blob: c8bce052a6ec83aaf415f3c9bd9b1720c97fb340 [file] [log] [blame]
/*
* Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <cortex_a57.h>
#include <denver.h>
#include <drivers/console.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <lib/utils_def.h>
#include <plat/common/platform.h>
#include <memctrl.h>
#include <profiler.h>
#include <smmu.h>
#include <tegra_def.h>
#include <tegra_platform.h>
#include <tegra_private.h>
/* length of Trusty's input parameters (in bytes) */
#define TRUSTY_PARAMS_LEN_BYTES (4096*2)
/*******************************************************************************
* Declarations of linker defined symbols which will help us find the layout
* of trusted SRAM
******************************************************************************/
IMPORT_SYM(uint64_t, __RW_START__, BL31_RW_START);
extern uint64_t tegra_bl31_phys_base;
static entry_point_info_t bl33_image_ep_info, bl32_image_ep_info;
static plat_params_from_bl2_t plat_bl31_params_from_bl2 = {
.tzdram_size = TZDRAM_SIZE
};
#ifdef SPD_trusty
static aapcs64_params_t bl32_args;
#endif
/*******************************************************************************
* This variable holds the non-secure image entry address
******************************************************************************/
extern uint64_t ns_image_entrypoint;
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for
* security state specified. BL33 corresponds to the non-secure image type
* while BL32 corresponds to the secure image type.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *ep = NULL;
/* return BL32 entry point info if it is valid */
if (type == NON_SECURE) {
ep = &bl33_image_ep_info;
} else if ((type == SECURE) && (bl32_image_ep_info.pc != 0U)) {
ep = &bl32_image_ep_info;
}
return ep;
}
/*******************************************************************************
* Return a pointer to the 'plat_params_from_bl2_t' structure. The BL2 image
* passes this platform specific information.
******************************************************************************/
plat_params_from_bl2_t *bl31_get_plat_params(void)
{
return &plat_bl31_params_from_bl2;
}
/*******************************************************************************
* Perform any BL31 specific platform actions. Populate the BL33 and BL32 image
* info.
******************************************************************************/
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
struct tegra_bl31_params *arg_from_bl2 = (struct tegra_bl31_params *) arg0;
plat_params_from_bl2_t *plat_params = (plat_params_from_bl2_t *)arg1;
int32_t ret;
/*
* For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
* there's no argument to relay from a previous bootloader. Platforms
* might use custom ways to get arguments.
*/
if (arg_from_bl2 == NULL) {
arg_from_bl2 = plat_get_bl31_params();
}
if (plat_params == NULL) {
plat_params = plat_get_bl31_plat_params();
}
/*
* Copy BL3-3, BL3-2 entry point information.
* They are stored in Secure RAM, in BL2's address space.
*/
assert(arg_from_bl2 != NULL);
assert(arg_from_bl2->bl33_ep_info != NULL);
bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
if (arg_from_bl2->bl32_ep_info != NULL) {
bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
#ifdef SPD_trusty
/* save BL32 boot parameters */
memcpy(&bl32_args, &arg_from_bl2->bl32_ep_info->args, sizeof(bl32_args));
#endif
}
/*
* Parse platform specific parameters
*/
assert(plat_params != NULL);
plat_bl31_params_from_bl2.tzdram_base = plat_params->tzdram_base;
plat_bl31_params_from_bl2.tzdram_size = plat_params->tzdram_size;
plat_bl31_params_from_bl2.uart_id = plat_params->uart_id;
plat_bl31_params_from_bl2.l2_ecc_parity_prot_dis = plat_params->l2_ecc_parity_prot_dis;
plat_bl31_params_from_bl2.sc7entry_fw_size = plat_params->sc7entry_fw_size;
plat_bl31_params_from_bl2.sc7entry_fw_base = plat_params->sc7entry_fw_base;
/*
* It is very important that we run either from TZDRAM or TZSRAM base.
* Add an explicit check here.
*/
if ((plat_bl31_params_from_bl2.tzdram_base != (uint64_t)BL31_BASE) &&
(TEGRA_TZRAM_BASE != BL31_BASE)) {
panic();
}
/*
* Enable console for the platform
*/
plat_enable_console(plat_params->uart_id);
/*
* The previous bootloader passes the base address of the shared memory
* location to store the boot profiler logs. Sanity check the
* address and initialise the profiler library, if it looks ok.
*/
ret = bl31_check_ns_address(plat_params->boot_profiler_shmem_base,
PROFILER_SIZE_BYTES);
if (ret == (int32_t)0) {
/* store the membase for the profiler lib */
plat_bl31_params_from_bl2.boot_profiler_shmem_base =
plat_params->boot_profiler_shmem_base;
/* initialise the profiler library */
boot_profiler_init(plat_params->boot_profiler_shmem_base,
TEGRA_TMRUS_BASE);
}
/*
* Add timestamp for platform early setup entry.
*/
boot_profiler_add_record("[TF] early setup entry");
/*
* Initialize delay timer
*/
tegra_delay_timer_init();
/* Early platform setup for Tegra SoCs */
plat_early_platform_setup();
/*
* Add timestamp for platform early setup exit.
*/
boot_profiler_add_record("[TF] early setup exit");
INFO("BL3-1: Boot CPU: %s Processor [%lx]\n",
(((read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK)
== DENVER_IMPL) ? "Denver" : "ARM", read_mpidr());
}
#ifdef SPD_trusty
void plat_trusty_set_boot_args(aapcs64_params_t *args)
{
/*
* arg0 = TZDRAM aperture available for BL32
* arg1 = BL32 boot params
* arg2 = EKS Blob Length
* arg3 = Boot Profiler Carveout Base
*/
args->arg0 = bl32_args.arg0;
args->arg1 = bl32_args.arg2;
/* update EKS size */
args->arg2 = bl32_args.arg4;
/* Profiler Carveout Base */
args->arg3 = bl32_args.arg5;
}
#endif
/*******************************************************************************
* Initialize the gic, configure the SCR.
