set_power_domain(PD_TCPD1, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_TCPD0))) |
| pmu_set_power_domain(PD_TCPD0, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_GPU))) |
| pmu_set_power_domain(PD_GPU, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_USB3))) |
| pmu_set_power_domain(PD_USB3, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_EMMC))) |
| pmu_set_power_domain(PD_EMMC, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_VIO))) |
| pmu_set_power_domain(PD_VIO, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_SD))) |
| pmu_set_power_domain(PD_SD, pmu_pd_on); |
| if (!(pmu_powerdomain_state & BIT(PD_PERIHP))) |
| pmu_set_power_domain(PD_PERIHP, pmu_pd_on); |
| qos_restore(); |
| clk_gate_con_restore(); |
| } |
| |
| void rk3399_flush_l2_b(void) |
| { |
| uint32_t wait_cnt = 0; |
| |
| mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B)); |
| dsb(); |
| |
| /* |
| * The Big cluster flush L2 cache took ~4ms by default, give 10ms for |
| * the enough margin. |
| */ |
| while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) & |
| BIT(L2_FLUSHDONE_CLUSTER_B))) { |
| wait_cnt++; |
| udelay(10); |
| if (wait_cnt == 10000 / 10) |
| WARN("L2 cache flush on suspend took longer than 10ms\n"); |
| } |
| |
| mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B)); |
| } |
| |
| static void pmu_scu_b_pwrdn(void) |
| { |
| uint32_t wait_cnt = 0; |
| |
| if ((mmio_read_32(PMU_BASE + PMU_PWRDN_ST) & |
| (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) != |
| (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) { |
| ERROR("%s: not all cpus is off\n", __func__); |
| return; |
| } |
| |
| rk3399_flush_l2_b(); |
| |
| mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG)); |
| |
| while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) & |
| BIT(STANDBY_BY_WFIL2_CLUSTER_B))) { |
| wait_cnt++; |
| udelay(1); |
| if (wait_cnt >= MAX_WAIT_COUNT) |
| ERROR("%s:wait cluster-b l2(%x)\n", __func__, |
| mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST)); |
| } |
| } |
| |
| static void pmu_scu_b_pwrup(void) |
| { |
| mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG)); |
| } |
| |
| static inline uint32_t get_cpus_pwr_domain_cfg_info(uint32_t cpu_id) |
| { |
| assert(cpu_id < PLATFORM_CORE_COUNT); |
| return core_pm_cfg_info[cpu_id]; |
| } |
| |
| static inline void set_cpus_pwr_domain_cfg_info(uint32_t cpu_id, uint32_t value) |
| { |
| assert(cpu_id < PLATFORM_CORE_COUNT); |
| core_pm_cfg_info[cpu_id] = value; |
| #if !USE_COHERENT_MEM |
| flush_dcache_range((uintptr_t)&core_pm_cfg_info[cpu_id], |
| sizeof(uint32_t)); |
| #endif |
| } |
| |
| static int cpus_power_domain_on(uint32_t cpu_id) |
| { |
| uint32_t cfg_info; |
| uint32_t cpu_pd = PD_CPUL0 + cpu_id; |
| /* |
| * There are two ways to powering on or off on core. |
| * 1) Control it power domain into on or off in PMU_PWRDN_CON reg |
| * 2) Enable the core power manage in PMU_CORE_PM_CON reg, |
| * then, if the core enter into wfi, it power domain will be |
| * powered off automatically. |
| */ |
| |
| cfg_info = get_cpus_pwr_domain_cfg_info(cpu_id); |
| |
| if (cfg_info == core_pwr_pd) { |
| /* disable core_pm cfg */ |
| mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), |
| CORES_PM_DISABLE); |
| /* if the cores have be on, power off it firstly */ |
| if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) { |
| mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), 0); |
| pmu_power_domain_ctr(cpu_pd, pmu_pd_off); |
| } |
| |
| pmu_power_domain_ctr(cpu_pd, pmu_pd_on); |
| } else { |
| if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) { |
| WARN("%s: cpu%d is not in off,!\n", __func__, cpu_id); |
| return -EINVAL; |
| } |
| |
| mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), |
| BIT(core_pm_sft_wakeup_en)); |
| dsb(); |
| } |
| |
| return 0; |
| } |
| |
| static int cpus_power_domain_off(uint32_t cpu_id, uint32_t pd_cfg) |
| { |
| uint32_t cpu_pd; |
| uint32_t core_pm_value; |
| |
| cpu_pd = PD_CPUL0 + cpu_id; |
| if (pmu_power_domain_st(cpu_pd) == pmu_pd_off) |
| return 0; |
| |
| if (pd_cfg == core_pwr_pd) { |
| if (check_cpu_wfie(cpu_id, CKECK_WFEI_MSK)) |
| return -EINVAL; |
| |
| /* disable core_pm cfg */ |
| mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), |
| CORES_PM_DISABLE); |
| |
| set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg); |
| pmu_power_domain_ctr(cpu_pd, pmu_pd_off); |
| } else { |
| set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg); |
| |
| core_pm_value = BIT(core_pm_en); |
| if (pd_cfg == core_pwr_wfi_int) |
| core_pm_value |= BIT(core_pm_int_wakeup_en); |
| mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), |
| core_pm_value); |
| dsb(); |
| } |
| |
| return 0; |
| } |
| |
| static inline void clst_pwr_domain_suspend(plat_local_state_t lvl_state) |
| { |
| uint32_t cpu_id = plat_my_core_pos(); |
