| /* |
| * Copyright (c) 2022, Arm Limited. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <stdint.h> |
| |
| #include <arch.h> |
| #include <arch_features.h> |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include "gpt_rme_private.h" |
| #include <lib/gpt_rme/gpt_rme.h> |
| #include <lib/smccc.h> |
| #include <lib/spinlock.h> |
| #include <lib/xlat_tables/xlat_tables_v2.h> |
| |
| #if !ENABLE_RME |
| #error "ENABLE_RME must be enabled to use the GPT library." |
| #endif |
| |
| /* |
| * Lookup T from PPS |
| * |
| * PPS Size T |
| * 0b000 4GB 32 |
| * 0b001 64GB 36 |
| * 0b010 1TB 40 |
| * 0b011 4TB 42 |
| * 0b100 16TB 44 |
| * 0b101 256TB 48 |
| * 0b110 4PB 52 |
| * |
| * See section 15.1.27 of the RME specification. |
| */ |
| static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T, |
| PPS_1TB_T, PPS_4TB_T, |
| PPS_16TB_T, PPS_256TB_T, |
| PPS_4PB_T}; |
| |
| /* |
| * Lookup P from PGS |
| * |
| * PGS Size P |
| * 0b00 4KB 12 |
| * 0b10 16KB 14 |
| * 0b01 64KB 16 |
| * |
| * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo. |
| * |
| * See section 15.1.27 of the RME specification. |
| */ |
| static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P}; |
| |
| /* |
| * This structure contains GPT configuration data. |
| */ |
| typedef struct { |
| uintptr_t plat_gpt_l0_base; |
| gpccr_pps_e pps; |
| gpt_t_val_e t; |
| gpccr_pgs_e pgs; |
| gpt_p_val_e p; |
| } gpt_config_t; |
| |
| static gpt_config_t gpt_config; |
| |
| /* These variables are used during initialization of the L1 tables. */ |
| static unsigned int gpt_next_l1_tbl_idx; |
| static uintptr_t gpt_l1_tbl; |
| |
| /* |
| * This function checks to see if a GPI value is valid. |
| * |
| * These are valid GPI values. |
| * GPT_GPI_NO_ACCESS U(0x0) |
| * GPT_GPI_SECURE U(0x8) |
| * GPT_GPI_NS U(0x9) |
| * GPT_GPI_ROOT U(0xA) |
| * GPT_GPI_REALM U(0xB) |
| * GPT_GPI_ANY U(0xF) |
| * |
| * Parameters |
| * gpi GPI to check for validity. |
| * |
| * Return |
| * true for a valid GPI, false for an invalid one. |
| */ |
| static bool gpt_is_gpi_valid(unsigned int gpi) |
| { |
| if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) || |
| ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) { |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * This function checks to see if two PAS regions overlap. |
| * |
| * Parameters |
| * base_1: base address of first PAS |
| * size_1: size of first PAS |
| * base_2: base address of second PAS |
| * size_2: size of second PAS |
| * |
| * Return |
| * True if PAS regions overlap, false if they do not. |
| */ |
| static bool gpt_check_pas_overlap(uintptr_t base_1, size_t size_1, |
| uintptr_t base_2, size_t size_2) |
| { |
| if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) { |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * This helper function checks to see if a PAS region from index 0 to |
| * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table. |
| * |
| * Parameters |
| * l0_idx: Index of the L0 entry to check |
| * pas_regions: PAS region array |
| * pas_idx: Upper bound of the PAS array index. |
| * |
| * Return |
| * True if a PAS region occupies the L0 region in question, false if not. |
| */ |
| static bool gpt_does_previous_pas_exist_here(unsigned int l0_idx, |
| pas_region_t *pas_regions, |
| unsigned int pas_idx) |
| { |
| /* Iterate over PAS regions up to pas_idx. */ |
| for (unsigned int i = 0U; i < pas_idx; i++) { |
| if (gpt_check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx), |
| GPT_L0GPTSZ_ACTUAL_SIZE, |
| pas_regions[i].base_pa, pas_regions[i].size)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* |
| * This function iterates over all of the PAS regions and checks them to ensure |
| * proper alignment of base and size, that the GPI is valid, and that no regions |
| * overlap. As a part of the overlap checks, this function checks existing L0 |
| * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables |
| * is called multiple times to place L1 tables in different areas of memory. It |
| * also counts the number of L1 tables needed and returns it on success. |
| * |
| * Parameters |
| * *pas_regions Pointer to array of PAS region structures. |
| * pas_region_cnt Total number of PAS regions in the array. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, number of L1 regions |
| * required when successful. |
| */ |
| static int gpt_validate_pas_mappings(pas_region_t *pas_regions, |
| unsigned int pas_region_cnt) |
| { |
| unsigned int idx; |
| unsigned int l1_cnt = 0U; |
| unsigned int pas_l1_cnt; |
| uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| |
| assert(pas_regions != NULL); |
| assert(pas_region_cnt != 0U); |
| |
| for (idx = 0U; idx < pas_region_cnt; idx++) { |
| /* Check for arithmetic overflow in region. */ |
| if ((ULONG_MAX - pas_regions[idx].base_pa) < |
| pas_regions[idx].size) { |
| ERROR("[GPT] Address overflow in PAS[%u]!\n", idx); |
| return -EOVERFLOW; |
| } |
| |
| /* Initial checks for PAS validity. */ |
