blob: 92120b527337a25be4b16f02803a87700a41dd11 [file] [log] [blame]
/*
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2019-2020, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <mce.h>
#include <memctrl.h>
#include <memctrl_v2.h>
#include <smmu.h>
#include <tegra_def.h>
#include <tegra_platform.h>
#include <tegra_private.h>
/* Video Memory base and size (live values) */
static uint64_t video_mem_base;
static uint64_t video_mem_size_mb;
/*
* Init Memory controller during boot.
*/
void tegra_memctrl_setup(void)
{
INFO("Tegra Memory Controller (v2)\n");
/* Initialize the System memory management unit */
tegra_smmu_init();
/* allow platforms to program custom memory controller settings */
plat_memctrl_setup();
/*
* All requests at boot time, and certain requests during
* normal run time, are physically addressed and must bypass
* the SMMU. The client hub logic implements a hardware bypass
* path around the Translation Buffer Units (TBU). During
* boot-time, the SMMU_BYPASS_CTRL register (which defaults to
* TBU_BYPASS mode) will be used to steer all requests around
* the uninitialized TBUs. During normal operation, this register
* is locked into TBU_BYPASS_SID config, which routes requests
* with special StreamID 0x7f on the bypass path and all others
* through the selected TBU. This is done to disable SMMU Bypass
* mode, as it could be used to circumvent SMMU security checks.
*/
tegra_mc_write_32(MC_SMMU_BYPASS_CONFIG,
MC_SMMU_BYPASS_CONFIG_SETTINGS);
}
/*
* Restore Memory Controller settings after "System Suspend"
*/
void tegra_memctrl_restore_settings(void)
{
/* restore platform's memory controller settings */
plat_memctrl_restore();
/* video memory carveout region */
if (video_mem_base != 0ULL) {
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO,
(uint32_t)video_mem_base);
assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_LO)
== (uint32_t)video_mem_base);
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
(uint32_t)(video_mem_base >> 32));
assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_HI)
== (uint32_t)(video_mem_base >> 32));
tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB,
(uint32_t)video_mem_size_mb);
assert(tegra_mc_read_32(MC_VIDEO_PROTECT_SIZE_MB)
== (uint32_t)video_mem_size_mb);
/*
* MCE propagates the VideoMem configuration values across the
* CCPLEX.
*/
mce_update_gsc_videomem();
}
}
/*
* Secure the BL31 DRAM aperture.
*
* phys_base = physical base of TZDRAM aperture
* size_in_bytes = size of aperture in bytes
*/
void tegra_memctrl_tzdram_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
/*
* Perform platform specific steps.
*/
plat_memctrl_tzdram_setup(phys_base, size_in_bytes);
}
/*
* Secure the BL31 TZRAM aperture.
*
* phys_base = physical base of TZRAM aperture
* size_in_bytes = size of aperture in bytes
*/
void tegra_memctrl_tzram_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
; /* do nothing */
}
/*
* Save MC settings before "System Suspend" to TZDRAM
*/
void tegra_mc_save_context(uint64_t mc_ctx_addr)
{
uint32_t i, num_entries = 0;
mc_regs_t *mc_ctx_regs;
const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
uint64_t tzdram_base = params_from_bl2->tzdram_base;
uint64_t tzdram_end = tzdram_base + params_from_bl2->tzdram_size;
assert((mc_ctx_addr >= tzdram_base) && (mc_ctx_addr <= tzdram_end));
/* get MC context table */
mc_ctx_regs = plat_memctrl_get_sys_suspend_ctx();
assert(mc_ctx_regs != NULL);
/*
* mc_ctx_regs[0].val contains the size of the context table minus
* the last entry. Sanity check the table size before we start with
* the context save operation.
*/
while (mc_ctx_regs[num_entries].reg != 0xFFFFFFFFU) {
num_entries++;
}
/* panic if the sizes do not match */
if (num_entries != mc_ctx_regs[0].val) {
ERROR("MC context size mismatch!");
panic();
}
/* save MC register values */
for (i = 1U; i < num_entries; i++) {
mc_ctx_regs[i].val = mmio_read_32(mc_ctx_regs[i].reg);
}
/* increment by 1 to take care of the last entry */
num_entries++;
/* Save MC config settings */
(void)memcpy((void *)mc_ctx_addr, mc_ctx_regs,
sizeof(mc_regs_t) * num_entries);
/* save the MC table address */
mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_LO,
(uint32_t)mc_ctx_addr);
assert(mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_LO)
== (uint32_t)mc_ctx_addr);
mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_HI,
(uint32_t)(mc_ctx_addr >> 32));
assert(mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_HI)
== (uint32_t)(mc_ctx_addr >> 32));
}
static void tegra_lock_videomem_nonoverlap(uint64_t phys_base,
uint64_t size_in_bytes)
{
uint32_t index;
uint64_t total_128kb_blocks = size_in_bytes >> 17;
uint64_t residual_4kb_blocks = (size_in_bytes & (uint32_t)0x1FFFF) >> 12;
uint64_t val;
/*
* Reset the access configuration registers to restrict access to
* old Videomem aperture
*/
for (index = MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0;
index < ((uint32_t)MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0 + (uint32_t)MC_GSC_CONFIG_REGS_SIZE);
index += 4U) {
tegra_mc_write_32(index, 0);
}
/*
* Set the base. It must be 4k aligned, at least.
