| /* |
| * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * Neither the name of ARM nor the names of its contributors may be used |
| * to endorse or promote products derived from this software without specific |
| * prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __EL3_COMMON_MACROS_S__ |
| #define __EL3_COMMON_MACROS_S__ |
| |
| #include <arch.h> |
| #include <asm_macros.S> |
| |
| /* |
| * Helper macro to initialise EL3 registers we care about. |
| */ |
| .macro el3_arch_init_common _exception_vectors |
| /* --------------------------------------------------------------------- |
| * Enable the instruction cache, stack pointer and data access alignment |
| * checks |
| * --------------------------------------------------------------------- |
| */ |
| mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT) |
| mrs x0, sctlr_el3 |
| orr x0, x0, x1 |
| msr sctlr_el3, x0 |
| isb |
| |
| #if IMAGE_BL31 |
| /* --------------------------------------------------------------------- |
| * Initialise the per-cpu cache pointer to the CPU. |
| * This is done early to enable crash reporting to have access to crash |
| * stack. Since crash reporting depends on cpu_data to report the |
| * unhandled exception, not doing so can lead to recursive exceptions |
| * due to a NULL TPIDR_EL3. |
| * --------------------------------------------------------------------- |
| */ |
| bl init_cpu_data_ptr |
| #endif /* IMAGE_BL31 */ |
| |
| /* --------------------------------------------------------------------- |
| * Set the exception vectors. |
| * --------------------------------------------------------------------- |
| */ |
| adr x0, \_exception_vectors |
| msr vbar_el3, x0 |
| isb |
| |
| /* --------------------------------------------------------------------- |
| * Enable the SError interrupt now that the exception vectors have been |
| * setup. |
| * --------------------------------------------------------------------- |
| */ |
| msr daifclr, #DAIF_ABT_BIT |
| |
| /* --------------------------------------------------------------------- |
| * The initial state of the Architectural feature trap register |
| * (CPTR_EL3) is unknown and it must be set to a known state. All |
| * feature traps are disabled. Some bits in this register are marked as |
| * reserved and should not be modified. |
| * |
| * CPTR_EL3.TCPAC: This causes a direct access to the CPACR_EL1 from EL1 |
| * or the CPTR_EL2 from EL2 to trap to EL3 unless it is trapped at EL2. |
| * |
| * CPTR_EL3.TTA: This causes access to the Trace functionality to trap |
| * to EL3 when executed from EL0, EL1, EL2, or EL3. If system register |
| * access to trace functionality is not supported, this bit is RES0. |
| * |
| * CPTR_EL3.TFP: This causes instructions that access the registers |
| * associated with Floating Point and Advanced SIMD execution to trap |
| * to EL3 when executed from any exception level, unless trapped to EL1 |
| * or EL2. |
| * --------------------------------------------------------------------- |
| */ |
| mrs x0, cptr_el3 |
| bic w0, w0, #TCPAC_BIT |
| bic w0, w0, #TTA_BIT |
| bic w0, w0, #TFP_BIT |
| msr cptr_el3, x0 |
| .endm |
| |
| /* ----------------------------------------------------------------------------- |
| * This is the super set of actions that need to be performed during a cold boot |
| * or a warm boot in EL3. This code is shared by BL1 and BL3-1. |
| * |
| * This macro will always perform reset handling, architectural initialisations |
| * and stack setup. The rest of the actions are optional because they might not |
| * be needed, depending on the context in which this macro is called. This is |
| * why this macro is parameterised ; each parameter allows to enable/disable |
| * some actions. |
| * |
| * _set_endian: |
| * Whether the macro needs to configure the endianness of data accesses. |
| * |
| * _warm_boot_mailbox: |
| * Whether the macro needs to detect the type of boot (cold/warm). The |
| * detection is based on the platform entrypoint address : if it is zero |
| * then it is a cold boot, otherwise it is a warm boot. In the latter case, |
| * this macro jumps on the platform entrypoint address. |
| * |
| * _secondary_cold_boot: |
| * Whether the macro needs to identify the CPU that is calling it: primary |
| * CPU or secondary CPU. The primary CPU will be allowed to carry on with |
| * the platform initialisations, while the secondaries will be put in a |