| if (((pas_regions[idx].base_pa + pas_regions[idx].size) > |
| GPT_PPS_ACTUAL_SIZE(gpt_config.t)) || |
| !gpt_is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) { |
| ERROR("[GPT] PAS[%u] is invalid!\n", idx); |
| return -EFAULT; |
| } |
| |
| /* |
| * Make sure this PAS does not overlap with another one. We |
| * start from idx + 1 instead of 0 since prior PAS mappings will |
| * have already checked themselves against this one. |
| */ |
| for (unsigned int i = idx + 1; i < pas_region_cnt; i++) { |
| if (gpt_check_pas_overlap(pas_regions[idx].base_pa, |
| pas_regions[idx].size, |
| pas_regions[i].base_pa, |
| pas_regions[i].size)) { |
| ERROR("[GPT] PAS[%u] overlaps with PAS[%u]\n", |
| i, idx); |
| return -EFAULT; |
| } |
| } |
| |
| /* |
| * Since this function can be called multiple times with |
| * separate L1 tables we need to check the existing L0 mapping |
| * to see if this PAS would fall into one that has already been |
| * initialized. |
| */ |
| for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa); |
| i <= GPT_L0_IDX(pas_regions[idx].base_pa + pas_regions[idx].size - 1); |
| i++) { |
| if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) && |
| (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) { |
| /* This descriptor is unused so continue. */ |
| continue; |
| } |
| |
| /* |
| * This descriptor has been initialized in a previous |
| * call to this function so cannot be initialized again. |
| */ |
| ERROR("[GPT] PAS[%u] overlaps with previous L0[%d]!\n", |
| idx, i); |
| return -EFAULT; |
| } |
| |
| /* Check for block mapping (L0) type. */ |
| if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) == |
| GPT_PAS_ATTR_MAP_TYPE_BLOCK) { |
| /* Make sure base and size are block-aligned. */ |
| if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) || |
| !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) { |
| ERROR("[GPT] PAS[%u] is not block-aligned!\n", |
| idx); |
| return -EFAULT; |
| } |
| |
| continue; |
| } |
| |
| /* Check for granule mapping (L1) type. */ |
| if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) == |
| GPT_PAS_ATTR_MAP_TYPE_GRANULE) { |
| /* Make sure base and size are granule-aligned. */ |
| if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) || |
| !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) { |
| ERROR("[GPT] PAS[%u] is not granule-aligned!\n", |
| idx); |
| return -EFAULT; |
| } |
| |
| /* Find how many L1 tables this PAS occupies. */ |
| pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa + |
| pas_regions[idx].size - 1) - |
| GPT_L0_IDX(pas_regions[idx].base_pa) + 1); |
| |
| /* |
| * This creates a situation where, if multiple PAS |
| * regions occupy the same table descriptor, we can get |
| * an artificially high total L1 table count. The way we |
| * handle this is by checking each PAS against those |
| * before it in the array, and if they both occupy the |
| * same PAS we subtract from pas_l1_cnt and only the |
| * first PAS in the array gets to count it. |
| */ |
| |
| /* |
| * If L1 count is greater than 1 we know the start and |
| * end PAs are in different L0 regions so we must check |
| * both for overlap against other PAS. |
| */ |
| if (pas_l1_cnt > 1) { |
| if (gpt_does_previous_pas_exist_here( |
| GPT_L0_IDX(pas_regions[idx].base_pa + |
| pas_regions[idx].size - 1), |
| pas_regions, idx)) { |
| pas_l1_cnt = pas_l1_cnt - 1; |
| } |
| } |
| |
| if (gpt_does_previous_pas_exist_here( |
| GPT_L0_IDX(pas_regions[idx].base_pa), |
| pas_regions, idx)) { |
| pas_l1_cnt = pas_l1_cnt - 1; |
| } |
| |
| l1_cnt += pas_l1_cnt; |
| continue; |
| } |
| |
| /* If execution reaches this point, mapping type is invalid. */ |
| ERROR("[GPT] PAS[%u] has invalid mapping type 0x%x.\n", idx, |
| GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs)); |
| return -EINVAL; |
| } |
| |
| return l1_cnt; |
| } |
| |
| /* |
| * This function validates L0 initialization parameters. |
| * |
| * Parameters |
| * l0_mem_base Base address of memory used for L0 tables. |
| * l1_mem_size Size of memory available for L0 tables. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| static int gpt_validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base, |
| size_t l0_mem_size) |
| { |
| size_t l0_alignment; |
| |
| /* |
| * Make sure PPS is valid and then store it since macros need this value |
| * to work. |
| */ |
| if (pps > GPT_PPS_MAX) { |
| ERROR("[GPT] Invalid PPS: 0x%x\n", pps); |
| return -EINVAL; |
| } |
| gpt_config.pps = pps; |
| gpt_config.t = gpt_t_lookup[pps]; |
| |
| /* Alignment must be the greater of 4k or l0 table size. */ |
| l0_alignment = PAGE_SIZE_4KB; |
| if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) { |
| l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t); |
| } |
| |
| /* Check base address. */ |
| if ((l0_mem_base == 0U) || ((l0_mem_base & (l0_alignment - 1)) != 0U)) { |
| ERROR("[GPT] Invalid L0 base address: 0x%lx\n", l0_mem_base); |
| return -EFAULT; |
| } |
| |
| /* Check size. */ |
| if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) { |