| uint32_t pll_id, clst_st_msk, clst_st_chk_msk, pmu_st; |
| |
| assert(cpu_id < PLATFORM_CORE_COUNT); |
| |
| if (lvl_state == PLAT_MAX_OFF_STATE) { |
| if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) { |
| pll_id = ALPLL_ID; |
| clst_st_msk = CLST_L_CPUS_MSK; |
| } else { |
| pll_id = ABPLL_ID; |
| clst_st_msk = CLST_B_CPUS_MSK << |
| PLATFORM_CLUSTER0_CORE_COUNT; |
| } |
| |
| clst_st_chk_msk = clst_st_msk & ~(BIT(cpu_id)); |
| |
| pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST); |
| |
| pmu_st &= clst_st_msk; |
| |
| if (pmu_st == clst_st_chk_msk) { |
| mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), |
| PLL_SLOW_MODE); |
| |
| clst_warmboot_data[pll_id] = PMU_CLST_RET; |
| |
| pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST); |
| pmu_st &= clst_st_msk; |
| if (pmu_st == clst_st_chk_msk) |
| return; |
| /* |
| * it is mean that others cpu is up again, |
| * we must resume the cfg at once. |
| */ |
| mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), |
| PLL_NOMAL_MODE); |
| clst_warmboot_data[pll_id] = 0; |
| } |
| } |
| } |
| |
| static int clst_pwr_domain_resume(plat_local_state_t lvl_state) |
| { |
| uint32_t cpu_id = plat_my_core_pos(); |
| uint32_t pll_id, pll_st; |
| |
| assert(cpu_id < PLATFORM_CORE_COUNT); |
| |
| if (lvl_state == PLAT_MAX_OFF_STATE) { |
| if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) |
| pll_id = ALPLL_ID; |
| else |
| pll_id = ABPLL_ID; |
| |
| pll_st = mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 3)) >> |
| PLL_MODE_SHIFT; |
| |
| if (pll_st != NORMAL_MODE) { |
| WARN("%s: clst (%d) is in error mode (%d)\n", |
| __func__, pll_id, pll_st); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void nonboot_cpus_off(void) |
| { |
| uint32_t boot_cpu, cpu; |
| |
| boot_cpu = plat_my_core_pos(); |
| |
| /* turn off noboot cpus */ |
| for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) { |
| if (cpu == boot_cpu) |
| continue; |
| cpus_power_domain_off(cpu, core_pwr_pd); |
| } |
| } |
| |
| int rockchip_soc_cores_pwr_dm_on(unsigned long mpidr, uint64_t entrypoint) |
| { |
| uint32_t cpu_id = plat_core_pos_by_mpidr(mpidr); |
| |
| assert(cpu_id < PLATFORM_CORE_COUNT); |
| assert(cpuson_flags[cpu_id] == 0); |
| cpuson_flags[cpu_id] = PMU_CPU_HOTPLUG; |
| cpuson_entry_point[cpu_id] = entrypoint; |
| dsb(); |
| |
| cpus_power_domain_on(cpu_id); |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_cores_pwr_dm_off(void) |
| { |
| uint32_t cpu_id = plat_my_core_pos(); |
| |
| cpus_power_domain_off(cpu_id, core_pwr_wfi); |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_hlvl_pwr_dm_off(uint32_t lvl, |
| plat_local_state_t lvl_state) |
| { |
| if (lvl == MPIDR_AFFLVL1) { |
| clst_pwr_domain_suspend(lvl_state); |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_cores_pwr_dm_suspend(void) |
| { |
| uint32_t cpu_id = plat_my_core_pos(); |
| |
| assert(cpu_id < PLATFORM_CORE_COUNT); |
| assert(cpuson_flags[cpu_id] == 0); |
| cpuson_flags[cpu_id] = PMU_CPU_AUTO_PWRDN; |
| cpuson_entry_point[cpu_id] = plat_get_sec_entrypoint(); |
| dsb(); |
| |
| cpus_power_domain_off(cpu_id, core_pwr_wfi_int); |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_hlvl_pwr_dm_suspend(uint32_t lvl, plat_local_state_t lvl_state) |
| { |
| if (lvl == MPIDR_AFFLVL1) { |
| clst_pwr_domain_suspend(lvl_state); |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_cores_pwr_dm_on_finish(void) |
| { |
| uint32_t cpu_id = plat_my_core_pos(); |
| |
| mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), |
| CORES_PM_DISABLE); |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_hlvl_pwr_dm_on_finish(uint32_t lvl, |
| plat_local_state_t lvl_state) |
| { |
| if (lvl == MPIDR_AFFLVL1) { |
| clst_pwr_domain_resume(lvl_state); |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_cores_pwr_dm_resume(void) |
| { |
| uint32_t cpu_id = plat_my_core_pos(); |
| |
| /* Disable core_pm */ |
| mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE); |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| int rockchip_soc_hlvl_pwr_dm_resume(uint32_t lvl, plat_local_state_t lvl_state) |
| { |
| if (lvl == MPIDR_AFFLVL1) { |
| clst_pwr_domain_resume(lvl_state); |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| /** |
| * init_pmu_counts - Init timing counts in the PMU register area |
| * |
| * At various points when we power up or down parts of the system we need |
| * a delay to wait for power / clocks to become stable. The PMU has counters |
| * to help software do the delay properly. Basically, it works like this: |
| * - Software sets up counter values |
| * - When software turns on something in the PMU, the counter kicks off |
| * - The hardware sets a bit automatically when the counter has finished and |
| * software knows that the initialization is done. |
| * |
