blob: 1fdb4846ceb0412cb21fa749d174726546bd4b45 [file] [log] [blame]
/*
* Copyright (C) 2018-2021 Marvell International Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
#include <errno.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <mvebu.h>
#include <mvebu_def.h>
#include <plat_marvell.h>
#include "phy-comphy-3700.h"
#include "phy-comphy-common.h"
/*
* COMPHY_INDIRECT_REG points to ahci address space but the ahci region used in
* Linux is up to 0x178 so none will access it from Linux in runtime
* concurrently.
*/
#define COMPHY_INDIRECT_REG (MVEBU_REGS_BASE + 0xE0178)
/* The USB3_GBE1_PHY range is above USB3 registers used in dts */
#define USB3_GBE1_PHY (MVEBU_REGS_BASE + 0x5C000)
#define COMPHY_SD_ADDR (MVEBU_REGS_BASE + 0x1F000)
struct sgmii_phy_init_data_fix {
uint16_t addr;
uint16_t value;
};
/* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
{0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
{0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
{0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
{0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
{0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
{0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
{0x104, 0x0C10}
};
/* 40M1G25 mode init data */
static uint16_t sgmii_phy_init[512] = {
/* 0 1 2 3 4 5 6 7 */
/*-----------------------------------------------------------*/
/* 8 9 A B C D E F */
0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */
0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */
0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */
0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */
0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */
0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */
0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */
0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */
0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */
0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */
0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */
0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */
0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */
0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */
0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */
0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */
0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */
0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */
0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */
0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */
0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */
0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */
0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */
0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */
0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */
0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */
0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */
0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */
0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */
0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */
0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */
0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */
0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */
};
/* PHY selector configures with corresponding modes */
static int mvebu_a3700_comphy_set_phy_selector(uint8_t comphy_index,
uint32_t comphy_mode)
{
uint32_t reg;
int mode = COMPHY_GET_MODE(comphy_mode);
reg = mmio_read_32(MVEBU_COMPHY_REG_BASE + COMPHY_SELECTOR_PHY_REG);
switch (mode) {
case (COMPHY_SATA_MODE):
/* SATA must be in Lane2 */
if (comphy_index == COMPHY_LANE2)
reg &= ~COMPHY_SELECTOR_USB3_PHY_SEL_BIT;
else
goto error;
break;
case (COMPHY_SGMII_MODE):
case (COMPHY_2500BASEX_MODE):
if (comphy_index == COMPHY_LANE0)
reg &= ~COMPHY_SELECTOR_USB3_GBE1_SEL_BIT;
else if (comphy_index == COMPHY_LANE1)
reg &= ~COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT;
else
goto error;
break;
case (COMPHY_USB3H_MODE):
case (COMPHY_USB3D_MODE):
case (COMPHY_USB3_MODE):
if (comphy_index == COMPHY_LANE2)
reg |= COMPHY_SELECTOR_USB3_PHY_SEL_BIT;
else if (comphy_index == COMPHY_LANE0)
reg |= COMPHY_SELECTOR_USB3_GBE1_SEL_BIT;
else
goto error;
break;
case (COMPHY_PCIE_MODE):
/* PCIE must be in Lane1 */
if (comphy_index == COMPHY_LANE1)
reg |= COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT;
else
goto error;
break;
default:
goto error;
}
mmio_write_32(MVEBU_COMPHY_REG_BASE + COMPHY_SELECTOR_PHY_REG, reg);
return 0;
error:
ERROR("COMPHY[%d] mode[%d] is invalid\n", comphy_index, mode);
return -EINVAL;
}
/*
* This is something like the inverse of the previous function: for given
* lane it returns COMPHY_*_MODE.
*
* It is useful when powering the phy off.
*
* This function returns COMPHY_USB3_MODE even if the phy was configured
* with COMPHY_USB3D_MODE or COMPHY_USB3H_MODE. (The usb3 phy initialization
* code does not differentiate between these modes.)
* Also it returns COMPHY_SGMII_MODE even if the phy was configures with
* COMPHY_2500BASEX_MODE. (The sgmii phy initialization code does differentiate
* between these modes, but it is irrelevant when powering the phy off.)