| ERROR("[GPT] Inadequate L0 memory: need 0x%lx, have 0x%lx)\n", |
| GPT_L0_TABLE_SIZE(gpt_config.t), |
| l0_mem_size); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * In the event that L1 tables are needed, this function validates |
| * the L1 table generation parameters. |
| * |
| * Parameters |
| * l1_mem_base Base address of memory used for L1 table allocation. |
| * l1_mem_size Total size of memory available for L1 tables. |
| * l1_gpt_cnt Number of L1 tables needed. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| static int gpt_validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size, |
| unsigned int l1_gpt_cnt) |
| { |
| size_t l1_gpt_mem_sz; |
| |
| /* Check if the granularity is supported */ |
| if (!xlat_arch_is_granule_size_supported( |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p))) { |
| return -EPERM; |
| } |
| |
| /* Make sure L1 tables are aligned to their size. */ |
| if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1)) != 0U) { |
| ERROR("[GPT] Unaligned L1 GPT base address: 0x%lx\n", |
| l1_mem_base); |
| return -EFAULT; |
| } |
| |
| /* Get total memory needed for L1 tables. */ |
| l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p); |
| |
| /* Check for overflow. */ |
| if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) { |
| ERROR("[GPT] Overflow calculating L1 memory size.\n"); |
| return -ENOMEM; |
| } |
| |
| /* Make sure enough space was supplied. */ |
| if (l1_mem_size < l1_gpt_mem_sz) { |
| ERROR("[GPT] Inadequate memory for L1 GPTs. "); |
| ERROR(" Expected 0x%lx bytes. Got 0x%lx bytes\n", |
| l1_gpt_mem_sz, l1_mem_size); |
| return -ENOMEM; |
| } |
| |
| VERBOSE("[GPT] Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz); |
| return 0; |
| } |
| |
| /* |
| * This function initializes L0 block descriptors (regions that cannot be |
| * transitioned at the granule level) according to the provided PAS. |
| * |
| * Parameters |
| * *pas Pointer to the structure defining the PAS region to |
| * initialize. |
| */ |
| static void gpt_generate_l0_blk_desc(pas_region_t *pas) |
| { |
| uint64_t gpt_desc; |
| unsigned int end_idx; |
| unsigned int idx; |
| uint64_t *l0_gpt_arr; |
| |
| assert(gpt_config.plat_gpt_l0_base != 0U); |
| assert(pas != NULL); |
| |
| /* |
| * Checking of PAS parameters has already been done in |
| * gpt_validate_pas_mappings so no need to check the same things again. |
| */ |
| |
| l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| |
| /* Create the GPT Block descriptor for this PAS region */ |
| gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs)); |
| |
| /* Start index of this region in L0 GPTs */ |
| idx = GPT_L0_IDX(pas->base_pa); |
| |
| /* |
| * Determine number of L0 GPT descriptors covered by |
| * this PAS region and use the count to populate these |
| * descriptors. |
| */ |
| end_idx = GPT_L0_IDX(pas->base_pa + pas->size); |
| |
| /* Generate the needed block descriptors. */ |
| for (; idx < end_idx; idx++) { |
| l0_gpt_arr[idx] = gpt_desc; |
| VERBOSE("[GPT] L0 entry (BLOCK) index %u [%p]: GPI = 0x%" PRIx64 " (0x%" PRIx64 ")\n", |
| idx, &l0_gpt_arr[idx], |
| (gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) & |
| GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]); |
| } |
| } |
| |
| /* |
| * Helper function to determine if the end physical address lies in the same L0 |
| * region as the current physical address. If true, the end physical address is |
| * returned else, the start address of the next region is returned. |
| * |
| * Parameters |
| * cur_pa Physical address of the current PA in the loop through |
| * the range. |
| * end_pa Physical address of the end PA in a PAS range. |
| * |
| * Return |
| * The PA of the end of the current range. |
| */ |
| static uintptr_t gpt_get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa) |
| { |
| uintptr_t cur_idx; |
| uintptr_t end_idx; |
| |
| cur_idx = GPT_L0_IDX(cur_pa); |
| end_idx = GPT_L0_IDX(end_pa); |
| |
| assert(cur_idx <= end_idx); |
| |
| if (cur_idx == end_idx) { |
| return end_pa; |
| } |
| |
| return (cur_idx + 1U) << GPT_L0_IDX_SHIFT; |
| } |
| |
| /* |
| * Helper function to fill out GPI entries in a single L1 table. This function |
| * fills out entire L1 descriptors at a time to save memory writes. |
| * |
| * Parameters |
| * gpi GPI to set this range to |
| * l1 Pointer to L1 table to fill out |
| * first Address of first granule in range. |
| * last Address of last granule in range (inclusive). |
| */ |
| static void gpt_fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first, |
| uintptr_t last) |
| { |
| uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi); |
| uint64_t gpi_mask = 0xFFFFFFFFFFFFFFFF; |
| |
| assert(first <= last); |
| assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U); |
| assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U); |
| assert(GPT_L0_IDX(first) == GPT_L0_IDX(last)); |
| assert(l1 != NULL); |
| |
| /* Shift the mask if we're starting in the middle of an L1 entry. */ |
| gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2); |
| |
| /* Fill out each L1 entry for this region. */ |
| for (unsigned int i = GPT_L1_IDX(gpt_config.p, first); |
| i <= GPT_L1_IDX(gpt_config.p, last); i++) { |
| /* Account for stopping in the middle of an L1 entry. */ |
| if (i == GPT_L1_IDX(gpt_config.p, last)) { |
| gpi_mask &= (gpi_mask >> ((15 - |
| GPT_L1_GPI_IDX(gpt_config.p, last)) << 2)); |
| } |
| |
| /* Write GPI values. */ |
| assert((l1[i] & gpi_mask) == |
| (GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask)); |
| l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field); |
| |
| /* Reset mask. */ |
| gpi_mask = 0xFFFFFFFFFFFFFFFF; |
| } |
| } |
| |
| /* |
| * This function finds the next available unused L1 table and initializes all |
| * granules descriptor entries to GPI_ANY. This ensures that there are no chunks |
| * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the |
| * event that a PAS region stops midway through an L1 table, thus guaranteeing |
| * that all memory not explicitly assigned is GPI_ANY. This function does not |
| * check for overflow conditions, that should be done by the caller. |
| * |
| * Return |
| * Pointer to the next available L1 table. |
| */ |
| static uint64_t *gpt_get_new_l1_tbl(void) |
| { |
| /* Retrieve the next L1 table. */ |
| uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) + |
| (GPT_L1_TABLE_SIZE(gpt_config.p) * |
| gpt_next_l1_tbl_idx)); |
| |
| /* Increment L1 counter. */ |
| gpt_next_l1_tbl_idx++; |
| |
| /* Initialize all GPIs to GPT_GPI_ANY */ |
| for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) { |
| l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY); |
| } |
| |
| return l1; |
| } |
| |
| /* |
| * When L1 tables are needed, this function creates the necessary L0 table |
| * descriptors and fills out the L1 table entries according to the supplied |
| * PAS range. |
| * |
| * Parameters |
| * *pas Pointer to the structure defining the PAS region. |
| */ |
| static void gpt_generate_l0_tbl_desc(pas_region_t *pas) |
| { |
| uintptr_t end_pa; |
| uintptr_t cur_pa; |
| uintptr_t last_gran_pa; |
| uint64_t *l0_gpt_base; |
| uint64_t *l1_gpt_arr; |
| unsigned int l0_idx; |
| |
| assert(gpt_config.plat_gpt_l0_base != 0U); |
| assert(pas != NULL); |
| |
| /* |
| * Checking of PAS parameters has already been done in |
| * gpt_validate_pas_mappings so no need to check the same things again. |
| */ |
| |
| end_pa = pas->base_pa + pas->size; |
| l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| |
| /* We start working from the granule at base PA */ |
| cur_pa = pas->base_pa; |
| |
| /* Iterate over each L0 region in this memory range. */ |
| for (l0_idx = GPT_L0_IDX(pas->base_pa); |
| l0_idx <= GPT_L0_IDX(end_pa - 1U); |
| l0_idx++) { |
| |
| /* |
| * See if the L0 entry is already a table descriptor or if we |
| * need to create one. |
| */ |
| if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) { |
| /* Get the L1 array from the L0 entry. */ |
| l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]); |
| } else { |
| /* Get a new L1 table from the L1 memory space. */ |
| l1_gpt_arr = gpt_get_new_l1_tbl(); |
| |
| /* Fill out the L0 descriptor and flush it. */ |
| l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr); |
| } |
| |
| VERBOSE("[GPT] L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%" PRIx64 ")\n", |
| l0_idx, &l0_gpt_base[l0_idx], |
| (unsigned long long)(l1_gpt_arr), |
| l0_gpt_base[l0_idx]); |
| |
| /* |
| * Determine the PA of the last granule in this L0 descriptor. |
| */ |
| last_gran_pa = gpt_get_l1_end_pa(cur_pa, end_pa) - |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p); |
| |
| /* |
| * Fill up L1 GPT entries between these two addresses. This |
| * function needs the addresses of the first granule and last |
| * granule in the range. |
| */ |
| gpt_fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr, |
| cur_pa, last_gran_pa); |
| |
| /* Advance cur_pa to first granule in next L0 region. */ |
| cur_pa = gpt_get_l1_end_pa(cur_pa, end_pa); |
| } |
| } |
| |
| /* |
| * This function flushes a range of L0 descriptors used by a given PAS region |
| * array. There is a chance that some unmodified L0 descriptors would be flushed |
| * in the case that there are "holes" in an array of PAS regions but overall |
| * this should be faster than individually flushing each modified L0 descriptor |
| * as they are created. |
| * |
| * Parameters |
| * *pas Pointer to an array of PAS regions. |
| * pas_count Number of entries in the PAS array. |
| */ |
| static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count) |
| { |
| unsigned int idx; |
| unsigned int start_idx; |
| unsigned int end_idx; |
| uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| |
| assert(pas != NULL); |
| assert(pas_count > 0); |
| |
| /* Initial start and end values. */ |
| start_idx = GPT_L0_IDX(pas[0].base_pa); |
| end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1); |
| |