| * It's software's job to setup these counters. The hardware power on default |
| * for these settings is conservative, setting everything to 0x5dc0 |
| * (750 ms in 32 kHz counts or 1 ms in 24 MHz counts). |
| * |
| * Note that some of these counters are only really used at suspend/resume |
| * time (for instance, that's the only time we turn off/on the oscillator) and |
| * others are used during normal runtime (like turning on/off a CPU or GPU) but |
| * it doesn't hurt to init everything at boot. |
| * |
| * Also note that these counters can run off the 32 kHz clock or the 24 MHz |
| * clock. While the 24 MHz clock can give us more precision, it's not always |
| * available (like when we turn the oscillator off at sleep time). The |
| * pmu_use_lf (lf: low freq) is available in power mode. Current understanding |
| * is that counts work like this: |
| * IF (pmu_use_lf == 0) || (power_mode_en == 0) |
| * use the 24M OSC for counts |
| * ELSE |
| * use the 32K OSC for counts |
| * |
| * Notes: |
| * - There is a separate bit for the PMU called PMU_24M_EN_CFG. At the moment |
| * we always keep that 0. This apparently choose between using the PLL as |
| * the source for the PMU vs. the 24M clock. If we ever set it to 1 we |
| * should consider how it affects these counts (if at all). |
| * - The power_mode_en is documented to auto-clear automatically when we leave |
| * "power mode". That's why most clocks are on 24M. Only timings used when |
| * in "power mode" are 32k. |
| * - In some cases the kernel may override these counts. |
| * |
| * The PMU_STABLE_CNT / PMU_OSC_CNT / PMU_PLLLOCK_CNT are important CNTs |
| * in power mode, we need to ensure that they are available. |
| */ |
| static void init_pmu_counts(void) |
| { |
| /* COUNTS FOR INSIDE POWER MODE */ |
| |
| /* |
| * From limited testing, need PMU stable >= 2ms, but go overkill |
| * and choose 30 ms to match testing on past SoCs. Also let |
| * OSC have 30 ms for stabilization. |
| */ |
| mmio_write_32(PMU_BASE + PMU_STABLE_CNT, CYCL_32K_CNT_MS(30)); |
| mmio_write_32(PMU_BASE + PMU_OSC_CNT, CYCL_32K_CNT_MS(30)); |
| |
| /* Unclear what these should be; try 3 ms */ |
| mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_CNT, CYCL_32K_CNT_MS(3)); |
| |
| /* Unclear what this should be, but set the default explicitly */ |
| mmio_write_32(PMU_BASE + PMU_TIMEOUT_CNT, 0x5dc0); |
| |
| /* COUNTS FOR OUTSIDE POWER MODE */ |
| |
| /* Put something sorta conservative here until we know better */ |
| mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT, CYCL_24M_CNT_MS(3)); |
| mmio_write_32(PMU_BASE + PMU_DDRIO_PWRON_CNT, CYCL_24M_CNT_MS(1)); |
| mmio_write_32(PMU_BASE + PMU_CENTER_PWRDN_CNT, CYCL_24M_CNT_MS(1)); |
| mmio_write_32(PMU_BASE + PMU_CENTER_PWRUP_CNT, CYCL_24M_CNT_MS(1)); |
| |
| /* |
| * when we enable PMU_CLR_PERILP, it will shut down the SRAM, but |
| * M0 code run in SRAM, and we need it to check whether cpu enter |
| * FSM status, so we must wait M0 finish their code and enter WFI, |
| * then we can shutdown SRAM, according FSM order: |
| * ST_NORMAL->..->ST_SCU_L_PWRDN->..->ST_CENTER_PWRDN->ST_PERILP_PWRDN |
| * we can add delay when shutdown ST_SCU_L_PWRDN to guarantee M0 get |
| * the FSM status and enter WFI, then enable PMU_CLR_PERILP. |
| */ |
| mmio_write_32(PMU_BASE + PMU_SCU_L_PWRDN_CNT, CYCL_24M_CNT_MS(5)); |
| mmio_write_32(PMU_BASE + PMU_SCU_L_PWRUP_CNT, CYCL_24M_CNT_US(1)); |
| |
| /* |
| * Set CPU/GPU to 1 us. |
| * |
| * NOTE: Even though ATF doesn't configure the GPU we'll still setup |
| * counts here. After all ATF controls all these other bits and also |
| * chooses which clock these counters use. |
| */ |
| mmio_write_32(PMU_BASE + PMU_SCU_B_PWRDN_CNT, CYCL_24M_CNT_US(1)); |
| mmio_write_32(PMU_BASE + PMU_SCU_B_PWRUP_CNT, CYCL_24M_CNT_US(1)); |
| mmio_write_32(PMU_BASE + PMU_GPU_PWRDN_CNT, CYCL_24M_CNT_US(1)); |
| mmio_write_32(PMU_BASE + PMU_GPU_PWRUP_CNT, CYCL_24M_CNT_US(1)); |
| } |
| |
| static uint32_t clk_ddrc_save; |
| |
| static void sys_slp_config(void) |
| { |
| uint32_t slp_mode_cfg = 0; |
| |
| /* keep enabling clk_ddrc_bpll_src_en gate for DDRC */ |
| clk_ddrc_save = mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(3)); |
| mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3), WMSK_BIT(1)); |
| |
| prepare_abpll_for_ddrctrl(); |
| sram_func_set_ddrctl_pll(ABPLL_ID); |
| |
| mmio_write_32(GRF_BASE + GRF_SOC_CON4, CCI_FORCE_WAKEUP); |
| mmio_write_32(PMU_BASE + PMU_CCI500_CON, |
| BIT_WITH_WMSK(PMU_CLR_PREQ_CCI500_HW) | |
| BIT_WITH_WMSK(PMU_CLR_QREQ_CCI500_HW) | |
| BIT_WITH_WMSK(PMU_QGATING_CCI500_CFG)); |
| |
| mmio_write_32(PMU_BASE + PMU_ADB400_CON, |
| BIT_WITH_WMSK(PMU_CLR_CORE_L_HW) | |
| BIT_WITH_WMSK(PMU_CLR_CORE_L_2GIC_HW) | |
| BIT_WITH_WMSK(PMU_CLR_GIC2_CORE_L_HW)); |
| |
| slp_mode_cfg = BIT(PMU_PWR_MODE_EN) | |
| BIT(PMU_INPUT_CLAMP_EN) | |
| BIT(PMU_POWER_OFF_REQ_CFG) | |