*/
static int mvebu_a3700_comphy_get_mode(uint8_t comphy_index)
{
uint32_t reg;
reg = mmio_read_32(MVEBU_COMPHY_REG_BASE + COMPHY_SELECTOR_PHY_REG);
switch (comphy_index) {
case COMPHY_LANE0:
if ((reg & COMPHY_SELECTOR_USB3_GBE1_SEL_BIT) != 0)
return COMPHY_USB3_MODE;
else
return COMPHY_SGMII_MODE;
case COMPHY_LANE1:
if ((reg & COMPHY_SELECTOR_PCIE_GBE0_SEL_BIT) != 0)
return COMPHY_PCIE_MODE;
else
return COMPHY_SGMII_MODE;
case COMPHY_LANE2:
if ((reg & COMPHY_SELECTOR_USB3_PHY_SEL_BIT) != 0)
return COMPHY_USB3_MODE;
else
return COMPHY_SATA_MODE;
}
return COMPHY_UNUSED;
}
/* It is only used for SATA and USB3 on comphy lane2. */
static void comphy_set_indirect(uintptr_t addr, uint32_t offset, uint16_t data,
uint16_t mask, bool is_sata)
{
/*
* When Lane 2 PHY is for USB3, access the PHY registers
* through indirect Address and Data registers:
* INDIR_ACC_PHY_ADDR (RD00E0178h [31:0]),
* INDIR_ACC_PHY_DATA (RD00E017Ch [31:0]),
* within the SATA Host Controller registers, Lane 2 base register
* offset is 0x200
*/
if (is_sata) {
mmio_write_32(addr + COMPHY_LANE2_INDIR_ADDR_OFFSET, offset);
} else {
mmio_write_32(addr + COMPHY_LANE2_INDIR_ADDR_OFFSET,
offset + USB3PHY_LANE2_REG_BASE_OFFSET);
}
reg_set(addr + COMPHY_LANE2_INDIR_DATA_OFFSET, data, mask);
}
/* It is only used for SATA on comphy lane2. */
static void comphy_sata_set_indirect(uintptr_t addr, uint32_t reg_offset,
uint16_t data, uint16_t mask)
{
comphy_set_indirect(addr, reg_offset, data, mask, true);
}
/* It is only used for USB3 indirect access on comphy lane2. */
static void comphy_usb3_set_indirect(uintptr_t addr, uint32_t reg_offset,
uint16_t data, uint16_t mask)
{
comphy_set_indirect(addr, reg_offset, data, mask, false);
}
/* It is only used for USB3 direct access not on comphy lane2. */
static void comphy_usb3_set_direct(uintptr_t addr, uint32_t reg_offset,
uint16_t data, uint16_t mask)
{
reg_set16((reg_offset * PHY_SHFT(USB3) + addr), data, mask);
}
static void comphy_sgmii_phy_init(uintptr_t sd_ip_addr, bool is_1gbps)
{
const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
int addr, fix_idx;
uint16_t val;
fix_idx = 0;
for (addr = 0; addr < 512; addr++) {
/*
* All PHY register values are defined in full for 3.125Gbps
* SERDES speed. The values required for 1.25 Gbps are almost
* the same and only few registers should be "fixed" in
* comparison to 3.125 Gbps values. These register values are
* stored in "sgmii_phy_init_fix" array.
*/
if (!is_1gbps && sgmii_phy_init_fix[fix_idx].addr == addr) {
/* Use new value */
val = sgmii_phy_init_fix[fix_idx].value;
if (fix_idx < fix_arr_sz)
fix_idx++;
} else {
val = sgmii_phy_init[addr];
}
reg_set16(SGMIIPHY_ADDR(addr, sd_ip_addr), val, 0xFFFF);
}
}
static int mvebu_a3700_comphy_sata_power_on(uint8_t comphy_index,
uint32_t comphy_mode)
{
int ret;
uint32_t offset, data = 0, ref_clk;
uintptr_t comphy_indir_regs = COMPHY_INDIRECT_REG;
int invert = COMPHY_GET_POLARITY_INVERT(comphy_mode);
debug_enter();
/* Configure phy selector for SATA */
ret = mvebu_a3700_comphy_set_phy_selector(comphy_index, comphy_mode);
if (ret) {
return ret;
}
/* Clear phy isolation mode to make it work in normal mode */
offset = COMPHY_ISOLATION_CTRL_REG + SATAPHY_LANE2_REG_BASE_OFFSET;
comphy_sata_set_indirect(comphy_indir_regs, offset, 0, PHY_ISOLATE_MODE);
/* 0. Check the Polarity invert bits */
if (invert & COMPHY_POLARITY_TXD_INVERT)
data |= TXD_INVERT_BIT;
if (invert & COMPHY_POLARITY_RXD_INVERT)
data |= RXD_INVERT_BIT;
offset = COMPHY_SYNC_PATTERN_REG + SATAPHY_LANE2_REG_BASE_OFFSET;
comphy_sata_set_indirect(comphy_indir_regs, offset, data, TXD_INVERT_BIT |
RXD_INVERT_BIT);
/* 1. Select 40-bit data width width */
offset = COMPHY_DIG_LOOPBACK_EN + SATAPHY_LANE2_REG_BASE_OFFSET;
comphy_sata_set_indirect(comphy_indir_regs, offset, DATA_WIDTH_40BIT,
SEL_DATA_WIDTH_MASK);
/* 2. Select reference clock(25M) and PHY mode (SATA) */
offset = COMPHY_POWER_PLL_CTRL + SATAPHY_LANE2_REG_BASE_OFFSET;
if (get_ref_clk() == 40)
ref_clk = REF_FREF_SEL_SERDES_40MHZ;
else
ref_clk = REF_FREF_SEL_SERDES_25MHZ;
comphy_sata_set_indirect(comphy_indir_regs, offset, ref_clk | PHY_MODE_SATA,
REF_FREF_SEL_MASK | PHY_MODE_MASK);
/* 3. Use maximum PLL rate (no power save) */
offset = COMPHY_KVCO_CAL_CTRL + SATAPHY_LANE2_REG_BASE_OFFSET;
comphy_sata_set_indirect(comphy_indir_regs, offset, USE_MAX_PLL_RATE_BIT,
USE_MAX_PLL_RATE_BIT);
/* 4. Reset reserved bit */
comphy_sata_set_indirect(comphy_indir_regs, COMPHY_RESERVED_REG, 0,
PHYCTRL_FRM_PIN_BIT);
/* 5. Set vendor-specific configuration (It is done in sata driver) */
/* XXX: in U-Boot below sequence was executed in this place, in Linux
* not. Now it is done only in U-Boot before this comphy
* initialization - tests shows that it works ok, but in case of any
* future problem it is left for reference.