| /* Find lowest and highest L0 indices used in this PAS array. */ |
| for (idx = 1; idx < pas_count; idx++) { |
| if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) { |
| start_idx = GPT_L0_IDX(pas[idx].base_pa); |
| } |
| if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1) > end_idx) { |
| end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1); |
| } |
| } |
| |
| /* |
| * Flush all covered L0 descriptors, add 1 because we need to include |
| * the end index value. |
| */ |
| flush_dcache_range((uintptr_t)&l0[start_idx], |
| ((end_idx + 1) - start_idx) * sizeof(uint64_t)); |
| } |
| |
| /* |
| * Public API to enable granule protection checks once the tables have all been |
| * initialized. This function is called at first initialization and then again |
| * later during warm boots of CPU cores. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| int gpt_enable(void) |
| { |
| u_register_t gpccr_el3; |
| |
| /* |
| * Granule tables must be initialised before enabling |
| * granule protection. |
| */ |
| if (gpt_config.plat_gpt_l0_base == 0U) { |
| ERROR("[GPT] Tables have not been initialized!\n"); |
| return -EPERM; |
| } |
| |
| /* Write the base address of the L0 tables into GPTBR */ |
| write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT) |
| >> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK); |
| |
| /* GPCCR_EL3.PPS */ |
| gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps); |
| |
| /* GPCCR_EL3.PGS */ |
| gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs); |
| |
| /* |
| * Since EL3 maps the L1 region as Inner shareable, use the same |
| * shareability attribute for GPC as well so that |
| * GPC fetches are visible to PEs |
| */ |
| gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS); |
| |
| /* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */ |
| gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA); |
| gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA); |
| |
| /* Prepopulate GPCCR_EL3 but don't enable GPC yet */ |
| write_gpccr_el3(gpccr_el3); |
| isb(); |
| |
| /* Invalidate any stale TLB entries and any cached register fields */ |
| tlbipaallos(); |
| dsb(); |
| isb(); |
| |
| /* Enable GPT */ |
| gpccr_el3 |= GPCCR_GPC_BIT; |
| |
| /* TODO: Configure GPCCR_EL3_GPCP for Fault control. */ |
| write_gpccr_el3(gpccr_el3); |
| isb(); |
| tlbipaallos(); |
| dsb(); |
| isb(); |
| |
| return 0; |
| } |
| |
| /* |
| * Public API to disable granule protection checks. |
| */ |
| void gpt_disable(void) |
| { |
| u_register_t gpccr_el3 = read_gpccr_el3(); |
| |
| write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT); |
| dsbsy(); |
| isb(); |
| } |
| |
| /* |
| * Public API that initializes the entire protected space to GPT_GPI_ANY using |
| * the L0 tables (block descriptors). Ideally, this function is invoked prior |
| * to DDR discovery and initialization. The MMU must be initialized before |
| * calling this function. |
| * |
| * Parameters |
| * pps PPS value to use for table generation |
| * l0_mem_base Base address of L0 tables in memory. |
| * l0_mem_size Total size of memory available for L0 tables. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base, |
| size_t l0_mem_size) |
| { |
| int ret; |
| uint64_t gpt_desc; |
| |
| /* Ensure that MMU and Data caches are enabled. */ |
| assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U); |
| |
| /* Validate other parameters. */ |
| ret = gpt_validate_l0_params(pps, l0_mem_base, l0_mem_size); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* Create the descriptor to initialize L0 entries with. */ |
| gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY); |
| |
| /* Iterate through all L0 entries */ |
| for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) { |
| ((uint64_t *)l0_mem_base)[i] = gpt_desc; |
| } |
| |
| /* Flush updated L0 tables to memory. */ |
| flush_dcache_range((uintptr_t)l0_mem_base, |
| (size_t)GPT_L0_TABLE_SIZE(gpt_config.t)); |
| |
| /* Stash the L0 base address once initial setup is complete. */ |
| gpt_config.plat_gpt_l0_base = l0_mem_base; |
| |
| return 0; |
| } |
| |
| /* |
| * Public API that carves out PAS regions from the L0 tables and builds any L1 |
| * tables that are needed. This function ideally is run after DDR discovery and |
| * initialization. The L0 tables must have already been initialized to GPI_ANY |
| * when this function is called. |
| * |
| * This function can be called multiple times with different L1 memory ranges |
| * and PAS regions if it is desirable to place L1 tables in different locations |
| * in memory. (ex: you have multiple DDR banks and want to place the L1 tables |
| * in the DDR bank that they control) |
| * |
| * Parameters |
| * pgs PGS value to use for table generation. |
| * l1_mem_base Base address of memory used for L1 tables. |
| * l1_mem_size Total size of memory available for L1 tables. |
| * *pas_regions Pointer to PAS regions structure array. |
| * pas_count Total number of PAS regions. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base, |