| BIT(PMU_CPU0_PD_EN) | |
| BIT(PMU_L2_FLUSH_EN) | |
| BIT(PMU_L2_IDLE_EN) | |
| BIT(PMU_SCU_PD_EN) | |
| BIT(PMU_CCI_PD_EN) | |
| BIT(PMU_CLK_CORE_SRC_GATE_EN) | |
| BIT(PMU_ALIVE_USE_LF) | |
| BIT(PMU_SREF0_ENTER_EN) | |
| BIT(PMU_SREF1_ENTER_EN) | |
| BIT(PMU_DDRC0_GATING_EN) | |
| BIT(PMU_DDRC1_GATING_EN) | |
| BIT(PMU_DDRIO0_RET_EN) | |
| BIT(PMU_DDRIO0_RET_DE_REQ) | |
| BIT(PMU_DDRIO1_RET_EN) | |
| BIT(PMU_DDRIO1_RET_DE_REQ) | |
| BIT(PMU_DDRIO_RET_HW_DE_REQ) | |
| BIT(PMU_CENTER_PD_EN) | |
| BIT(PMU_PERILP_PD_EN) | |
| BIT(PMU_CLK_PERILP_SRC_GATE_EN) | |
| BIT(PMU_PLL_PD_EN) | |
| BIT(PMU_CLK_CENTER_SRC_GATE_EN) | |
| BIT(PMU_OSC_DIS) | |
| BIT(PMU_PMU_USE_LF); |
| |
| mmio_setbits_32(PMU_BASE + PMU_WKUP_CFG4, BIT(PMU_GPIO_WKUP_EN)); |
| mmio_write_32(PMU_BASE + PMU_PWRMODE_CON, slp_mode_cfg); |
| |
| mmio_write_32(PMU_BASE + PMU_PLL_CON, PLL_PD_HW); |
| mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON0, EXTERNAL_32K); |
| mmio_write_32(PMUGRF_BASE, IOMUX_CLK_32K); /* 32k iomux */ |
| } |
| |
| static void set_hw_idle(uint32_t hw_idle) |
| { |
| mmio_setbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle); |
| } |
| |
| static void clr_hw_idle(uint32_t hw_idle) |
| { |
| mmio_clrbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle); |
| } |
| |
| static uint32_t iomux_status[12]; |
| static uint32_t pull_mode_status[12]; |
| static uint32_t gpio_direction[3]; |
| static uint32_t gpio_2_4_clk_gate; |
| |
| static void suspend_apio(void) |
| { |
| struct apio_info *suspend_apio; |
| int i; |
| |
| suspend_apio = plat_get_rockchip_suspend_apio(); |
| |
| if (!suspend_apio) |
| return; |
| |
| /* save gpio2 ~ gpio4 iomux and pull mode */ |
| for (i = 0; i < 12; i++) { |
| iomux_status[i] = mmio_read_32(GRF_BASE + |
| GRF_GPIO2A_IOMUX + i * 4); |
| pull_mode_status[i] = mmio_read_32(GRF_BASE + |
| GRF_GPIO2A_P + i * 4); |
| } |
| |
| /* store gpio2 ~ gpio4 clock gate state */ |
| gpio_2_4_clk_gate = (mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(31)) >> |
| PCLK_GPIO2_GATE_SHIFT) & 0x07; |
| |
| /* enable gpio2 ~ gpio4 clock gate */ |
| mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31), |
| BITS_WITH_WMASK(0, 0x07, PCLK_GPIO2_GATE_SHIFT)); |
| |
| /* save gpio2 ~ gpio4 direction */ |
| gpio_direction[0] = mmio_read_32(GPIO2_BASE + 0x04); |
| gpio_direction[1] = mmio_read_32(GPIO3_BASE + 0x04); |
| gpio_direction[2] = mmio_read_32(GPIO4_BASE + 0x04); |
| |
| /* apio1 charge gpio3a0 ~ gpio3c7 */ |
| if (suspend_apio->apio1) { |
| |
| /* set gpio3a0 ~ gpio3c7 iomux to gpio */ |
| mmio_write_32(GRF_BASE + GRF_GPIO3A_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| mmio_write_32(GRF_BASE + GRF_GPIO3B_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| mmio_write_32(GRF_BASE + GRF_GPIO3C_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| |
| /* set gpio3a0 ~ gpio3c7 pull mode to pull none */ |
| mmio_write_32(GRF_BASE + GRF_GPIO3A_P, REG_SOC_WMSK | 0); |
| mmio_write_32(GRF_BASE + GRF_GPIO3B_P, REG_SOC_WMSK | 0); |
| mmio_write_32(GRF_BASE + GRF_GPIO3C_P, REG_SOC_WMSK | 0); |
| |
| /* set gpio3a0 ~ gpio3c7 to input */ |
| mmio_clrbits_32(GPIO3_BASE + 0x04, 0x00ffffff); |
| } |
| |
| /* apio2 charge gpio2a0 ~ gpio2b4 */ |
| if (suspend_apio->apio2) { |
| |
| /* set gpio2a0 ~ gpio2b4 iomux to gpio */ |
| mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| mmio_write_32(GRF_BASE + GRF_GPIO2B_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| |
| /* set gpio2a0 ~ gpio2b4 pull mode to pull none */ |
| mmio_write_32(GRF_BASE + GRF_GPIO2A_P, REG_SOC_WMSK | 0); |
| mmio_write_32(GRF_BASE + GRF_GPIO2B_P, REG_SOC_WMSK | 0); |
| |
| /* set gpio2a0 ~ gpio2b4 to input */ |
| mmio_clrbits_32(GPIO2_BASE + 0x04, 0x00001fff); |
| } |
| |
| /* apio3 charge gpio2c0 ~ gpio2d4*/ |
| if (suspend_apio->apio3) { |
| |
| /* set gpio2a0 ~ gpio2b4 iomux to gpio */ |
| mmio_write_32(GRF_BASE + GRF_GPIO2C_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| mmio_write_32(GRF_BASE + GRF_GPIO2D_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| |
| /* set gpio2c0 ~ gpio2d4 pull mode to pull none */ |
| mmio_write_32(GRF_BASE + GRF_GPIO2C_P, REG_SOC_WMSK | 0); |
| mmio_write_32(GRF_BASE + GRF_GPIO2D_P, REG_SOC_WMSK | 0); |
| |
| /* set gpio2c0 ~ gpio2d4 to input */ |
| mmio_clrbits_32(GPIO2_BASE + 0x04, 0x1fff0000); |
| } |
| |
| /* apio4 charge gpio4c0 ~ gpio4c7, gpio4d0 ~ gpio4d6 */ |
| if (suspend_apio->apio4) { |
| |
| /* set gpio4c0 ~ gpio4d6 iomux to gpio */ |
| mmio_write_32(GRF_BASE + GRF_GPIO4C_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| mmio_write_32(GRF_BASE + GRF_GPIO4D_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| |
| /* set gpio4c0 ~ gpio4d6 pull mode to pull none */ |
| mmio_write_32(GRF_BASE + GRF_GPIO4C_P, REG_SOC_WMSK | 0); |
| mmio_write_32(GRF_BASE + GRF_GPIO4D_P, REG_SOC_WMSK | 0); |
| |
| /* set gpio4c0 ~ gpio4d6 to input */ |
