blob: 1c8c68f037bdbebbc7cd6cba2c72fc63a69ef9a5 [file] [log] [blame]
/*
* Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <inttypes.h>
#include <stdint.h>
#include "../../services/std_svc/spm/el3_spmc/spmc.h"
#include "../../services/std_svc/spm/el3_spmc/spmc_shared_mem.h"
#include <arch_features.h>
#include <arch_helpers.h>
#include <bl32/tsp/tsp.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include "ffa_helpers.h"
#include <lib/psci/psci.h>
#include <lib/spinlock.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>
#include <platform_tsp.h>
#include <services/ffa_svc.h>
#include "tsp_private.h"
#include <platform_def.h>
static ffa_endpoint_id16_t tsp_id, spmc_id;
uint8_t mem_region_buffer[4096 * 2] __aligned(PAGE_SIZE);
/* Partition Mailbox. */
static uint8_t send_page[PAGE_SIZE] __aligned(PAGE_SIZE);
static uint8_t recv_page[PAGE_SIZE] __aligned(PAGE_SIZE);
/*
* Declare a global mailbox for use within the TSP.
* This will be initialized appropriately when the buffers
* are mapped with the SPMC.
*/
static struct mailbox mailbox;
/*******************************************************************************
* This enum is used to handle test cases driven from the FF-A Test Driver.
******************************************************************************/
/* Keep in Sync with FF-A Test Driver. */
enum message_t {
/* Partition Only Messages. */
FF_A_RELAY_MESSAGE = 0,
/* Basic Functionality. */
FF_A_ECHO_MESSAGE,
FF_A_RELAY_MESSAGE_EL3,
/* Memory Sharing. */
FF_A_MEMORY_SHARE,
FF_A_MEMORY_SHARE_FRAGMENTED,
FF_A_MEMORY_LEND,
FF_A_MEMORY_LEND_FRAGMENTED,
FF_A_MEMORY_SHARE_MULTI_ENDPOINT,
FF_A_MEMORY_LEND_MULTI_ENDPOINT,
LAST,
FF_A_RUN_ALL = 255,
FF_A_OP_MAX = 256
};
#if SPMC_AT_EL3
extern void tsp_cpu_on_entry(void);
#endif
/*******************************************************************************
* Test Functions.
******************************************************************************/
/*******************************************************************************
* Enable the TSP to forward the received message to another partition and ask
* it to echo the value back in order to validate direct messages functionality.
******************************************************************************/
static int ffa_test_relay(uint64_t arg0,
uint64_t arg1,
uint64_t arg2,
uint64_t arg3,
uint64_t arg4,
uint64_t arg5,
uint64_t arg6,
uint64_t arg7)
{
smc_args_t ffa_forward_result;
ffa_endpoint_id16_t receiver = arg5;
ffa_forward_result = ffa_msg_send_direct_req(tsp_id,
receiver,
FF_A_ECHO_MESSAGE, arg4,
0, 0, 0);
return ffa_forward_result._regs[3];
}
/*******************************************************************************
* This function handles memory management tests, currently share and lend.
* This test supports the use of FRAG_RX to use memory descriptors that do not
* fit in a single 4KB buffer.
******************************************************************************/
static int test_memory_send(ffa_endpoint_id16_t sender, uint64_t handle,
ffa_mtd_flag32_t flags, bool multi_endpoint)
{
struct ffa_mtd *m;
struct ffa_emad_v1_0 *receivers;
struct ffa_comp_mrd *composite;
int ret, status = 0;
unsigned int mem_attrs;
char *ptr;
ffa_endpoint_id16_t source = sender;
uint32_t total_length, recv_length = 0;
/*
* In the case that we're testing multiple endpoints choose a partition
* ID that resides in the normal world so the SPMC won't detect it as
* invalid.
* TODO: Should get endpoint receiver id and flag as input from NWd.