| size_t l1_mem_size, pas_region_t *pas_regions, |
| unsigned int pas_count) |
| { |
| int ret; |
| int l1_gpt_cnt; |
| |
| /* Ensure that MMU and Data caches are enabled. */ |
| assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U); |
| |
| /* PGS is needed for gpt_validate_pas_mappings so check it now. */ |
| if (pgs > GPT_PGS_MAX) { |
| ERROR("[GPT] Invalid PGS: 0x%x\n", pgs); |
| return -EINVAL; |
| } |
| gpt_config.pgs = pgs; |
| gpt_config.p = gpt_p_lookup[pgs]; |
| |
| /* Make sure L0 tables have been initialized. */ |
| if (gpt_config.plat_gpt_l0_base == 0U) { |
| ERROR("[GPT] L0 tables must be initialized first!\n"); |
| return -EPERM; |
| } |
| |
| /* Check if L1 GPTs are required and how many. */ |
| l1_gpt_cnt = gpt_validate_pas_mappings(pas_regions, pas_count); |
| if (l1_gpt_cnt < 0) { |
| return l1_gpt_cnt; |
| } |
| |
| VERBOSE("[GPT] %u L1 GPTs requested.\n", l1_gpt_cnt); |
| |
| /* If L1 tables are needed then validate the L1 parameters. */ |
| if (l1_gpt_cnt > 0) { |
| ret = gpt_validate_l1_params(l1_mem_base, l1_mem_size, |
| l1_gpt_cnt); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* Set up parameters for L1 table generation. */ |
| gpt_l1_tbl = l1_mem_base; |
| gpt_next_l1_tbl_idx = 0U; |
| } |
| |
| INFO("[GPT] Boot Configuration\n"); |
| INFO(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t); |
| INFO(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p); |
| INFO(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL); |
| INFO(" PAS count: 0x%x\n", pas_count); |
| INFO(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base); |
| |
| /* Generate the tables in memory. */ |
| for (unsigned int idx = 0U; idx < pas_count; idx++) { |
| INFO("[GPT] PAS[%u]: base 0x%lx, size 0x%lx, GPI 0x%x, type 0x%x\n", |
| idx, pas_regions[idx].base_pa, pas_regions[idx].size, |
| GPT_PAS_ATTR_GPI(pas_regions[idx].attrs), |
| GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs)); |
| |
| /* Check if a block or table descriptor is required */ |
| if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) == |
| GPT_PAS_ATTR_MAP_TYPE_BLOCK) { |
| gpt_generate_l0_blk_desc(&pas_regions[idx]); |
| |
| } else { |
| gpt_generate_l0_tbl_desc(&pas_regions[idx]); |
| } |
| } |
| |
| /* Flush modified L0 tables. */ |
| flush_l0_for_pas_array(pas_regions, pas_count); |
| |
| /* Flush L1 tables if needed. */ |
| if (l1_gpt_cnt > 0) { |
| flush_dcache_range(l1_mem_base, |
| GPT_L1_TABLE_SIZE(gpt_config.p) * |
| l1_gpt_cnt); |
| } |
| |
| /* Make sure that all the entries are written to the memory. */ |
| dsbishst(); |
| tlbipaallos(); |
| dsb(); |
| isb(); |
| |
| return 0; |
| } |
| |
| /* |
| * Public API to initialize the runtime gpt_config structure based on the values |
| * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization |
| * typically happens in a bootloader stage prior to setting up the EL3 runtime |
| * environment for the granule transition service so this function detects the |
| * initialization from a previous stage. Granule protection checks must be |
| * enabled already or this function will return an error. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| int gpt_runtime_init(void) |
| { |
| u_register_t reg; |
| |
| /* Ensure that MMU and Data caches are enabled. */ |
| assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U); |
| |
| /* Ensure GPC are already enabled. */ |
| if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) { |
| ERROR("[GPT] Granule protection checks are not enabled!\n"); |
| return -EPERM; |
| } |
| |
| /* |
| * Read the L0 table address from GPTBR, we don't need the L1 base |
| * address since those are included in the L0 tables as needed. |
| */ |
| reg = read_gptbr_el3(); |
| gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) & |
| GPTBR_BADDR_MASK) << |
| GPTBR_BADDR_VAL_SHIFT; |
| |
| /* Read GPCCR to get PGS and PPS values. */ |
| reg = read_gpccr_el3(); |
| gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK; |
| gpt_config.t = gpt_t_lookup[gpt_config.pps]; |
| gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK; |
| gpt_config.p = gpt_p_lookup[gpt_config.pgs]; |
| |
| VERBOSE("[GPT] Runtime Configuration\n"); |
| VERBOSE(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t); |
| VERBOSE(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p); |
| VERBOSE(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL); |
| VERBOSE(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base); |
| |
| return 0; |
| } |
| |
| /* |
| * The L1 descriptors are protected by a spinlock to ensure that multiple |
| * CPUs do not attempt to change the descriptors at once. In the future it |
| * would be better to have separate spinlocks for each L1 descriptor. |
| */ |
| static spinlock_t gpt_lock; |
| |
| /* |
| * A helper to write the value (target_pas << gpi_shift) to the index of |
| * the gpt_l1_addr |
| */ |
| static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr, |
| unsigned int gpi_shift, unsigned int idx, |