| mmio_clrbits_32(GPIO4_BASE + 0x04, 0x7fff0000); |
| } |
| |
| /* apio5 charge gpio3d0 ~ gpio3d7, gpio4a0 ~ gpio4a7*/ |
| if (suspend_apio->apio5) { |
| /* set gpio3d0 ~ gpio4a7 iomux to gpio */ |
| mmio_write_32(GRF_BASE + GRF_GPIO3D_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| mmio_write_32(GRF_BASE + GRF_GPIO4A_IOMUX, |
| REG_SOC_WMSK | GRF_IOMUX_GPIO); |
| |
| /* set gpio3d0 ~ gpio4a7 pull mode to pull none */ |
| mmio_write_32(GRF_BASE + GRF_GPIO3D_P, REG_SOC_WMSK | 0); |
| mmio_write_32(GRF_BASE + GRF_GPIO4A_P, REG_SOC_WMSK | 0); |
| |
| /* set gpio4c0 ~ gpio4d6 to input */ |
| mmio_clrbits_32(GPIO3_BASE + 0x04, 0xff000000); |
| mmio_clrbits_32(GPIO4_BASE + 0x04, 0x000000ff); |
| } |
| } |
| |
| static void resume_apio(void) |
| { |
| struct apio_info *suspend_apio; |
| int i; |
| |
| suspend_apio = plat_get_rockchip_suspend_apio(); |
| |
| if (!suspend_apio) |
| return; |
| |
| for (i = 0; i < 12; i++) { |
| mmio_write_32(GRF_BASE + GRF_GPIO2A_P + i * 4, |
| REG_SOC_WMSK | pull_mode_status[i]); |
| mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX + i * 4, |
| REG_SOC_WMSK | iomux_status[i]); |
| } |
| |
| /* set gpio2 ~ gpio4 direction back to store value */ |
| mmio_write_32(GPIO2_BASE + 0x04, gpio_direction[0]); |
| mmio_write_32(GPIO3_BASE + 0x04, gpio_direction[1]); |
| mmio_write_32(GPIO4_BASE + 0x04, gpio_direction[2]); |
| |
| /* set gpio2 ~ gpio4 clock gate back to store value */ |
| mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31), |
| BITS_WITH_WMASK(gpio_2_4_clk_gate, 0x07, |
| PCLK_GPIO2_GATE_SHIFT)); |
| } |
| |
| static void suspend_gpio(void) |
| { |
| struct gpio_info *suspend_gpio; |
| uint32_t count; |
| int i; |
| |
| suspend_gpio = plat_get_rockchip_suspend_gpio(&count); |
| |
| for (i = 0; i < count; i++) { |
| gpio_set_value(suspend_gpio[i].index, suspend_gpio[i].polarity); |
| gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT); |
| udelay(1); |
| } |
| } |
| |
| static void resume_gpio(void) |
| { |
| struct gpio_info *suspend_gpio; |
| uint32_t count; |
| int i; |
| |
| suspend_gpio = plat_get_rockchip_suspend_gpio(&count); |
| |
| for (i = count - 1; i >= 0; i--) { |
| gpio_set_value(suspend_gpio[i].index, |
| !suspend_gpio[i].polarity); |
| gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT); |
| udelay(1); |
| } |
| } |
| |
| static void m0_configure_suspend(void) |
| { |
| /* set PARAM to M0_FUNC_SUSPEND */ |
| mmio_write_32(M0_PARAM_ADDR + PARAM_M0_FUNC, M0_FUNC_SUSPEND); |
| } |
| |
| void sram_save(void) |
| { |
| size_t text_size = (char *)&__bl31_sram_text_real_end - |
| (char *)&__bl31_sram_text_start; |
| size_t data_size = (char *)&__bl31_sram_data_real_end - |
| (char *)&__bl31_sram_data_start; |
| size_t incbin_size = (char *)&__sram_incbin_real_end - |
| (char *)&__sram_incbin_start; |
| |
| memcpy(&store_sram[0], &__bl31_sram_text_start, text_size); |
| memcpy(&store_sram[text_size], &__bl31_sram_data_start, data_size); |
| memcpy(&store_sram[text_size + data_size], &__sram_incbin_start, |
| incbin_size); |
| } |
| |
| void sram_restore(void) |
| { |
| size_t text_size = (char *)&__bl31_sram_text_real_end - |
| (char *)&__bl31_sram_text_start; |
| size_t data_size = (char *)&__bl31_sram_data_real_end - |
| (char *)&__bl31_sram_data_start; |
| size_t incbin_size = (char *)&__sram_incbin_real_end - |
| (char *)&__sram_incbin_start; |
| |
| memcpy(&__bl31_sram_text_start, &store_sram[0], text_size); |
| memcpy(&__bl31_sram_data_start, &store_sram[text_size], data_size); |
| memcpy(&__sram_incbin_start, &store_sram[text_size + data_size], |
| incbin_size); |
| } |
| |
| struct uart_debug { |
| uint32_t uart_dll; |
| uint32_t uart_dlh; |
| uint32_t uart_ier; |
| uint32_t uart_fcr; |
| uint32_t uart_mcr; |
| uint32_t uart_lcr; |
| }; |
| |
| #define UART_DLL 0x00 |
| #define UART_DLH 0x04 |
| #define UART_IER 0x04 |
| #define UART_FCR 0x08 |
| #define UART_LCR 0x0c |
| #define UART_MCR 0x10 |
| #define UARTSRR 0x88 |
| |
| #define UART_RESET BIT(0) |
| #define UARTFCR_FIFOEN BIT(0) |
| #define RCVR_FIFO_RESET BIT(1) |
| #define XMIT_FIFO_RESET BIT(2) |
| #define DIAGNOSTIC_MODE BIT(4) |
| #define UARTLCR_DLAB BIT(7) |
| |
| static struct uart_debug uart_save; |
| |
| void suspend_uart(void) |
| { |
| uart_save.uart_lcr = mmio_read_32(PLAT_RK_UART_BASE + UART_LCR); |
| uart_save.uart_ier = mmio_read_32(PLAT_RK_UART_BASE + UART_IER); |
| uart_save.uart_mcr = mmio_read_32(PLAT_RK_UART_BASE + UART_MCR); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, |
| uart_save.uart_lcr | UARTLCR_DLAB); |
| uart_save.uart_dll = mmio_read_32(PLAT_RK_UART_BASE + UART_DLL); |
| uart_save.uart_dlh = mmio_read_32(PLAT_RK_UART_BASE + UART_DLH); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, uart_save.uart_lcr); |
| } |
| |
| void resume_uart(void) |
| { |
| uint32_t uart_lcr; |
| |