******************************************************************************/
void bl31_platform_setup(void)
{
/*
* Add timestamp for platform setup entry.
*/
boot_profiler_add_record("[TF] plat setup entry");
/* Initialize the gic cpu and distributor interfaces */
plat_gic_setup();
/*
* Setup secondary CPU POR infrastructure.
*/
plat_secondary_setup();
/*
* Initial Memory Controller configuration.
*/
tegra_memctrl_setup();
/*
* Late setup handler to allow platforms to performs additional
* functionality.
* This handler gets called with MMU enabled.
*/
plat_late_platform_setup();
/*
* Add timestamp for platform setup exit.
*/
boot_profiler_add_record("[TF] plat setup exit");
INFO("BL3-1: Tegra platform setup complete\n");
}
/*******************************************************************************
* Perform any BL3-1 platform runtime setup prior to BL3-1 cold boot exit
******************************************************************************/
void bl31_plat_runtime_setup(void)
{
/*
* During cold boot, it is observed that the arbitration
* bit is set in the Memory controller leading to false
* error interrupts in the non-secure world. To avoid
* this, clean the interrupt status register before
* booting into the non-secure world
*/
tegra_memctrl_clear_pending_interrupts();
/*
* During boot, USB3 and flash media (SDMMC/SATA) devices need
* access to IRAM. Because these clients connect to the MC and
* do not have a direct path to the IRAM, the MC implements AHB
* redirection during boot to allow path to IRAM. In this mode
* accesses to a programmed memory address aperture are directed
* to the AHB bus, allowing access to the IRAM. This mode must be
* disabled before we jump to the non-secure world.
*/
tegra_memctrl_disable_ahb_redirection();
#if defined(TEGRA_SMMU0_BASE)
/*
* Verify the integrity of the previously configured SMMU(s) settings
*/
tegra_smmu_verify();
#endif
/*
* Add final timestamp before exiting BL31.
*/
boot_profiler_add_record("[TF] bl31 exit");
boot_profiler_deinit();
}
/*******************************************************************************
* Perform the very early platform specific architectural setup here. At the
* moment this only intializes the mmu in a quick and dirty way.
******************************************************************************/
void bl31_plat_arch_setup(void)
{
uint64_t rw_start = BL31_RW_START;
uint64_t rw_size = BL_END - BL31_RW_START;
uint64_t rodata_start = BL_RO_DATA_BASE;
uint64_t rodata_size = BL_RO_DATA_END - BL_RO_DATA_BASE;
uint64_t code_base = BL_CODE_BASE;
uint64_t code_size = BL_CODE_END - BL_CODE_BASE;
const mmap_region_t *plat_mmio_map = NULL;
const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
/*
* Add timestamp for arch setup entry.
*/
boot_profiler_add_record("[TF] arch setup entry");
/* add MMIO space */
plat_mmio_map = plat_get_mmio_map();
if (plat_mmio_map != NULL) {
mmap_add(plat_mmio_map);
} else {
WARN("MMIO map not available\n");
}
/* add memory regions */
mmap_add_region(rw_start, rw_start,
rw_size,
MT_MEMORY | MT_RW | MT_SECURE);
mmap_add_region(rodata_start, rodata_start,
rodata_size,
MT_RO_DATA | MT_SECURE);
mmap_add_region(code_base, code_base,
code_size,
MT_CODE | MT_SECURE);
/* map TZDRAM used by BL31 as coherent memory */
if (TEGRA_TZRAM_BASE == tegra_bl31_phys_base) {
mmap_add_region(params_from_bl2->tzdram_base,
params_from_bl2->tzdram_base,
BL31_SIZE,
MT_DEVICE | MT_RW | MT_SECURE);
}
/* set up translation tables */
init_xlat_tables();
/* enable the MMU */
enable_mmu_el3(0);
/*
* Add timestamp for arch setup exit.
*/
boot_profiler_add_record("[TF] arch setup exit");
INFO("BL3-1: Tegra: MMU enabled\n");
}
/*******************************************************************************
* Check if the given NS DRAM range is valid
******************************************************************************/
int32_t bl31_check_ns_address(uint64_t base, uint64_t size_in_bytes)
{
uint64_t end = base + size_in_bytes - U(1);
/*
* Sanity check the input values
*/
if ((base == 0U) || (size_in_bytes == 0U)) {
ERROR("NS address 0x%llx (%lld bytes) is invalid\n",
base, size_in_bytes);
return -EINVAL;
}
/*
* Check if the NS DRAM address is valid
*/
if ((base < TEGRA_DRAM_BASE) || (base >= TEGRA_DRAM_END) ||
(end > TEGRA_DRAM_END)) {
ERROR("NS address 0x%llx is out-of-bounds!\n", base);
return -EFAULT;
}
/*
* TZDRAM aperture contains the BL31 and BL32 images, so we need
* to check if the NS DRAM range overlaps the TZDRAM aperture.
*/
if ((base < (uint64_t)TZDRAM_END) && (end > tegra_bl31_phys_base)) {
ERROR("NS address 0x%llx overlaps TZDRAM!\n", base);
return -ENOTSUP;
}
/* valid NS address */
return 0;
}