| unsigned int target_pas) |
| { |
| *gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift); |
| *gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift); |
| gpt_l1_addr[idx] = *gpt_l1_desc; |
| } |
| |
| /* |
| * Helper to retrieve the gpt_l1_* information from the base address |
| * returned in gpi_info |
| */ |
| static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info) |
| { |
| uint64_t gpt_l0_desc, *gpt_l0_base; |
| |
| gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)]; |
| if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) { |
| VERBOSE("[GPT] Granule is not covered by a table descriptor!\n"); |
| VERBOSE(" Base=0x%" PRIx64 "\n", base); |
| return -EINVAL; |
| } |
| |
| /* Get the table index and GPI shift from PA. */ |
| gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc); |
| gpi_info->idx = GPT_L1_IDX(gpt_config.p, base); |
| gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2; |
| |
| gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx]; |
| gpi_info->gpi = (gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) & |
| GPT_L1_GRAN_DESC_GPI_MASK; |
| return 0; |
| } |
| |
| /* |
| * This function is the granule transition delegate service. When a granule |
| * transition request occurs it is routed to this function to have the request, |
| * if valid, fulfilled following A1.1.1 Delegate of RME supplement |
| * |
| * TODO: implement support for transitioning multiple granules at once. |
| * |
| * Parameters |
| * base Base address of the region to transition, must be |
| * aligned to granule size. |
| * size Size of region to transition, must be aligned to granule |
| * size. |
| * src_sec_state Security state of the caller. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state) |
| { |
| gpi_info_t gpi_info; |
| uint64_t nse; |
| int res; |
| unsigned int target_pas; |
| |
| /* Ensure that the tables have been set up before taking requests. */ |
| assert(gpt_config.plat_gpt_l0_base != 0UL); |
| |
| /* Ensure that caches are enabled. */ |
| assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL); |
| |
| /* Delegate request can only come from REALM or SECURE */ |
| assert(src_sec_state == SMC_FROM_REALM || |
| src_sec_state == SMC_FROM_SECURE); |
| |
| /* See if this is a single or a range of granule transition. */ |
| if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) { |
| return -EINVAL; |
| } |
| |
| /* Check that base and size are valid */ |
| if ((ULONG_MAX - base) < size) { |
| VERBOSE("[GPT] Transition request address overflow!\n"); |
| VERBOSE(" Base=0x%" PRIx64 "\n", base); |
| VERBOSE(" Size=0x%lx\n", size); |
| return -EINVAL; |
| } |
| |
| /* Make sure base and size are valid. */ |
| if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) || |
| ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) || |
| (size == 0UL) || |
| ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) { |
| VERBOSE("[GPT] Invalid granule transition address range!\n"); |
| VERBOSE(" Base=0x%" PRIx64 "\n", base); |
| VERBOSE(" Size=0x%lx\n", size); |
| return -EINVAL; |
| } |
| |
| target_pas = GPT_GPI_REALM; |
| if (src_sec_state == SMC_FROM_SECURE) { |
| target_pas = GPT_GPI_SECURE; |
| } |
| |
| /* |
| * Access to L1 tables is controlled by a global lock to ensure |
| * that no more than one CPU is allowed to make changes at any |
| * given time. |
| */ |
| spin_lock(&gpt_lock); |
| res = get_gpi_params(base, &gpi_info); |
| if (res != 0) { |
| spin_unlock(&gpt_lock); |
| return res; |
| } |
| |
| /* Check that the current address is in NS state */ |
| if (gpi_info.gpi != GPT_GPI_NS) { |
| VERBOSE("[GPT] Only Granule in NS state can be delegated.\n"); |
| VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state, |
| gpi_info.gpi); |
| spin_unlock(&gpt_lock); |
| return -EPERM; |
| } |
| |
| if (src_sec_state == SMC_FROM_SECURE) { |
| nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT; |
| } else { |
| nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT; |
| } |
| |
| /* |
| * In order to maintain mutual distrust between Realm and Secure |
| * states, remove any data speculatively fetched into the target |
| * physical address space. Issue DC CIPAPA over address range |
| */ |
| if (is_feat_mte2_supported()) { |
| flush_dcache_to_popa_range_mte2(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } else { |
| flush_dcache_to_popa_range(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } |
| |
| write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr, |
| gpi_info.gpi_shift, gpi_info.idx, target_pas); |
| dsboshst(); |
| |
| gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| dsbosh(); |
| |
| nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT; |
| |
| if (is_feat_mte2_supported()) { |
| flush_dcache_to_popa_range_mte2(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } else { |
| flush_dcache_to_popa_range(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } |
| |
| /* Unlock access to the L1 tables. */ |
| spin_unlock(&gpt_lock); |
| |