*/
uint32_t receiver_count = multi_endpoint ? 2 : 1;
ffa_endpoint_id16_t test_receivers[2] = { tsp_id, 0x10 };
/* Ensure that the sender ID resides in the normal world. */
if (ffa_is_secure_world_id(sender)) {
ERROR("Invalid sender ID 0x%x.\n", sender);
return FFA_ERROR_DENIED;
}
if (!memory_retrieve(&mailbox, &m, handle, source, test_receivers,
receiver_count, flags, &recv_length,
&total_length)) {
return FFA_ERROR_INVALID_PARAMETER;
}
receivers = (struct ffa_emad_v1_0 *)
((uint8_t *) m + m->emad_offset);
while (total_length != recv_length) {
smc_args_t ffa_return;
uint32_t frag_length;
ffa_return = ffa_mem_frag_rx(handle, recv_length);
if (ffa_return._regs[0] == FFA_ERROR) {
WARN("TSP: failed to resume mem with handle %lx\n",
handle);
return ffa_return._regs[2];
}
frag_length = ffa_return._regs[3];
/* Validate frag_length is less than total_length and mailbox size. */
if (frag_length > total_length ||
frag_length > (mailbox.rxtx_page_count * PAGE_SIZE)) {
ERROR("Invalid parameters!\n");
return FFA_ERROR_INVALID_PARAMETER;
}
/* Validate frag_length is less than remaining mem_region_buffer size. */
if (frag_length + recv_length >= REGION_BUF_SIZE) {
ERROR("Out of memory!\n");
return FFA_ERROR_INVALID_PARAMETER;
}
memcpy(&mem_region_buffer[recv_length], mailbox.rx_buffer,
frag_length);
if (ffa_rx_release()) {
ERROR("Failed to release buffer!\n");
return FFA_ERROR_DENIED;
}
recv_length += frag_length;
assert(recv_length <= total_length);
}
composite = ffa_memory_region_get_composite(m, 0);
if (composite == NULL) {
WARN("Failed to get composite descriptor!\n");
return FFA_ERROR_INVALID_PARAMETER;
}
VERBOSE("Address: %p; page_count: %x %lx\n",
(void *)composite->address_range_array[0].address,
composite->address_range_array[0].page_count, PAGE_SIZE);
/* This test is only concerned with RW permissions. */
if (ffa_get_data_access_attr(
receivers[0].mapd.memory_access_permissions) != FFA_MEM_PERM_RW) {
ERROR("Data permission in retrieve response %x does not match share/lend %x!\n",
ffa_get_data_access_attr(receivers[0].mapd.memory_access_permissions),
FFA_MEM_PERM_RW);
return FFA_ERROR_INVALID_PARAMETER;
}
mem_attrs = MT_RW_DATA | MT_EXECUTE_NEVER;
/* Only expecting to be sent memory from NWd so map accordingly. */
mem_attrs |= MT_NS;
for (int32_t i = 0; i < (int32_t)composite->address_range_count; i++) {
size_t size = composite->address_range_array[i].page_count * PAGE_SIZE;
ptr = (char *) composite->address_range_array[i].address;
ret = mmap_add_dynamic_region(
(uint64_t)ptr,
(uint64_t)ptr,
size, mem_attrs);
if (ret != 0) {
ERROR("Failed [%d] mmap_add_dynamic_region %u (%lx) (%lx) (%x)!\n",
i, ret,
(uint64_t)composite->address_range_array[i].address,
size, mem_attrs);
/* Remove mappings previously created in this transaction. */
for (i--; i >= 0; i--) {
ret = mmap_remove_dynamic_region(
(uint64_t)composite->address_range_array[i].address,
composite->address_range_array[i].page_count * PAGE_SIZE);
if (ret != 0) {
ERROR("Failed [%d] mmap_remove_dynamic_region!\n", i);
panic();
}
}
return FFA_ERROR_NO_MEMORY;
}
/* Increment memory region for validation purposes. */
++(*ptr);
/*
* Read initial magic number from memory region for
* validation purposes.
*/
if (!i) {
status = *ptr;
}
}
for (uint32_t i = 0U; i < composite->address_range_count; i++) {
ret = mmap_remove_dynamic_region(
(uint64_t)composite->address_range_array[i].address,
composite->address_range_array[i].page_count * PAGE_SIZE);
if (ret != 0) {
ERROR("Failed [%d] mmap_remove_dynamic_region!\n", i);
return FFA_ERROR_NO_MEMORY;
}
}
if (!memory_relinquish((struct ffa_mem_relinquish_descriptor *)mailbox.tx_buffer,
m->handle, tsp_id)) {
ERROR("Failed to relinquish memory region!\n");
return FFA_ERROR_INVALID_PARAMETER;
}
return status;
}
static smc_args_t *send_ffa_pm_success(void)
{
return set_smc_args(FFA_MSG_SEND_DIRECT_RESP_SMC32,
((tsp_id & FFA_DIRECT_MSG_ENDPOINT_ID_MASK)
<< FFA_DIRECT_MSG_SOURCE_SHIFT) | spmc_id,
FFA_FWK_MSG_BIT |
(FFA_PM_MSG_PM_RESP & FFA_FWK_MSG_MASK),
0, 0, 0, 0, 0);
}
/*******************************************************************************
* This function performs any remaining book keeping in the test secure payload
* before this cpu is turned off in response to a psci cpu_off request.