| mmio_write_32(PLAT_RK_UART_BASE + UARTSRR, |
| XMIT_FIFO_RESET | RCVR_FIFO_RESET | UART_RESET); |
| |
| uart_lcr = mmio_read_32(PLAT_RK_UART_BASE + UART_LCR); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_MCR, DIAGNOSTIC_MODE); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, uart_lcr | UARTLCR_DLAB); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_DLL, uart_save.uart_dll); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_DLH, uart_save.uart_dlh); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_LCR, uart_save.uart_lcr); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_IER, uart_save.uart_ier); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_FCR, UARTFCR_FIFOEN); |
| mmio_write_32(PLAT_RK_UART_BASE + UART_MCR, uart_save.uart_mcr); |
| } |
| |
| void save_usbphy(void) |
| { |
| store_usbphy0[0] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL0); |
| store_usbphy0[1] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL2); |
| store_usbphy0[2] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL3); |
| store_usbphy0[3] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL12); |
| store_usbphy0[4] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL13); |
| store_usbphy0[5] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL15); |
| store_usbphy0[6] = mmio_read_32(GRF_BASE + GRF_USBPHY0_CTRL16); |
| |
| store_usbphy1[0] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL0); |
| store_usbphy1[1] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL2); |
| store_usbphy1[2] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL3); |
| store_usbphy1[3] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL12); |
| store_usbphy1[4] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL13); |
| store_usbphy1[5] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL15); |
| store_usbphy1[6] = mmio_read_32(GRF_BASE + GRF_USBPHY1_CTRL16); |
| } |
| |
| void restore_usbphy(void) |
| { |
| mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL0, |
| REG_SOC_WMSK | store_usbphy0[0]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL2, |
| REG_SOC_WMSK | store_usbphy0[1]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL3, |
| REG_SOC_WMSK | store_usbphy0[2]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL12, |
| REG_SOC_WMSK | store_usbphy0[3]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL13, |
| REG_SOC_WMSK | store_usbphy0[4]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL15, |
| REG_SOC_WMSK | store_usbphy0[5]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY0_CTRL16, |
| REG_SOC_WMSK | store_usbphy0[6]); |
| |
| mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL0, |
| REG_SOC_WMSK | store_usbphy1[0]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL2, |
| REG_SOC_WMSK | store_usbphy1[1]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL3, |
| REG_SOC_WMSK | store_usbphy1[2]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL12, |
| REG_SOC_WMSK | store_usbphy1[3]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL13, |
| REG_SOC_WMSK | store_usbphy1[4]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL15, |
| REG_SOC_WMSK | store_usbphy1[5]); |
| mmio_write_32(GRF_BASE + GRF_USBPHY1_CTRL16, |
| REG_SOC_WMSK | store_usbphy1[6]); |
| } |
| |
| void grf_register_save(void) |
| { |
| int i; |
| |
| store_grf_soc_con0 = mmio_read_32(GRF_BASE + GRF_SOC_CON(0)); |
| store_grf_soc_con1 = mmio_read_32(GRF_BASE + GRF_SOC_CON(1)); |
| store_grf_soc_con2 = mmio_read_32(GRF_BASE + GRF_SOC_CON(2)); |
| store_grf_soc_con3 = mmio_read_32(GRF_BASE + GRF_SOC_CON(3)); |
| store_grf_soc_con4 = mmio_read_32(GRF_BASE + GRF_SOC_CON(4)); |
| store_grf_soc_con7 = mmio_read_32(GRF_BASE + GRF_SOC_CON(7)); |
| |
| for (i = 0; i < 4; i++) |
| store_grf_ddrc_con[i] = |
| mmio_read_32(GRF_BASE + GRF_DDRC0_CON0 + i * 4); |
| |
| store_grf_io_vsel = mmio_read_32(GRF_BASE + GRF_IO_VSEL); |
| } |
| |
| void grf_register_restore(void) |
| { |
| int i; |
| |
| mmio_write_32(GRF_BASE + GRF_SOC_CON(0), |
| REG_SOC_WMSK | store_grf_soc_con0); |
| mmio_write_32(GRF_BASE + GRF_SOC_CON(1), |
| REG_SOC_WMSK | store_grf_soc_con1); |
| mmio_write_32(GRF_BASE + GRF_SOC_CON(2), |
| REG_SOC_WMSK | store_grf_soc_con2); |
| mmio_write_32(GRF_BASE + GRF_SOC_CON(3), |
| REG_SOC_WMSK | store_grf_soc_con3); |
| mmio_write_32(GRF_BASE + GRF_SOC_CON(4), |
| REG_SOC_WMSK | store_grf_soc_con4); |
| mmio_write_32(GRF_BASE + GRF_SOC_CON(7), |
| REG_SOC_WMSK | store_grf_soc_con7); |
| |
| for (i = 0; i < 4; i++) |
| mmio_write_32(GRF_BASE + GRF_DDRC0_CON0 + i * 4, |
| REG_SOC_WMSK | store_grf_ddrc_con[i]); |
| |
| mmio_write_32(GRF_BASE + GRF_IO_VSEL, REG_SOC_WMSK | store_grf_io_vsel); |
| } |
| |
| void cru_register_save(void) |
| { |
| int i; |
| |
| for (i = 0; i <= CRU_SDIO0_CON1; i = i + 4) |
| store_cru[i / 4] = mmio_read_32(CRU_BASE + i); |
| } |
| |