| /* |
| * The isb() will be done as part of context |
| * synchronization when returning to lower EL |
| */ |
| VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n", |
| base, gpi_info.gpi, target_pas); |
| |
| return 0; |
| } |
| |
| /* |
| * This function is the granule transition undelegate service. When a granule |
| * transition request occurs it is routed to this function where the request is |
| * validated then fulfilled if possible. |
| * |
| * TODO: implement support for transitioning multiple granules at once. |
| * |
| * Parameters |
| * base Base address of the region to transition, must be |
| * aligned to granule size. |
| * size Size of region to transition, must be aligned to granule |
| * size. |
| * src_sec_state Security state of the caller. |
| * |
| * Return |
| * Negative Linux error code in the event of a failure, 0 for success. |
| */ |
| int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state) |
| { |
| gpi_info_t gpi_info; |
| uint64_t nse; |
| int res; |
| |
| /* Ensure that the tables have been set up before taking requests. */ |
| assert(gpt_config.plat_gpt_l0_base != 0UL); |
| |
| /* Ensure that MMU and caches are enabled. */ |
| assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL); |
| |
| /* Delegate request can only come from REALM or SECURE */ |
| assert(src_sec_state == SMC_FROM_REALM || |
| src_sec_state == SMC_FROM_SECURE); |
| |
| /* See if this is a single or a range of granule transition. */ |
| if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) { |
| return -EINVAL; |
| } |
| |
| /* Check that base and size are valid */ |
| if ((ULONG_MAX - base) < size) { |
| VERBOSE("[GPT] Transition request address overflow!\n"); |
| VERBOSE(" Base=0x%" PRIx64 "\n", base); |
| VERBOSE(" Size=0x%lx\n", size); |
| return -EINVAL; |
| } |
| |
| /* Make sure base and size are valid. */ |
| if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) || |
| ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) || |
| (size == 0UL) || |
| ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) { |
| VERBOSE("[GPT] Invalid granule transition address range!\n"); |
| VERBOSE(" Base=0x%" PRIx64 "\n", base); |
| VERBOSE(" Size=0x%lx\n", size); |
| return -EINVAL; |
| } |
| |
| /* |
| * Access to L1 tables is controlled by a global lock to ensure |
| * that no more than one CPU is allowed to make changes at any |
| * given time. |
| */ |
| spin_lock(&gpt_lock); |
| |
| res = get_gpi_params(base, &gpi_info); |
| if (res != 0) { |
| spin_unlock(&gpt_lock); |
| return res; |
| } |
| |
| /* Check that the current address is in the delegated state */ |
| if ((src_sec_state == SMC_FROM_REALM && |
| gpi_info.gpi != GPT_GPI_REALM) || |
| (src_sec_state == SMC_FROM_SECURE && |
| gpi_info.gpi != GPT_GPI_SECURE)) { |
| VERBOSE("[GPT] Only Granule in REALM or SECURE state can be undelegated.\n"); |
| VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state, |
| gpi_info.gpi); |
| spin_unlock(&gpt_lock); |
| return -EPERM; |
| } |
| |
| |
| /* In order to maintain mutual distrust between Realm and Secure |
| * states, remove access now, in order to guarantee that writes |
| * to the currently-accessible physical address space will not |
| * later become observable. |
| */ |
| write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr, |
| gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS); |
| dsboshst(); |
| |
| gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| dsbosh(); |
| |
| if (src_sec_state == SMC_FROM_SECURE) { |
| nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT; |
| } else { |
| nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT; |
| } |
| |
| /* Ensure that the scrubbed data has made it past the PoPA */ |
| if (is_feat_mte2_supported()) { |
| flush_dcache_to_popa_range_mte2(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } else { |
| flush_dcache_to_popa_range(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } |
| |
| /* |
| * Remove any data loaded speculatively |
| * in NS space from before the scrubbing |
| */ |
| nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT; |
| |
| if (is_feat_mte2_supported()) { |
| flush_dcache_to_popa_range_mte2(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } else { |
| flush_dcache_to_popa_range(nse | base, |
| GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| } |
| |
| /* Clear existing GPI encoding and transition granule. */ |
| write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr, |
| gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS); |
| dsboshst(); |
| |
| /* Ensure that all agents observe the new NS configuration */ |
| gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| dsbosh(); |
| |
| /* Unlock access to the L1 tables. */ |
| spin_unlock(&gpt_lock); |
| |
| /* |
| * The isb() will be done as part of context |
| * synchronization when returning to lower EL |
| */ |
| VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n", |
| base, gpi_info.gpi, GPT_GPI_NS); |
| |
| return 0; |
| } |