******************************************************************************/
smc_args_t *tsp_cpu_off_main(uint64_t arg0,
uint64_t arg1,
uint64_t arg2,
uint64_t arg3,
uint64_t arg4,
uint64_t arg5,
uint64_t arg6,
uint64_t arg7)
{
uint32_t linear_id = plat_my_core_pos();
/*
* This cpu is being turned off, so disable the timer to prevent the
* secure timer interrupt from interfering with power down. A pending
* interrupt will be lost but we do not care as we are turning off.
*/
tsp_generic_timer_stop();
/* Update this cpu's statistics. */
tsp_stats[linear_id].smc_count++;
tsp_stats[linear_id].eret_count++;
tsp_stats[linear_id].cpu_off_count++;
VERBOSE("TSP: cpu 0x%lx off request\n", read_mpidr());
VERBOSE("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu off requests\n",
read_mpidr(),
tsp_stats[linear_id].smc_count,
tsp_stats[linear_id].eret_count,
tsp_stats[linear_id].cpu_off_count);
return send_ffa_pm_success();
}
/*******************************************************************************
* This function performs any book keeping in the test secure payload before
* this cpu's architectural state is saved in response to an earlier psci
* cpu_suspend request.
******************************************************************************/
smc_args_t *tsp_cpu_suspend_main(uint64_t arg0,
uint64_t arg1,
uint64_t arg2,
uint64_t arg3,
uint64_t arg4,
uint64_t arg5,
uint64_t arg6,
uint64_t arg7)
{
uint32_t linear_id = plat_my_core_pos();
/*
* Save the time context and disable it to prevent the secure timer
* interrupt from interfering with wakeup from the suspend state.
*/
tsp_generic_timer_save();
tsp_generic_timer_stop();
/* Update this cpu's statistics. */
tsp_stats[linear_id].smc_count++;
tsp_stats[linear_id].eret_count++;
tsp_stats[linear_id].cpu_suspend_count++;
VERBOSE("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu suspend requests\n",
read_mpidr(),
tsp_stats[linear_id].smc_count,
tsp_stats[linear_id].eret_count,
tsp_stats[linear_id].cpu_suspend_count);
return send_ffa_pm_success();
}
/*******************************************************************************
* This function performs any bookkeeping in the test secure payload after this
* cpu's architectural state has been restored after wakeup from an earlier psci
* cpu_suspend request.
******************************************************************************/
smc_args_t *tsp_cpu_resume_main(uint64_t max_off_pwrlvl,
uint64_t arg1,
uint64_t arg2,
uint64_t arg3,
uint64_t arg4,
uint64_t arg5,
uint64_t arg6,
uint64_t arg7)
{
uint32_t linear_id = plat_my_core_pos();
/* Restore the generic timer context. */
tsp_generic_timer_restore();
/* Update this cpu's statistics. */
tsp_stats[linear_id].smc_count++;
tsp_stats[linear_id].eret_count++;
tsp_stats[linear_id].cpu_resume_count++;
VERBOSE("TSP: cpu 0x%lx resumed. maximum off power level %" PRId64 "\n",
read_mpidr(), max_off_pwrlvl);
VERBOSE("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu resume requests\n",
read_mpidr(),
tsp_stats[linear_id].smc_count,
tsp_stats[linear_id].eret_count,
tsp_stats[linear_id].cpu_resume_count);
return send_ffa_pm_success();
}
/*******************************************************************************
* This function handles framework messages. Currently only PM.
******************************************************************************/
static smc_args_t *handle_framework_message(uint64_t arg0,
uint64_t arg1,
uint64_t arg2,
uint64_t arg3,
uint64_t arg4,
uint64_t arg5,
uint64_t arg6,
uint64_t arg7)
{
/* Check if it is a power management message from the SPMC. */
if (ffa_endpoint_source(arg1) != spmc_id) {
goto err;
}
/* Check if it is a PM request message. */
if ((arg2 & FFA_FWK_MSG_MASK) == FFA_FWK_MSG_PSCI) {
/* Check if it is a PSCI CPU_OFF request. */
if (arg3 == PSCI_CPU_OFF) {
return tsp_cpu_off_main(arg0, arg1, arg2, arg3,
arg4, arg5, arg6, arg7);
} else if (arg3 == PSCI_CPU_SUSPEND_AARCH64) {
return tsp_cpu_suspend_main(arg0, arg1, arg2, arg3,
arg4, arg5, arg6, arg7);
}
} else if ((arg2 & FFA_FWK_MSG_MASK) == FFA_PM_MSG_WB_REQ) {
/* Check it is a PSCI Warm Boot request. */
if (arg3 == FFA_WB_TYPE_NOTS2RAM) {
return tsp_cpu_resume_main(arg0, arg1, arg2, arg3,
arg4, arg5, arg6, arg7);
}
}
err:
ERROR("%s: Unknown framework message!\n", __func__);
panic();
}
/*******************************************************************************
* Handles partition messages. Exercised from the FF-A Test Driver.
