| /* |
| * Copyright (c) 2014, ARM Limited and Contributors. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * Neither the name of ARM nor the names of its contributors may be used |
| * to endorse or promote products derived from this software without specific |
| * prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <arm_gic.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <debug.h> |
| #include <gic_v2.h> |
| #include <gic_v3.h> |
| #include <interrupt_mgmt.h> |
| #include <platform.h> |
| #include <stdint.h> |
| |
| /* Value used to initialize Non-Secure IRQ priorities four at a time */ |
| #define GICD_IPRIORITYR_DEF_VAL \ |
| (GIC_HIGHEST_NS_PRIORITY | \ |
| (GIC_HIGHEST_NS_PRIORITY << 8) | \ |
| (GIC_HIGHEST_NS_PRIORITY << 16) | \ |
| (GIC_HIGHEST_NS_PRIORITY << 24)) |
| |
| static unsigned int g_gicc_base; |
| static unsigned int g_gicd_base; |
| static unsigned long g_gicr_base; |
| static const unsigned int *g_irq_sec_ptr; |
| static unsigned int g_num_irqs; |
| |
| |
| /******************************************************************************* |
| * This function does some minimal GICv3 configuration. The Firmware itself does |
| * not fully support GICv3 at this time and relies on GICv2 emulation as |
| * provided by GICv3. This function allows software (like Linux) in later stages |
| * to use full GICv3 features. |
| ******************************************************************************/ |
| static void gicv3_cpuif_setup(void) |
| { |
| unsigned int scr_val, val; |
| uintptr_t base; |
| |
| /* |
| * When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep |
| * bit set. In order to allow interrupts to get routed to the CPU we |
| * need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep |
| * to clear (GICv3 Architecture specification 5.4.23). |
| * GICR_WAKER is NOT banked per CPU, compute the correct base address |
| * per CPU. |
| */ |
| assert(g_gicr_base); |
| base = gicv3_get_rdist(g_gicr_base, read_mpidr()); |
| if (base == (uintptr_t)NULL) { |
| /* No re-distributor base address. This interface cannot be |
| * configured. |
| */ |
| panic(); |
| } |
| |
| val = gicr_read_waker(base); |
| |
| val &= ~WAKER_PS; |
| gicr_write_waker(base, val); |
| dsb(); |
| |
| /* We need to wait for ChildrenAsleep to clear. */ |
| val = gicr_read_waker(base); |
| while (val & WAKER_CA) |
| val = gicr_read_waker(base); |
| |
| /* |
| * We need to set SCR_EL3.NS in order to see GICv3 non-secure state. |
| * Restore SCR_EL3.NS again before exit. |
| */ |
| scr_val = read_scr(); |
| write_scr(scr_val | SCR_NS_BIT); |
| isb(); /* ensure NS=1 takes effect before accessing ICC_SRE_EL2 */ |
| |
| /* |
| * By default EL2 and NS-EL1 software should be able to enable GICv3 |
| * System register access without any configuration at EL3. But it turns |
| * out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So |
| * we need to set it here again. In order to do that we need to enable |
| * register access. We leave it enabled as it should be fine and might |
| * prevent problems with later software trying to access GIC System |
| * Registers. |
| */ |
| val = read_icc_sre_el3(); |
| write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE); |
| |
| val = read_icc_sre_el2(); |
| write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE); |
| |
| write_icc_pmr_el1(GIC_PRI_MASK); |
| isb(); /* commit ICC_* changes before setting NS=0 */ |
| |
| /* Restore SCR_EL3 */ |
| write_scr(scr_val); |
| isb(); /* ensure NS=0 takes effect immediately */ |
| } |
| |
| /******************************************************************************* |
| * This function does some minimal GICv3 configuration when cores go |
| * down. |
| ******************************************************************************/ |
| static void gicv3_cpuif_deactivate(void) |
| { |
| unsigned int val; |
| uintptr_t base; |
| |
| /* |
| * When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and |
| * wait for GICR_WAKER.ChildrenAsleep to get set. |
| * (GICv3 Architecture specification 5.4.23). |