* reg_set(MVEBU_REGS_BASE + 0xe00a0, 0, 0xffffffff);
* reg_set(MVEBU_REGS_BASE + 0xe00a4, BIT(6), BIT(6));
*/
/* Wait for > 55 us to allow PLL be enabled */
udelay(PLL_SET_DELAY_US);
/* Polling status */
mmio_write_32(comphy_indir_regs + COMPHY_LANE2_INDIR_ADDR_OFFSET,
COMPHY_DIG_LOOPBACK_EN + SATAPHY_LANE2_REG_BASE_OFFSET);
ret = polling_with_timeout(comphy_indir_regs +
COMPHY_LANE2_INDIR_DATA_OFFSET,
PLL_READY_TX_BIT, PLL_READY_TX_BIT,
COMPHY_PLL_TIMEOUT, REG_32BIT);
if (ret) {
return -ETIMEDOUT;
}
debug_exit();
return 0;
}
static int mvebu_a3700_comphy_sgmii_power_on(uint8_t comphy_index,
uint32_t comphy_mode)
{
int ret;
uint32_t mask, data;
uintptr_t offset;
uintptr_t sd_ip_addr;
int mode = COMPHY_GET_MODE(comphy_mode);
int invert = COMPHY_GET_POLARITY_INVERT(comphy_mode);
debug_enter();
/* Set selector */
ret = mvebu_a3700_comphy_set_phy_selector(comphy_index, comphy_mode);
if (ret) {
return ret;
}
/* Serdes IP Base address
* COMPHY Lane0 -- USB3/GBE1
* COMPHY Lane1 -- PCIe/GBE0
*/
if (comphy_index == COMPHY_LANE0) {
/* Get usb3 and gbe */
sd_ip_addr = USB3_GBE1_PHY;
} else
sd_ip_addr = COMPHY_SD_ADDR;
/*
* 1. Reset PHY by setting PHY input port PIN_RESET=1.
* 2. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
* PHY TXP/TXN output to idle state during PHY initialization
* 3. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
*/
data = PIN_PU_IVREF_BIT | PIN_TX_IDLE_BIT | PIN_RESET_COMPHY_BIT;
mask = data | PIN_RESET_CORE_BIT | PIN_PU_PLL_BIT | PIN_PU_RX_BIT |
PIN_PU_TX_BIT;
offset = MVEBU_COMPHY_REG_BASE + COMPHY_PHY_CFG1_OFFSET(comphy_index);
reg_set(offset, data, mask);
/* 4. Release reset to the PHY by setting PIN_RESET=0. */
data = 0;
mask = PIN_RESET_COMPHY_BIT;
reg_set(offset, data, mask);
/*
* 5. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide COMPHY
* bit rate
*/
if (mode == COMPHY_SGMII_MODE) {
/* SGMII 1G, SerDes speed 1.25G */
data |= SD_SPEED_1_25_G << GEN_RX_SEL_OFFSET;
data |= SD_SPEED_1_25_G << GEN_TX_SEL_OFFSET;
} else if (mode == COMPHY_2500BASEX_MODE) {
/* 2500Base-X, SerDes speed 3.125G */
data |= SD_SPEED_3_125_G << GEN_RX_SEL_OFFSET;
data |= SD_SPEED_3_125_G << GEN_TX_SEL_OFFSET;
} else {
/* Other rates are not supported */
ERROR("unsupported SGMII speed on comphy lane%d\n",
comphy_index);
return -EINVAL;
}
mask = GEN_RX_SEL_MASK | GEN_TX_SEL_MASK;
reg_set(offset, data, mask);
/*
* 6. Wait 10mS for bandgap and reference clocks to stabilize; then
* start SW programming.