******************************************************************************/
static smc_args_t *handle_partition_message(uint64_t arg0,
uint64_t arg1,
uint64_t arg2,
uint64_t arg3,
uint64_t arg4,
uint64_t arg5,
uint64_t arg6,
uint64_t arg7)
{
uint16_t sender = ffa_endpoint_source(arg1);
uint16_t receiver = ffa_endpoint_destination(arg1);
int status = -1;
const bool multi_endpoint = true;
switch (arg3) {
case FF_A_MEMORY_SHARE:
INFO("TSP Tests: Memory Share Request--\n");
status = test_memory_send(sender, arg4, FFA_FLAG_SHARE_MEMORY, !multi_endpoint);
break;
case FF_A_MEMORY_LEND:
INFO("TSP Tests: Memory Lend Request--\n");
status = test_memory_send(sender, arg4, FFA_FLAG_LEND_MEMORY, !multi_endpoint);
break;
case FF_A_MEMORY_SHARE_MULTI_ENDPOINT:
INFO("TSP Tests: Multi Endpoint Memory Share Request--\n");
status = test_memory_send(sender, arg4, FFA_FLAG_SHARE_MEMORY, multi_endpoint);
break;
case FF_A_MEMORY_LEND_MULTI_ENDPOINT:
INFO("TSP Tests: Multi Endpoint Memory Lend Request--\n");
status = test_memory_send(sender, arg4, FFA_FLAG_LEND_MEMORY, multi_endpoint);
break;
case FF_A_RELAY_MESSAGE:
INFO("TSP Tests: Relaying message--\n");
status = ffa_test_relay(arg0, arg1, arg2, arg3, arg4,
arg5, arg6, arg7);
break;
case FF_A_ECHO_MESSAGE:
INFO("TSP Tests: echo message--\n");
status = arg4;
break;
default:
INFO("TSP Tests: Unknown request ID %d--\n", (int) arg3);
}
/* Swap the sender and receiver in the response. */
return ffa_msg_send_direct_resp(receiver, sender, status, 0, 0, 0, 0);
}
/*******************************************************************************
* This function implements the event loop for handling FF-A ABI invocations.
******************************************************************************/
static smc_args_t *tsp_event_loop(uint64_t smc_fid,
uint64_t arg1,
uint64_t arg2,
uint64_t arg3,
uint64_t arg4,
uint64_t arg5,
uint64_t arg6,
uint64_t arg7)
{
/* Panic if the SPMC did not forward an FF-A call. */
if (!is_ffa_fid(smc_fid)) {
ERROR("%s: Unknown SMC FID (0x%lx)\n", __func__, smc_fid);
panic();
}
switch (smc_fid) {
case FFA_INTERRUPT:
/*
* IRQs were enabled upon re-entry into the TSP. The interrupt
* must have been handled by now. Return to the SPMC indicating
* the same.
*/
return set_smc_args(FFA_MSG_WAIT, 0, 0, 0, 0, 0, 0, 0);
case FFA_MSG_SEND_DIRECT_REQ_SMC64:
case FFA_MSG_SEND_DIRECT_REQ_SMC32:
/* Check if a framework message, handle accordingly. */
if ((arg2 & FFA_FWK_MSG_BIT)) {
return handle_framework_message(smc_fid, arg1, arg2, arg3,
arg4, arg5, arg6, arg7);
}
return handle_partition_message(smc_fid, arg1, arg2, arg3,
arg4, arg5, arg6, arg7);
}
ERROR("%s: Unsupported FF-A FID (0x%lx)\n", __func__, smc_fid);
panic();
}
static smc_args_t *tsp_loop(smc_args_t *args)
{
smc_args_t ret;
do {
/* --------------------------------------------
* Mask FIQ interrupts to avoid preemption
* in case EL3 SPMC delegates an IRQ next or a
* managed exit. Lastly, unmask IRQs so that
* they can be handled immediately upon re-entry.