| * GICR_WAKER is NOT banked per CPU, compute the correct base address |
| * per CPU. |
| */ |
| assert(g_gicr_base); |
| base = gicv3_get_rdist(g_gicr_base, read_mpidr()); |
| if (base == (uintptr_t)NULL) { |
| /* No re-distributor base address. This interface cannot be |
| * configured. |
| */ |
| panic(); |
| } |
| |
| val = gicr_read_waker(base); |
| val |= WAKER_PS; |
| gicr_write_waker(base, val); |
| dsb(); |
| |
| /* We need to wait for ChildrenAsleep to set. */ |
| val = gicr_read_waker(base); |
| while ((val & WAKER_CA) == 0) |
| val = gicr_read_waker(base); |
| } |
| |
| |
| /******************************************************************************* |
| * Enable secure interrupts and use FIQs to route them. Disable legacy bypass |
| * and set the priority mask register to allow all interrupts to trickle in. |
| ******************************************************************************/ |
| void arm_gic_cpuif_setup(void) |
| { |
| unsigned int val; |
| |
| assert(g_gicc_base); |
| val = gicc_read_iidr(g_gicc_base); |
| |
| /* |
| * If GICv3 we need to do a bit of additional setup. We want to |
| * allow default GICv2 behaviour but allow the next stage to |
| * enable full gicv3 features. |
| */ |
| if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) |
| gicv3_cpuif_setup(); |
| |
| val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0; |
| val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; |
| |
| gicc_write_pmr(g_gicc_base, GIC_PRI_MASK); |
| gicc_write_ctlr(g_gicc_base, val); |
| } |
| |
| /******************************************************************************* |
| * Place the cpu interface in a state where it can never make a cpu exit wfi as |
| * as result of an asserted interrupt. This is critical for powering down a cpu |
| ******************************************************************************/ |
| void arm_gic_cpuif_deactivate(void) |
| { |
| unsigned int val; |
| |
| /* Disable secure, non-secure interrupts and disable their bypass */ |
| assert(g_gicc_base); |
| val = gicc_read_ctlr(g_gicc_base); |
| val &= ~(ENABLE_GRP0 | ENABLE_GRP1); |
| val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; |
| val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; |
| gicc_write_ctlr(g_gicc_base, val); |
| |
| val = gicc_read_iidr(g_gicc_base); |
| |
| /* |
| * If GICv3 we need to do a bit of additional setup. Make sure the |
| * RDIST is put to sleep. |
| */ |
| if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) |
| gicv3_cpuif_deactivate(); |
| } |
| |
| /******************************************************************************* |
| * Per cpu gic distributor setup which will be done by all cpus after a cold |
| * boot/hotplug. This marks out the secure interrupts & enables them. |
| ******************************************************************************/ |
| void arm_gic_pcpu_distif_setup(void) |
| { |
| unsigned int index, irq_num, sec_ppi_sgi_mask; |
| |
| assert(g_gicd_base); |
| |
| /* Setup PPI priorities doing four at a time */ |
| for (index = 0; index < 32; index += 4) { |
| gicd_write_ipriorityr(g_gicd_base, index, |
| GICD_IPRIORITYR_DEF_VAL); |
| } |
| |
| assert(g_irq_sec_ptr); |
| sec_ppi_sgi_mask = 0; |
| for (index = 0; index < g_num_irqs; index++) { |
| irq_num = g_irq_sec_ptr[index]; |
| if (irq_num < MIN_SPI_ID) { |
| /* We have an SGI or a PPI. They are Group0 at reset */ |
| sec_ppi_sgi_mask |= 1U << irq_num; |
| gicd_set_ipriorityr(g_gicd_base, irq_num, |
| GIC_HIGHEST_SEC_PRIORITY); |
| gicd_set_isenabler(g_gicd_base, irq_num); |
| } |
| } |
| |
| /* |
| * Invert the bitmask to create a mask for non-secure PPIs and |
| * SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will |
| * update the GICR_IGROUPR0 as well in case we are running on a GICv3 |
| * system. This is critical if GICD_CTLR.ARE_NS=1. |
| */ |
| gicd_write_igroupr(g_gicd_base, 0, ~sec_ppi_sgi_mask); |
| } |
| |
| /******************************************************************************* |