*/
mdelay(10);
/* 7. Program COMPHY register PHY_MODE */
data = PHY_MODE_SGMII;
mask = PHY_MODE_MASK;
reg_set16(SGMIIPHY_ADDR(COMPHY_POWER_PLL_CTRL, sd_ip_addr), data, mask);
/*
* 8. Set COMPHY register REFCLK_SEL to select the correct REFCLK
* source
*/
data = 0;
mask = PHY_REF_CLK_SEL;
reg_set16(SGMIIPHY_ADDR(COMPHY_MISC_REG0_ADDR, sd_ip_addr), data, mask);
/*
* 9. Set correct reference clock frequency in COMPHY register
* REF_FREF_SEL.
*/
if (get_ref_clk() == 40)
data = REF_FREF_SEL_SERDES_50MHZ;
else
data = REF_FREF_SEL_SERDES_25MHZ;
mask = REF_FREF_SEL_MASK;
reg_set16(SGMIIPHY_ADDR(COMPHY_POWER_PLL_CTRL, sd_ip_addr), data, mask);
/* 10. Program COMPHY register PHY_GEN_MAX[1:0]
* This step is mentioned in the flow received from verification team.
* However the PHY_GEN_MAX value is only meaningful for other interfaces
* (not SGMII). For instance, it selects SATA speed 1.5/3/6 Gbps or PCIe
* speed 2.5/5 Gbps
*/
/*
* 11. Program COMPHY register SEL_BITS to set correct parallel data
* bus width
*/
data = DATA_WIDTH_10BIT;
mask = SEL_DATA_WIDTH_MASK;
reg_set16(SGMIIPHY_ADDR(COMPHY_DIG_LOOPBACK_EN, sd_ip_addr),
data, mask);
/*
* 12. As long as DFE function needs to be enabled in any mode,
* COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
* for real chip during COMPHY power on.
* The step 14 exists (and empty) in the original initialization flow
* obtained from the verification team. According to the functional
* specification DFE_UPDATE_EN already has the default value 0x3F
*/
/*
* 13. Program COMPHY GEN registers.
* These registers should be programmed based on the lab testing result
* to achieve optimal performance. Please contact the CEA group to get
* the related GEN table during real chip bring-up. We only required to
* run though the entire registers programming flow defined by
* "comphy_sgmii_phy_init" when the REF clock is 40 MHz. For REF clock
* 25 MHz the default values stored in PHY registers are OK.
*/
debug("Running C-DPI phy init %s mode\n",
mode == COMPHY_2500BASEX_MODE ? "2G5" : "1G");
if (get_ref_clk() == 40)
comphy_sgmii_phy_init(sd_ip_addr, mode != COMPHY_2500BASEX_MODE);
/*
* 14. [Simulation Only] should not be used for real chip.
* By pass power up calibration by programming EXT_FORCE_CAL_DONE
* (R02h[9]) to 1 to shorten COMPHY simulation time.
*/
/*
* 15. [Simulation Only: should not be used for real chip]
* Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX training
* simulation time.
*/
/*
* 16. Check the PHY Polarity invert bit
*/
data = 0x0;
if (invert & COMPHY_POLARITY_TXD_INVERT)
data |= TXD_INVERT_BIT;
if (invert & COMPHY_POLARITY_RXD_INVERT)
data |= RXD_INVERT_BIT;
mask = TXD_INVERT_BIT | RXD_INVERT_BIT;
reg_set16(SGMIIPHY_ADDR(COMPHY_SYNC_PATTERN_REG, sd_ip_addr), data, mask);
/*
* 17. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1 to
* start PHY power up sequence. All the PHY register programming should
* be done before PIN_PU_PLL=1. There should be no register programming
* for normal PHY operation from this point.
*/
reg_set(MVEBU_COMPHY_REG_BASE + COMPHY_PHY_CFG1_OFFSET(comphy_index),
PIN_PU_PLL_BIT | PIN_PU_RX_BIT | PIN_PU_TX_BIT,
PIN_PU_PLL_BIT | PIN_PU_RX_BIT | PIN_PU_TX_BIT);
/*
* 18. Wait for PHY power up sequence to finish by checking output ports
* PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
*/
ret = polling_with_timeout(MVEBU_COMPHY_REG_BASE +
COMPHY_PHY_STATUS_OFFSET(comphy_index),
PHY_PLL_READY_TX_BIT | PHY_PLL_READY_RX_BIT,
PHY_PLL_READY_TX_BIT | PHY_PLL_READY_RX_BIT,
COMPHY_PLL_TIMEOUT, REG_32BIT);
if (ret) {
ERROR("Failed to lock PLL for SGMII PHY %d\n", comphy_index);
return -ETIMEDOUT;
}
/*
* 19. Set COMPHY input port PIN_TX_IDLE=0
*/
reg_set(MVEBU_COMPHY_REG_BASE + COMPHY_PHY_CFG1_OFFSET(comphy_index),
0x0, PIN_TX_IDLE_BIT);
/*
* 20. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1. To
* start RX initialization. PIN_RX_INIT_DONE will be cleared to 0 by the
* PHY After RX initialization is done, PIN_RX_INIT_DONE will be set to
* 1 by COMPHY Set PIN_RX_INIT=0 after PIN_RX_INIT_DONE= 1. Please
* refer to RX initialization part for details.