* ---------------------------------------------
*/
write_daifset(DAIF_FIQ_BIT);
write_daifclr(DAIF_IRQ_BIT);
ret = smc_helper(args->_regs[0], args->_regs[1], args->_regs[2],
args->_regs[3], args->_regs[4], args->_regs[5],
args->_regs[6], args->_regs[7]);
args = tsp_event_loop(ret._regs[0], ret._regs[1], ret._regs[2],
ret._regs[3], ret._regs[4], ret._regs[5],
ret._regs[6], ret._regs[7]);
} while (1);
/* Not Reached. */
return NULL;
}
/*******************************************************************************
* TSP main entry point where it gets the opportunity to initialize its secure
* state/applications. Once the state is initialized, it must return to the
* SPD with a pointer to the 'tsp_vector_table' jump table.
******************************************************************************/
uint64_t tsp_main(void)
{
smc_args_t smc_args = {0};
NOTICE("TSP: %s\n", version_string);
NOTICE("TSP: %s\n", build_message);
INFO("TSP: Total memory base : 0x%lx\n", (unsigned long) BL32_BASE);
INFO("TSP: Total memory size : 0x%lx bytes\n", BL32_TOTAL_SIZE);
uint32_t linear_id = plat_my_core_pos();
/* Initialize the platform. */
tsp_platform_setup();
/* Initialize secure/applications state here. */
tsp_generic_timer_start();
/* Register secondary entrypoint with the SPMC. */
smc_args = smc_helper(FFA_SECONDARY_EP_REGISTER_SMC64,
(uint64_t) tsp_cpu_on_entry,
0, 0, 0, 0, 0, 0);
if (smc_args._regs[SMC_ARG0] != FFA_SUCCESS_SMC32) {
ERROR("TSP could not register secondary ep (0x%lx)\n",
smc_args._regs[2]);
panic();
}
/* Get TSP's endpoint id. */
smc_args = smc_helper(FFA_ID_GET, 0, 0, 0, 0, 0, 0, 0);
if (smc_args._regs[SMC_ARG0] != FFA_SUCCESS_SMC32) {
ERROR("TSP could not get own ID (0x%lx) on core%d\n",
smc_args._regs[2], linear_id);
panic();
}
tsp_id = smc_args._regs[2];
INFO("TSP FF-A endpoint id = 0x%x\n", tsp_id);
/* Get the SPMC ID. */
smc_args = smc_helper(FFA_SPM_ID_GET, 0, 0, 0, 0, 0, 0, 0);
if (smc_args._regs[SMC_ARG0] != FFA_SUCCESS_SMC32) {
ERROR("TSP could not get SPMC ID (0x%lx) on core%d\n",
smc_args._regs[2], linear_id);
panic();
}
spmc_id = smc_args._regs[2];
/* Call RXTX_MAP to map a 4k RX and TX buffer. */
if (ffa_rxtx_map((uintptr_t) send_page,
(uintptr_t) recv_page, 1)) {
ERROR("TSP could not map it's RX/TX Buffers\n");
panic();
}
mailbox.tx_buffer = send_page;
mailbox.rx_buffer = recv_page;
mailbox.rxtx_page_count = 1;
/* Update this cpu's statistics. */
tsp_stats[linear_id].smc_count++;
tsp_stats[linear_id].eret_count++;
tsp_stats[linear_id].cpu_on_count++;
VERBOSE("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu on requests\n",
read_mpidr(),
tsp_stats[linear_id].smc_count,
tsp_stats[linear_id].eret_count,
tsp_stats[linear_id].cpu_on_count);
/* Tell SPMD that we are done initialising. */
tsp_loop(set_smc_args(FFA_MSG_WAIT, 0, 0, 0, 0, 0, 0, 0));
/* Not reached. */
return 0;
}
/*******************************************************************************
* This function performs any remaining book keeping in the test secure payload
* after this cpu's architectural state has been setup in response to an earlier
* psci cpu_on request.
******************************************************************************/
smc_args_t *tsp_cpu_on_main(void)
{
uint32_t linear_id = plat_my_core_pos();
/* Initialize secure/applications state here. */
tsp_generic_timer_start();
/* Update this cpu's statistics. */
tsp_stats[linear_id].smc_count++;
tsp_stats[linear_id].eret_count++;
tsp_stats[linear_id].cpu_on_count++;
VERBOSE("TSP: cpu 0x%lx turned on\n", read_mpidr());
VERBOSE("TSP: cpu 0x%lx: %d smcs, %d erets %d cpu on requests\n",
read_mpidr(),
tsp_stats[linear_id].smc_count,
tsp_stats[linear_id].eret_count,
tsp_stats[linear_id].cpu_on_count);
/* ---------------------------------------------
* Jump to the main event loop to return to EL3
* and be ready for the next request on this cpu.
* ---------------------------------------------
*/
return tsp_loop(set_smc_args(FFA_MSG_WAIT, 0, 0, 0, 0, 0, 0, 0));
}