| * Get the current CPU bit mask from GICD_ITARGETSR0 |
| ******************************************************************************/ |
| static unsigned int arm_gic_get_cpuif_id(void) |
| { |
| unsigned int val; |
| |
| val = gicd_read_itargetsr(g_gicd_base, 0); |
| return val & GIC_TARGET_CPU_MASK; |
| } |
| |
| /******************************************************************************* |
| * Global gic distributor setup which will be done by the primary cpu after a |
| * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It |
| * then enables the secure GIC distributor interface. |
| ******************************************************************************/ |
| static void arm_gic_distif_setup(void) |
| { |
| unsigned int num_ints, ctlr, index, irq_num; |
| uint8_t target_cpu; |
| |
| /* Disable the distributor before going further */ |
| assert(g_gicd_base); |
| ctlr = gicd_read_ctlr(g_gicd_base); |
| ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1); |
| gicd_write_ctlr(g_gicd_base, ctlr); |
| |
| /* |
| * Mark out non-secure SPI interrupts. The number of interrupts is |
| * calculated as 32 * (IT_LINES + 1). We do 32 at a time. |
| */ |
| num_ints = gicd_read_typer(g_gicd_base) & IT_LINES_NO_MASK; |
| num_ints = (num_ints + 1) << 5; |
| for (index = MIN_SPI_ID; index < num_ints; index += 32) |
| gicd_write_igroupr(g_gicd_base, index, ~0); |
| |
| /* Setup SPI priorities doing four at a time */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 4) { |
| gicd_write_ipriorityr(g_gicd_base, index, |
| GICD_IPRIORITYR_DEF_VAL); |
| } |
| |
| /* Read the target CPU mask */ |
| target_cpu = arm_gic_get_cpuif_id(); |
| |
| /* Configure SPI secure interrupts now */ |
| assert(g_irq_sec_ptr); |
| for (index = 0; index < g_num_irqs; index++) { |
| irq_num = g_irq_sec_ptr[index]; |
| if (irq_num >= MIN_SPI_ID) { |
| /* We have an SPI */ |
| gicd_clr_igroupr(g_gicd_base, irq_num); |
| gicd_set_ipriorityr(g_gicd_base, irq_num, |
| GIC_HIGHEST_SEC_PRIORITY); |
| gicd_set_itargetsr(g_gicd_base, irq_num, target_cpu); |
| gicd_set_isenabler(g_gicd_base, irq_num); |
| } |
| } |
| |
| /* |
| * Configure the SGI and PPI. This is done in a separated function |
| * because each CPU is responsible for initializing its own private |
| * interrupts. |
| */ |
| arm_gic_pcpu_distif_setup(); |
| |
| gicd_write_ctlr(g_gicd_base, ctlr | ENABLE_GRP0); |
| } |
| |
| /******************************************************************************* |
| * Initialize the ARM GIC driver with the provided platform inputs |
| ******************************************************************************/ |
| void arm_gic_init(unsigned int gicc_base, |
| unsigned int gicd_base, |
| unsigned long gicr_base, |
| const unsigned int *irq_sec_ptr, |
| unsigned int num_irqs |
| ) |
| { |
| unsigned int val; |
| |
| assert(gicc_base); |
| assert(gicd_base); |
| assert(irq_sec_ptr); |
| |
| g_gicc_base = gicc_base; |
| g_gicd_base = gicd_base; |
| |
| val = gicc_read_iidr(g_gicc_base); |
| |
| if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) { |
| assert(gicr_base); |
| g_gicr_base = gicr_base; |
| } |
| |
| g_irq_sec_ptr = irq_sec_ptr; |
| g_num_irqs = num_irqs; |
| } |
| |
| /******************************************************************************* |
| * Setup the ARM GIC CPU and distributor interfaces. |
| ******************************************************************************/ |
| void arm_gic_setup(void) |
| { |
| arm_gic_cpuif_setup(); |
| arm_gic_distif_setup(); |
| } |
| |
| /******************************************************************************* |
| * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins. |
| * The interrupt controller knows which pin/line it uses to signal a type of |
| * interrupt. This function provides a common implementation of |
| * plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use |
| * across platforms. It lets the interrupt management framework determine |
| * for a type of interrupt and security state, which line should be used in the |