*/
reg_set(MVEBU_COMPHY_REG_BASE + COMPHY_PHY_CFG1_OFFSET(comphy_index),
PHY_RX_INIT_BIT, PHY_RX_INIT_BIT);
ret = polling_with_timeout(MVEBU_COMPHY_REG_BASE +
COMPHY_PHY_STATUS_OFFSET(comphy_index),
PHY_PLL_READY_TX_BIT | PHY_PLL_READY_RX_BIT,
PHY_PLL_READY_TX_BIT | PHY_PLL_READY_RX_BIT,
COMPHY_PLL_TIMEOUT, REG_32BIT);
if (ret) {
ERROR("Failed to lock PLL for SGMII PHY %d\n", comphy_index);
return -ETIMEDOUT;
}
ret = polling_with_timeout(MVEBU_COMPHY_REG_BASE +
COMPHY_PHY_STATUS_OFFSET(comphy_index),
PHY_RX_INIT_DONE_BIT, PHY_RX_INIT_DONE_BIT,
COMPHY_PLL_TIMEOUT, REG_32BIT);
if (ret) {
ERROR("Failed to init RX of SGMII PHY %d\n", comphy_index);
return -ETIMEDOUT;
}
debug_exit();
return 0;
}
static int mvebu_a3700_comphy_sgmii_power_off(uint8_t comphy_index)
{
uintptr_t offset;
uint32_t mask, data;
debug_enter();
data = PIN_RESET_CORE_BIT | PIN_RESET_COMPHY_BIT;
mask = data;
offset = MVEBU_COMPHY_REG_BASE + COMPHY_PHY_CFG1_OFFSET(comphy_index);
reg_set(offset, data, mask);
debug_exit();
return 0;
}
static int mvebu_a3700_comphy_usb3_power_on(uint8_t comphy_index,
uint32_t comphy_mode)
{
int ret;
uintptr_t reg_base = 0;
uintptr_t addr;
uint32_t mask, data, cfg, ref_clk;
void (*usb3_reg_set)(uintptr_t addr, uint32_t reg_offset, uint16_t data,
uint16_t mask);
int invert = COMPHY_GET_POLARITY_INVERT(comphy_mode);
debug_enter();
/* Set phy seclector */
ret = mvebu_a3700_comphy_set_phy_selector(comphy_index, comphy_mode);
if (ret) {
return ret;
}
/* Set usb3 reg access func, Lane2 is indirect access */
if (comphy_index == COMPHY_LANE2) {
usb3_reg_set = &comphy_usb3_set_indirect;
reg_base = COMPHY_INDIRECT_REG;
} else {
/* Get the direct access register resource and map */
usb3_reg_set = &comphy_usb3_set_direct;
reg_base = USB3_GBE1_PHY;
}
/*
* 0. Set PHY OTG Control(0x5d034), bit 4, Power up OTG module The
* register belong to UTMI module, so it is set in UTMI phy driver.
*/
/*
* 1. Set PRD_TXDEEMPH (3.5db de-emph)
*/
mask = PRD_TXDEEMPH0_MASK | PRD_TXMARGIN_MASK | PRD_TXSWING_MASK |
CFG_TX_ALIGN_POS_MASK;
usb3_reg_set(reg_base, COMPHY_REG_LANE_CFG0_ADDR, PRD_TXDEEMPH0_MASK,
mask);
/*
* 2. Set BIT0: enable transmitter in high impedance mode
* Set BIT[3:4]: delay 2 clock cycles for HiZ off latency
* Set BIT6: Tx detect Rx at HiZ mode
* Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db
* together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR register
*/
mask = PRD_TXDEEMPH1_MASK | TX_DET_RX_MODE | GEN2_TX_DATA_DLY_MASK |
TX_ELEC_IDLE_MODE_EN;
data = TX_DET_RX_MODE | GEN2_TX_DATA_DLY_DEFT | TX_ELEC_IDLE_MODE_EN;
usb3_reg_set(reg_base, COMPHY_REG_LANE_CFG1_ADDR, data, mask);
/*
* 3. Set Spread Spectrum Clock Enabled
*/
usb3_reg_set(reg_base, COMPHY_REG_LANE_CFG4_ADDR,
SPREAD_SPECTRUM_CLK_EN, SPREAD_SPECTRUM_CLK_EN);
/*
* 4. Set Override Margining Controls From the MAC:
* Use margining signals from lane configuration
*/
usb3_reg_set(reg_base, COMPHY_REG_TEST_MODE_CTRL_ADDR,
MODE_MARGIN_OVERRIDE, REG_16_BIT_MASK);
/*
* 5. Set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles
* set Mode Clock Source = PCLK is generated from REFCLK
*/