| * platform-specific state in the meantime. |
| * |
| * If the caller knows this macro will only be called by the primary CPU |
| * then this parameter can be defined to 0 to skip this step. |
| * |
| * _init_memory: |
| * Whether the macro needs to initialise the memory. |
| * |
| * _init_c_runtime: |
| * Whether the macro needs to initialise the C runtime environment. |
| * |
| * _exception_vectors: |
| * Address of the exception vectors to program in the VBAR_EL3 register. |
| * ----------------------------------------------------------------------------- |
| */ |
| .macro el3_entrypoint_common \ |
| _set_endian, _warm_boot_mailbox, _secondary_cold_boot, \ |
| _init_memory, _init_c_runtime, _exception_vectors |
| |
| .if \_set_endian |
| /* ------------------------------------------------------------- |
| * Set the CPU endianness before doing anything that might |
| * involve memory reads or writes. |
| * ------------------------------------------------------------- |
| */ |
| mrs x0, sctlr_el3 |
| bic x0, x0, #SCTLR_EE_BIT |
| msr sctlr_el3, x0 |
| isb |
| .endif /* _set_endian */ |
| |
| .if \_warm_boot_mailbox |
| /* ------------------------------------------------------------- |
| * This code will be executed for both warm and cold resets. |
| * Now is the time to distinguish between the two. |
| * Query the platform entrypoint address and if it is not zero |
| * then it means it is a warm boot so jump to this address. |
| * ------------------------------------------------------------- |
| */ |
| bl plat_get_my_entrypoint |
| cbz x0, do_cold_boot |
| br x0 |
| |
| do_cold_boot: |
| .endif /* _warm_boot_mailbox */ |
| |
| .if \_secondary_cold_boot |
| /* ------------------------------------------------------------- |
| * It is a cold boot. |
| * The primary CPU will set up the platform while the |
| * secondaries are placed in a platform-specific state until the |
| * primary CPU performs the necessary actions to bring them out |
| * of that state and allows entry into the OS. |
| * ------------------------------------------------------------- |
| */ |
| bl plat_is_my_cpu_primary |
| cbnz x0, do_primary_cold_boot |
| |
| /* This is a cold boot on a secondary CPU */ |
| bl plat_secondary_cold_boot_setup |
| /* plat_secondary_cold_boot_setup() is not supposed to return */ |
| secondary_panic: |
| b secondary_panic |
| |
| do_primary_cold_boot: |
| .endif /* _secondary_cold_boot */ |
| |
| /* --------------------------------------------------------------------- |
| * Perform any processor specific actions upon reset e.g. cache, TLB |
| * invalidations etc. |
| * --------------------------------------------------------------------- |
| */ |
| bl reset_handler |
| |
| el3_arch_init_common \_exception_vectors |
| |
| .if \_init_memory |
| bl platform_mem_init |
| .endif /* _init_memory */ |
| |
| /* --------------------------------------------------------------------- |
| * Init C runtime environment: |
| * - Zero-initialise the NOBITS sections. There are 2 of them: |
| * - the .bss section; |
| * - the coherent memory section (if any). |
| * - Relocate the data section from ROM to RAM, if required. |
| * --------------------------------------------------------------------- |
| */ |
| .if \_init_c_runtime |
| ldr x0, =__BSS_START__ |
| ldr x1, =__BSS_SIZE__ |
| bl zeromem16 |
| |
| #if USE_COHERENT_MEM |
| ldr x0, =__COHERENT_RAM_START__ |
| ldr x1, =__COHERENT_RAM_UNALIGNED_SIZE__ |
| bl zeromem16 |
| #endif |
| |
| #if IMAGE_BL1 |
| ldr x0, =__DATA_RAM_START__ |
| ldr x1, =__DATA_ROM_START__ |
| ldr x2, =__DATA_SIZE__ |
| bl memcpy16 |
| #endif |
| .endif /* _init_c_runtime */ |
| |
| #if IMAGE_BL31 |
| /* --------------------------------------------------------------------- |
| * Use SP_EL0 for the C runtime stack. |
| * --------------------------------------------------------------------- |
| */ |
| msr spsel, #0 |
| #endif /* IMAGE_BL31 */ |
| |
| /* --------------------------------------------------------------------- |
| * Allocate a stack whose memory will be marked as Normal-IS-WBWA when |
| * the MMU is enabled. There is no risk of reading stale stack memory |
| * after enabling the MMU as only the primary CPU is running at the |
| * moment. |
| * --------------------------------------------------------------------- |
| */ |
| bl plat_set_my_stack |
| .endm |
| |
| #endif /* __EL3_COMMON_MACROS_S__ */ |