| * SCR_EL3 to control its routing to EL3. The interrupt line is represented as |
| * the bit position of the IRQ or FIQ bit in the SCR_EL3. |
| ******************************************************************************/ |
| uint32_t arm_gic_interrupt_type_to_line(uint32_t type, |
| uint32_t security_state) |
| { |
| assert(type == INTR_TYPE_S_EL1 || |
| type == INTR_TYPE_EL3 || |
| type == INTR_TYPE_NS); |
| |
| assert(sec_state_is_valid(security_state)); |
| |
| /* |
| * We ignore the security state parameter under the assumption that |
| * both normal and secure worlds are using ARM GICv2. This parameter |
| * will be used when the secure world starts using GICv3. |
| */ |
| #if ARM_GIC_ARCH == 2 |
| return gicv2_interrupt_type_to_line(g_gicc_base, type); |
| #else |
| #error "Invalid ARM GIC architecture version specified for platform port" |
| #endif /* ARM_GIC_ARCH */ |
| } |
| |
| #if ARM_GIC_ARCH == 2 |
| /******************************************************************************* |
| * This function returns the type of the highest priority pending interrupt at |
| * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no |
| * interrupt pending. |
| ******************************************************************************/ |
| uint32_t arm_gic_get_pending_interrupt_type(void) |
| { |
| uint32_t id; |
| |
| assert(g_gicc_base); |
| id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK; |
| |
| /* Assume that all secure interrupts are S-EL1 interrupts */ |
| if (id < 1022) |
| return INTR_TYPE_S_EL1; |
| |
| if (id == GIC_SPURIOUS_INTERRUPT) |
| return INTR_TYPE_INVAL; |
| |
| return INTR_TYPE_NS; |
| } |
| |
| /******************************************************************************* |
| * This function returns the id of the highest priority pending interrupt at |
| * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no |
| * interrupt pending. |
| ******************************************************************************/ |
| uint32_t arm_gic_get_pending_interrupt_id(void) |
| { |
| uint32_t id; |
| |
| assert(g_gicc_base); |
| id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK; |
| |
| if (id < 1022) |
| return id; |
| |
| if (id == 1023) |
| return INTR_ID_UNAVAILABLE; |
| |
| /* |
| * Find out which non-secure interrupt it is under the assumption that |
| * the GICC_CTLR.AckCtl bit is 0. |
| */ |
| return gicc_read_ahppir(g_gicc_base) & INT_ID_MASK; |
| } |
| |
| /******************************************************************************* |
| * This functions reads the GIC cpu interface Interrupt Acknowledge register |
| * to start handling the pending interrupt. It returns the contents of the IAR. |
| ******************************************************************************/ |
| uint32_t arm_gic_acknowledge_interrupt(void) |
| { |
| assert(g_gicc_base); |
| return gicc_read_IAR(g_gicc_base); |
| } |
| |
| /******************************************************************************* |
| * This functions writes the GIC cpu interface End Of Interrupt register with |
| * the passed value to finish handling the active interrupt |
| ******************************************************************************/ |
| void arm_gic_end_of_interrupt(uint32_t id) |
| { |
| assert(g_gicc_base); |
| gicc_write_EOIR(g_gicc_base, id); |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the interrupt id depending upon the group |
| * this interrupt has been configured under by the interrupt controller i.e. |
| * group0 or group1. |
| ******************************************************************************/ |
| uint32_t arm_gic_get_interrupt_type(uint32_t id) |
| { |
| uint32_t group; |
| |
| assert(g_gicd_base); |
| group = gicd_get_igroupr(g_gicd_base, id); |
| |
| /* Assume that all secure interrupts are S-EL1 interrupts */ |
| if (group == GRP0) |
| return INTR_TYPE_S_EL1; |
| else |
| return INTR_TYPE_NS; |
| } |
| |
| #else |
| #error "Invalid ARM GIC architecture version specified for platform port" |
| #endif /* ARM_GIC_ARCH */ |