usb3_reg_set(reg_base, COMPHY_REG_GLOB_CLK_SRC_LO_ADDR, 0x0,
(MODE_CLK_SRC | BUNDLE_PERIOD_SEL | BUNDLE_PERIOD_SCALE |
BUNDLE_SAMPLE_CTRL | PLL_READY_DLY));
/*
* 6. Set G2 Spread Spectrum Clock Amplitude at 4K
*/
usb3_reg_set(reg_base, COMPHY_REG_GEN2_SET_2,
G2_TX_SSC_AMP_VALUE_20, G2_TX_SSC_AMP_MASK);
/*
* 7. Unset G3 Spread Spectrum Clock Amplitude
* set G3 TX and RX Register Master Current Select
*/
mask = G3_TX_SSC_AMP_MASK | G3_VREG_RXTX_MAS_ISET_MASK |
RSVD_PH03FH_6_0_MASK;
usb3_reg_set(reg_base, COMPHY_REG_GEN3_SET_2,
G3_VREG_RXTX_MAS_ISET_60U, mask);
/*
* 8. Check crystal jumper setting and program the Power and PLL Control
* accordingly Change RX wait
*/
if (get_ref_clk() == 40) {
ref_clk = REF_FREF_SEL_PCIE_USB3_40MHZ;
cfg = CFG_PM_RXDLOZ_WAIT_12_UNIT;
} else {
/* 25 MHz */
ref_clk = REF_FREF_SEL_PCIE_USB3_25MHZ;
cfg = CFG_PM_RXDLOZ_WAIT_7_UNIT;
}
mask = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT |
PU_TX_INTP_BIT | PU_DFE_BIT | PLL_LOCK_BIT | PHY_MODE_MASK |
REF_FREF_SEL_MASK;
data = PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT |
PU_TX_INTP_BIT | PU_DFE_BIT | PHY_MODE_USB3 | ref_clk;
usb3_reg_set(reg_base, COMPHY_POWER_PLL_CTRL, data, mask);
mask = CFG_PM_OSCCLK_WAIT_MASK | CFG_PM_RXDEN_WAIT_MASK |
CFG_PM_RXDLOZ_WAIT_MASK;
data = CFG_PM_RXDEN_WAIT_1_UNIT | cfg;
usb3_reg_set(reg_base, COMPHY_REG_PWR_MGM_TIM1_ADDR, data, mask);
/*
* 9. Enable idle sync
*/
data = UNIT_CTRL_DEFAULT_VALUE | IDLE_SYNC_EN;
usb3_reg_set(reg_base, COMPHY_REG_UNIT_CTRL_ADDR, data, REG_16_BIT_MASK);
/*
* 10. Enable the output of 500M clock
*/
data = MISC_REG0_DEFAULT_VALUE | CLK500M_EN;
usb3_reg_set(reg_base, COMPHY_MISC_REG0_ADDR, data, REG_16_BIT_MASK);
/*
* 11. Set 20-bit data width
*/
usb3_reg_set(reg_base, COMPHY_DIG_LOOPBACK_EN, DATA_WIDTH_20BIT,
REG_16_BIT_MASK);
/*
* 12. Override Speed_PLL value and use MAC PLL
*/
usb3_reg_set(reg_base, COMPHY_KVCO_CAL_CTRL,
(SPEED_PLL_VALUE_16 | USE_MAX_PLL_RATE_BIT),
REG_16_BIT_MASK);
/*
* 13. Check the Polarity invert bit
*/
data = 0U;
if (invert & COMPHY_POLARITY_TXD_INVERT) {
data |= TXD_INVERT_BIT;
}
if (invert & COMPHY_POLARITY_RXD_INVERT) {
data |= RXD_INVERT_BIT;
}
mask = TXD_INVERT_BIT | RXD_INVERT_BIT;
usb3_reg_set(reg_base, COMPHY_SYNC_PATTERN_REG, data, mask);
/*
* 14. Set max speed generation to USB3.0 5Gbps
*/
usb3_reg_set(reg_base, COMPHY_SYNC_MASK_GEN_REG, PHY_GEN_USB3_5G,
PHY_GEN_MAX_MASK);
/*
* 15. Set capacitor value for FFE gain peaking to 0xF
*/
usb3_reg_set(reg_base, COMPHY_REG_GEN2_SETTINGS_3,
COMPHY_GEN_FFE_CAP_SEL_VALUE, COMPHY_GEN_FFE_CAP_SEL_MASK);
/*
* 16. Release SW reset
*/
data = MODE_CORE_CLK_FREQ_SEL | MODE_PIPE_WIDTH_32 | MODE_REFDIV_BY_4;
usb3_reg_set(reg_base, COMPHY_REG_GLOB_PHY_CTRL0_ADDR, data,
REG_16_BIT_MASK);
/* Wait for > 55 us to allow PCLK be enabled */
udelay(PLL_SET_DELAY_US);
if (comphy_index == COMPHY_LANE2) {
data = COMPHY_REG_LANE_STATUS1_ADDR + USB3PHY_LANE2_REG_BASE_OFFSET;
mmio_write_32(reg_base + COMPHY_LANE2_INDIR_ADDR_OFFSET,
data);
addr = reg_base + COMPHY_LANE2_INDIR_DATA_OFFSET;
ret = polling_with_timeout(addr, TXDCLK_PCLK_EN, TXDCLK_PCLK_EN,