| void cru_register_restore(void) |
| { |
| int i; |
| |
| for (i = 0; i <= CRU_SDIO0_CON1; i = i + 4) { |
| |
| /* |
| * since DPLL, CRU_CLKSEL_CON6 have been restore in |
| * dmc_resume, ABPLL will resote later, so skip them |
| */ |
| if ((i == CRU_CLKSEL_CON6) || |
| (i >= CRU_PLL_CON(ABPLL_ID, 0) && |
| i <= CRU_PLL_CON(DPLL_ID, 5))) |
| continue; |
| |
| if ((i == CRU_PLL_CON(ALPLL_ID, 2)) || |
| (i == CRU_PLL_CON(CPLL_ID, 2)) || |
| (i == CRU_PLL_CON(GPLL_ID, 2)) || |
| (i == CRU_PLL_CON(NPLL_ID, 2)) || |
| (i == CRU_PLL_CON(VPLL_ID, 2))) |
| mmio_write_32(CRU_BASE + i, store_cru[i / 4]); |
| /* |
| * CRU_GLB_CNT_TH and CRU_CLKSEL_CON97~CRU_CLKSEL_CON107 |
| * not need do high 16bit mask |
| */ |
| else if ((i > 0x27c && i < 0x2b0) || (i == 0x508)) |
| mmio_write_32(CRU_BASE + i, store_cru[i / 4]); |
| else |
| mmio_write_32(CRU_BASE + i, |
| REG_SOC_WMSK | store_cru[i / 4]); |
| } |
| } |
| |
| void wdt_register_save(void) |
| { |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| store_wdt0[i] = mmio_read_32(WDT0_BASE + i * 4); |
| store_wdt1[i] = mmio_read_32(WDT1_BASE + i * 4); |
| } |
| } |
| |
| void wdt_register_restore(void) |
| { |
| int i; |
| |
| for (i = 1; i >= 0; i--) { |
| mmio_write_32(WDT0_BASE + i * 4, store_wdt0[i]); |
| mmio_write_32(WDT1_BASE + i * 4, store_wdt1[i]); |
| } |
| |
| /* write 0x76 to cnt_restart to keep watchdog alive */ |
| mmio_write_32(WDT0_BASE + 0x0c, 0x76); |
| mmio_write_32(WDT1_BASE + 0x0c, 0x76); |
| } |
| |
| int rockchip_soc_sys_pwr_dm_suspend(void) |
| { |
| uint32_t wait_cnt = 0; |
| uint32_t status = 0; |
| |
| ddr_prepare_for_sys_suspend(); |
| dmc_suspend(); |
| pmu_scu_b_pwrdn(); |
| |
| gicv3_rdistif_save(plat_my_core_pos(), &rdist_ctx); |
| gicv3_distif_save(&dist_ctx); |
| |
| /* need to save usbphy before shutdown PERIHP PD */ |
| save_usbphy(); |
| |
| pmu_power_domains_suspend(); |
| set_hw_idle(BIT(PMU_CLR_CENTER1) | |
| BIT(PMU_CLR_ALIVE) | |
| BIT(PMU_CLR_MSCH0) | |
| BIT(PMU_CLR_MSCH1) | |
| BIT(PMU_CLR_CCIM0) | |
| BIT(PMU_CLR_CCIM1) | |
| BIT(PMU_CLR_CENTER) | |
| BIT(PMU_CLR_PERILP) | |
| BIT(PMU_CLR_PERILPM0) | |
| BIT(PMU_CLR_GIC)); |
| set_pmu_rsthold(); |
| sys_slp_config(); |
| |
| m0_configure_suspend(); |
| m0_start(); |
| |
| pmu_sgrf_rst_hld(); |
| |
| mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), |
| ((uintptr_t)&pmu_cpuson_entrypoint >> |
| CPU_BOOT_ADDR_ALIGN) | CPU_BOOT_ADDR_WMASK); |
| |
| mmio_write_32(PMU_BASE + PMU_ADB400_CON, |
| BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) | |
| BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_SW) | |
| BIT_WITH_WMSK(PMU_PWRDWN_REQ_GIC2_CORE_B_SW)); |
| dsb(); |
| status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) | |
| BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) | |
| BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST); |
| while ((mmio_read_32(PMU_BASE + |
| PMU_ADB400_ST) & status) != status) { |
| wait_cnt++; |
| if (wait_cnt >= MAX_WAIT_COUNT) { |
| ERROR("%s:wait cluster-b l2(%x)\n", __func__, |
| mmio_read_32(PMU_BASE + PMU_ADB400_ST)); |
| panic(); |
| } |
| udelay(1); |
| } |
| mmio_setbits_32(PMU_BASE + PMU_PWRDN_CON, BIT(PMU_SCU_B_PWRDWN_EN)); |
| |
| wdt_register_save(); |
| secure_watchdog_disable(); |
| |
| /* |
| * Disabling PLLs/PWM/DVFS is approaching WFI which is |
| * the last steps in suspend. |
| */ |
| disable_dvfs_plls(); |
| disable_pwms(); |
| disable_nodvfs_plls(); |
| |
| suspend_apio(); |
| suspend_gpio(); |
| suspend_uart(); |
| grf_register_save(); |
| cru_register_save(); |
| sram_save(); |
| plat_rockchip_save_gpio(); |
| |
| return 0; |
| } |
| |
| int rockchip_soc_sys_pwr_dm_resume(void) |
| { |
| uint32_t wait_cnt = 0; |
| uint32_t status = 0; |
| |
| plat_rockchip_restore_gpio(); |
| cru_register_restore(); |
| grf_register_restore(); |
| resume_uart(); |
| resume_apio(); |
| resume_gpio(); |
| enable_nodvfs_plls(); |
| enable_pwms(); |
| /* PWM regulators take time to come up; give 300us to be safe. */ |
| udelay(300); |
| enable_dvfs_plls(); |
| |
| secure_watchdog_enable(); |
| secure_sgrf_init(); |
| secure_sgrf_ddr_rgn_init(); |
| wdt_register_restore(); |
| |
| /* restore clk_ddrc_bpll_src_en gate */ |
| mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3), |
| BITS_WITH_WMASK(clk_ddrc_save, 0xff, 0)); |
| |
| /* |
| * The wakeup status is not cleared by itself, we need to clear it |
| * manually. Otherwise we will alway query some interrupt next time. |
| * |
| * NOTE: If the kernel needs to query this, we might want to stash it |
| * somewhere. |
| */ |
| mmio_write_32(PMU_BASE + PMU_WAKEUP_STATUS, 0xffffffff); |
| mmio_write_32(PMU_BASE + PMU_WKUP_CFG4, 0x00); |
| |
| mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), |
| (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) | |
| CPU_BOOT_ADDR_WMASK); |
| |
| mmio_write_32(PMU_BASE + PMU_CCI500_CON, |
| WMSK_BIT(PMU_CLR_PREQ_CCI500_HW) | |
| WMSK_BIT(PMU_CLR_QREQ_CCI500_HW) | |
| WMSK_BIT(PMU_QGATING_CCI500_CFG)); |
| dsb(); |
| mmio_clrbits_32(PMU_BASE + PMU_PWRDN_CON, |
| BIT(PMU_SCU_B_PWRDWN_EN)); |
| |
| mmio_write_32(PMU_BASE + PMU_ADB400_CON, |
| WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) | |
| WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_SW) | |
| WMSK_BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW) | |
| WMSK_BIT(PMU_CLR_CORE_L_HW) | |
| WMSK_BIT(PMU_CLR_CORE_L_2GIC_HW) | |
| WMSK_BIT(PMU_CLR_GIC2_CORE_L_HW)); |
| |
| status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) | |
| BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) | |
| BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST); |
| |
| while ((mmio_read_32(PMU_BASE + |
| PMU_ADB400_ST) & status)) { |
| wait_cnt++; |
| if (wait_cnt >= MAX_WAIT_COUNT) { |
| ERROR("%s:wait cluster-b l2(%x)\n", __func__, |
| mmio_read_32(PMU_BASE + PMU_ADB400_ST)); |
| panic(); |
| } |
| udelay(1); |
| } |
| |
| pmu_sgrf_rst_hld_release(); |
| pmu_scu_b_pwrup(); |
| pmu_power_domains_resume(); |
| |
| restore_abpll(); |
| restore_pmu_rsthold(); |
| clr_hw_idle(BIT(PMU_CLR_CENTER1) | |
| BIT(PMU_CLR_ALIVE) | |
| BIT(PMU_CLR_MSCH0) | |
| BIT(PMU_CLR_MSCH1) | |
| BIT(PMU_CLR_CCIM0) | |
| BIT(PMU_CLR_CCIM1) | |
| BIT(PMU_CLR_CENTER) | |
| BIT(PMU_CLR_PERILP) | |
| BIT(PMU_CLR_PERILPM0) | |
| BIT(PMU_CLR_GIC)); |
| |
| gicv3_distif_init_restore(&dist_ctx); |
| gicv3_rdistif_init_restore(plat_my_core_pos(), &rdist_ctx); |
| plat_rockchip_gic_cpuif_enable(); |
| m0_stop(); |
| |
| restore_usbphy(); |
| |
| ddr_prepare_for_sys_resume(); |
| |
| return 0; |
| } |
| |
| void __dead2 rockchip_soc_soft_reset(void) |
| { |
| struct gpio_info *rst_gpio; |
| |
| rst_gpio = plat_get_rockchip_gpio_reset(); |
| |
| if (rst_gpio) { |
| gpio_set_direction(rst_gpio->index, GPIO_DIR_OUT); |
| gpio_set_value(rst_gpio->index, rst_gpio->polarity); |
| } else { |
| soc_global_soft_reset(); |
| } |
| |
| while (1) |
| ; |
| } |
| |
| void __dead2 rockchip_soc_system_off(void) |
| { |
| struct gpio_info *poweroff_gpio; |
| |
| poweroff_gpio = plat_get_rockchip_gpio_poweroff(); |
| |
| if (poweroff_gpio) { |
| /* |
| * if use tsadc over temp pin(GPIO1A6) as shutdown gpio, |
| * need to set this pin iomux back to gpio function |
| */ |
| if (poweroff_gpio->index == TSADC_INT_PIN) { |
| mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO1A_IOMUX, |
| GPIO1A6_IOMUX); |
| } |
| gpio_set_direction(poweroff_gpio->index, GPIO_DIR_OUT); |
| gpio_set_value(poweroff_gpio->index, poweroff_gpio->polarity); |
| } else { |
| WARN("Do nothing when system off\n"); |
| } |
| |
| while (1) |
| ; |
| } |
| |
| void rockchip_plat_mmu_el3(void) |
| { |
| size_t sram_size; |
| |
| /* sram.text size */ |
| sram_size = (char *)&__bl31_sram_text_end - |
| (char *)&__bl31_sram_text_start; |
| mmap_add_region((unsigned long)&__bl31_sram_text_start, |
| (unsigned long)&__bl31_sram_text_start, |
| sram_size, MT_MEMORY | MT_RO | MT_SECURE); |
| |
| /* sram.data size */ |
| sram_size = (char *)&__bl31_sram_data_end - |
| (char *)&__bl31_sram_data_start; |
| mmap_add_region((unsigned long)&__bl31_sram_data_start, |
| (unsigned long)&__bl31_sram_data_start, |
| sram_size, MT_MEMORY | MT_RW | MT_SECURE); |
| |
| sram_size = (char *)&__bl31_sram_stack_end - |
| (char *)&__bl31_sram_stack_start; |
| mmap_add_region((unsigned long)&__bl31_sram_stack_start, |
| (unsigned long)&__bl31_sram_stack_start, |
| sram_size, MT_MEMORY | MT_RW | MT_SECURE); |
| |
| sram_size = (char *)&__sram_incbin_end - (char *)&__sram_incbin_start; |
| mmap_add_region((unsigned long)&__sram_incbin_start, |
| (unsigned long)&__sram_incbin_start, |
| sram_size, MT_NON_CACHEABLE | MT_RW | MT_SECURE); |
| } |
| |
| void plat_rockchip_pmu_init(void) |
| { |
| uint32_t cpu; |
| |
| rockchip_pd_lock_init(); |
| |
| /* register requires 32bits mode, switch it to 32 bits */ |
| cpu_warm_boot_addr = (uint64_t)platform_cpu_warmboot; |
| |
| for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) |
| cpuson_flags[cpu] = 0; |
| |
| for (cpu = 0; cpu < PLATFORM_CLUSTER_COUNT; cpu++) |
| clst_warmboot_data[cpu] = 0; |
| |
| /* config cpu's warm boot address */ |
| mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1), |
| (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) | |
| CPU_BOOT_ADDR_WMASK); |
| mmio_write_32(PMU_BASE + PMU_NOC_AUTO_ENA, NOC_AUTO_ENABLE); |
| |
| /* |
| * Enable Schmitt trigger for better 32 kHz input signal, which is |
| * important for suspend/resume reliability among other things. |
| */ |
| mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO0A_SMT, GPIO0A0_SMT_ENABLE); |
| |
| init_pmu_counts(); |
| |
| nonboot_cpus_off(); |
| |
| INFO("%s(%d): pd status %x\n", __func__, __LINE__, |
| mmio_read_32(PMU_BASE + PMU_PWRDN_ST)); |
| } |