COMPHY_PLL_TIMEOUT, REG_32BIT);
} else {
ret = polling_with_timeout(LANE_STATUS1_ADDR(USB3) + reg_base,
TXDCLK_PCLK_EN, TXDCLK_PCLK_EN,
COMPHY_PLL_TIMEOUT, REG_16BIT);
}
if (ret) {
ERROR("Failed to lock USB3 PLL\n");
return -ETIMEDOUT;
}
debug_exit();
return 0;
}
static int mvebu_a3700_comphy_pcie_power_on(uint8_t comphy_index,
uint32_t comphy_mode)
{
int ret;
uint32_t ref_clk;
uint32_t mask, data;
int invert = COMPHY_GET_POLARITY_INVERT(comphy_mode);
debug_enter();
/* Configure phy selector for PCIe */
ret = mvebu_a3700_comphy_set_phy_selector(comphy_index, comphy_mode);
if (ret) {
return ret;
}
/* 1. Enable max PLL. */
reg_set16(LANE_CFG1_ADDR(PCIE) + COMPHY_SD_ADDR,
USE_MAX_PLL_RATE_EN, USE_MAX_PLL_RATE_EN);
/* 2. Select 20 bit SERDES interface. */
reg_set16(GLOB_CLK_SRC_LO_ADDR(PCIE) + COMPHY_SD_ADDR,
CFG_SEL_20B, CFG_SEL_20B);
/* 3. Force to use reg setting for PCIe mode */
reg_set16(MISC_REG1_ADDR(PCIE) + COMPHY_SD_ADDR,
SEL_BITS_PCIE_FORCE, SEL_BITS_PCIE_FORCE);
/* 4. Change RX wait */
reg_set16(PWR_MGM_TIM1_ADDR(PCIE) + COMPHY_SD_ADDR,
CFG_PM_RXDEN_WAIT_1_UNIT | CFG_PM_RXDLOZ_WAIT_12_UNIT,
(CFG_PM_OSCCLK_WAIT_MASK | CFG_PM_RXDEN_WAIT_MASK |
CFG_PM_RXDLOZ_WAIT_MASK));
/* 5. Enable idle sync */
reg_set16(UNIT_CTRL_ADDR(PCIE) + COMPHY_SD_ADDR,
UNIT_CTRL_DEFAULT_VALUE | IDLE_SYNC_EN, REG_16_BIT_MASK);
/* 6. Enable the output of 100M/125M/500M clock */
reg_set16(MISC_REG0_ADDR(PCIE) + COMPHY_SD_ADDR,
MISC_REG0_DEFAULT_VALUE | CLK500M_EN | TXDCLK_2X_SEL | CLK100M_125M_EN,
REG_16_BIT_MASK);
/*
* 7. Enable TX, PCIE global register, 0xd0074814, it is done in
* PCI-E driver
*/
/*
* 8. Check crystal jumper setting and program the Power and PLL
* Control accordingly
*/
if (get_ref_clk() == 40)
ref_clk = REF_FREF_SEL_PCIE_USB3_40MHZ;
else
ref_clk = REF_FREF_SEL_PCIE_USB3_25MHZ;
reg_set16(PWR_PLL_CTRL_ADDR(PCIE) + COMPHY_SD_ADDR,
(PU_IVREF_BIT | PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT |
PU_TX_INTP_BIT | PU_DFE_BIT | ref_clk | PHY_MODE_PCIE),
REG_16_BIT_MASK);
/* 9. Override Speed_PLL value and use MAC PLL */
reg_set16(KVCO_CAL_CTRL_ADDR(PCIE) + COMPHY_SD_ADDR,
SPEED_PLL_VALUE_16 | USE_MAX_PLL_RATE_BIT, REG_16_BIT_MASK);
/* 10. Check the Polarity invert bit */
data = 0U;
if (invert & COMPHY_POLARITY_TXD_INVERT) {
data |= TXD_INVERT_BIT;
}
if (invert & COMPHY_POLARITY_RXD_INVERT) {
data |= RXD_INVERT_BIT;
}
mask = TXD_INVERT_BIT | RXD_INVERT_BIT;
reg_set16(SYNC_PATTERN_REG_ADDR(PCIE) + COMPHY_SD_ADDR, data, mask);
/* 11. Release SW reset */
data = MODE_CORE_CLK_FREQ_SEL | MODE_PIPE_WIDTH_32;
mask = data | SOFT_RESET | MODE_REFDIV_MASK;
reg_set16(GLOB_PHY_CTRL0_ADDR(PCIE) + COMPHY_SD_ADDR, data, mask);
/* Wait for > 55 us to allow PCLK be enabled */
udelay(PLL_SET_DELAY_US);
ret = polling_with_timeout(LANE_STATUS1_ADDR(PCIE) + COMPHY_SD_ADDR,
TXDCLK_PCLK_EN, TXDCLK_PCLK_EN,
COMPHY_PLL_TIMEOUT, REG_16BIT);
if (ret) {
ERROR("Failed to lock PCIE PLL\n");
return -ETIMEDOUT;
}
debug_exit();
return 0;
}
int mvebu_3700_comphy_power_on(uint8_t comphy_index, uint32_t comphy_mode)
{
int mode = COMPHY_GET_MODE(comphy_mode);
int ret = 0;
debug_enter();
switch (mode) {
case(COMPHY_SATA_MODE):
ret = mvebu_a3700_comphy_sata_power_on(comphy_index,
comphy_mode);
break;
case(COMPHY_SGMII_MODE):
case(COMPHY_2500BASEX_MODE):
ret = mvebu_a3700_comphy_sgmii_power_on(comphy_index,
comphy_mode);
break;
case (COMPHY_USB3_MODE):
case (COMPHY_USB3H_MODE):
ret = mvebu_a3700_comphy_usb3_power_on(comphy_index,
comphy_mode);
break;
case (COMPHY_PCIE_MODE):
ret = mvebu_a3700_comphy_pcie_power_on(comphy_index,
comphy_mode);
break;
default:
ERROR("comphy%d: unsupported comphy mode\n", comphy_index);
ret = -EINVAL;
break;
}
debug_exit();
return ret;
}
static int mvebu_a3700_comphy_usb3_power_off(void)
{
/*
* Currently the USB3 MAC will control the USB3 PHY to set it to low
* state, thus do not need to power off USB3 PHY again.
*/
debug_enter();
debug_exit();
return 0;
}
static int mvebu_a3700_comphy_sata_power_off(void)
{
uintptr_t comphy_indir_regs = COMPHY_INDIRECT_REG;
uint32_t offset;
debug_enter();
/* Set phy isolation mode */
offset = COMPHY_ISOLATION_CTRL_REG + SATAPHY_LANE2_REG_BASE_OFFSET;
comphy_sata_set_indirect(comphy_indir_regs, offset, PHY_ISOLATE_MODE,
PHY_ISOLATE_MODE);
/* Power off PLL, Tx, Rx */
offset = COMPHY_POWER_PLL_CTRL + SATAPHY_LANE2_REG_BASE_OFFSET;
comphy_sata_set_indirect(comphy_indir_regs, offset, 0,
PU_PLL_BIT | PU_RX_BIT | PU_TX_BIT);
debug_exit();
return 0;
}
int mvebu_3700_comphy_power_off(uint8_t comphy_index, uint32_t comphy_mode)
{
int mode = COMPHY_GET_MODE(comphy_mode);
int err = 0;
debug_enter();
if (!mode) {
/*
* The user did not specify which mode should be powered off.
* In this case we can identify this by reading the phy selector
* register.
*/
mode = mvebu_a3700_comphy_get_mode(comphy_index);
}
switch (mode) {
case(COMPHY_SGMII_MODE):
case(COMPHY_2500BASEX_MODE):
err = mvebu_a3700_comphy_sgmii_power_off(comphy_index);
break;
case (COMPHY_USB3_MODE):
case (COMPHY_USB3H_MODE):
err = mvebu_a3700_comphy_usb3_power_off();
break;
case (COMPHY_SATA_MODE):
err = mvebu_a3700_comphy_sata_power_off();
break;
default:
debug("comphy%d: power off is not implemented for mode %d\n",
comphy_index, mode);
break;
}
debug_exit();
return err;
}
static int mvebu_a3700_comphy_sata_is_pll_locked(void)
{
uint32_t data, addr;
uintptr_t comphy_indir_regs = COMPHY_INDIRECT_REG;
int ret = 0;
debug_enter();
/* Polling status */
mmio_write_32(comphy_indir_regs + COMPHY_LANE2_INDIR_ADDR_OFFSET,
COMPHY_DIG_LOOPBACK_EN + SATAPHY_LANE2_REG_BASE_OFFSET);
addr = comphy_indir_regs + COMPHY_LANE2_INDIR_DATA_OFFSET;
data = polling_with_timeout(addr, PLL_READY_TX_BIT, PLL_READY_TX_BIT,
COMPHY_PLL_TIMEOUT, REG_32BIT);
if (data != 0) {
ERROR("TX PLL is not locked\n");
ret = -ETIMEDOUT;
}
debug_exit();
return ret;
}
int mvebu_3700_comphy_is_pll_locked(uint8_t comphy_index, uint32_t comphy_mode)
{
int mode = COMPHY_GET_MODE(comphy_mode);
int ret = 0;
debug_enter();
switch (mode) {
case(COMPHY_SATA_MODE):
ret = mvebu_a3700_comphy_sata_is_pll_locked();
break;
default:
ERROR("comphy[%d] mode[%d] doesn't support PLL lock check\n",
comphy_index, mode);
ret = -EINVAL;
break;
}
debug_exit();
return ret;
}