*/
assert((phys_base & (uint64_t)0xFFF) == 0U);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, (uint32_t)phys_base);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI,
(uint32_t)(phys_base >> 32) & (uint32_t)MC_GSC_BASE_HI_MASK);
/*
* Set the aperture size
*
* total size = (number of 128KB blocks) + (number of remaining 4KB
* blocks)
*
*/
val = (uint32_t)((residual_4kb_blocks << MC_GSC_SIZE_RANGE_4KB_SHIFT) |
total_128kb_blocks);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, (uint32_t)val);
/*
* Lock the configuration settings by enabling TZ-only lock and
* locking the configuration against any future changes from NS
* world.
*/
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_CFG,
(uint32_t)MC_GSC_ENABLE_TZ_LOCK_BIT);
/*
* MCE propagates the GSC configuration values across the
* CCPLEX.
*/
}
static void tegra_unlock_videomem_nonoverlap(void)
{
/* Clear the base */
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, 0);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI, 0);
/* Clear the size */
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, 0);
}
static void tegra_clear_videomem(uintptr_t non_overlap_area_start,
unsigned long long non_overlap_area_size)
{
int ret;
INFO("Cleaning previous Video Memory Carveout\n");
/*
* Map the NS memory first, clean it and then unmap it.
*/
ret = mmap_add_dynamic_region(non_overlap_area_start, /* PA */
non_overlap_area_start, /* VA */
non_overlap_area_size, /* size */
MT_DEVICE | MT_RW | MT_NS); /* attrs */
assert(ret == 0);
zeromem((void *)non_overlap_area_start, non_overlap_area_size);
flush_dcache_range(non_overlap_area_start, non_overlap_area_size);
ret = mmap_remove_dynamic_region(non_overlap_area_start,
non_overlap_area_size);
assert(ret == 0);
}
static void tegra_clear_videomem_nonoverlap(uintptr_t phys_base,
unsigned long size_in_bytes)
{
uintptr_t vmem_end_old = video_mem_base + (video_mem_size_mb << 20);
uintptr_t vmem_end_new = phys_base + size_in_bytes;
unsigned long long non_overlap_area_size;
/*
* Clear the old regions now being exposed. The following cases
* can occur -
*
* 1. clear whole old region (no overlap with new region)
* 2. clear old sub-region below new base
* 3. clear old sub-region above new end
*/
if ((phys_base > vmem_end_old) || (video_mem_base > vmem_end_new)) {
tegra_clear_videomem(video_mem_base,
video_mem_size_mb << 20U);
} else {
if (video_mem_base < phys_base) {
non_overlap_area_size = phys_base - video_mem_base;
tegra_clear_videomem(video_mem_base, non_overlap_area_size);
}
if (vmem_end_old > vmem_end_new) {
non_overlap_area_size = vmem_end_old - vmem_end_new;
tegra_clear_videomem(vmem_end_new, non_overlap_area_size);
}
}
}
/*
* Program the Video Memory carveout region
*
* phys_base = physical base of aperture
* size_in_bytes = size of aperture in bytes
*/
void tegra_memctrl_videomem_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
/*
* Setup the Memory controller to restrict CPU accesses to the Video
* Memory region
*/
INFO("Configuring Video Memory Carveout\n");
if (video_mem_base != 0U) {
/*
* Lock the non overlapping memory being cleared so that
* other masters do not accidently write to it. The memory
* would be unlocked once the non overlapping region is
* cleared and the new memory settings take effect.
*/
tegra_lock_videomem_nonoverlap(video_mem_base,
video_mem_size_mb << 20);
}
/* program the Videomem aperture */
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO, (uint32_t)phys_base);
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
(uint32_t)(phys_base >> 32));
tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB, size_in_bytes >> 20);
/* Redundancy check for Video Protect setting */
assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_LO)
== (uint32_t)phys_base);
assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_HI)
== (uint32_t)(phys_base >> 32));
assert(tegra_mc_read_32(MC_VIDEO_PROTECT_SIZE_MB)
== (size_in_bytes >> 20));
/*
* MCE propagates the VideoMem configuration values across the
* CCPLEX.
*/
(void)mce_update_gsc_videomem();
/* Clear the non-overlapping memory */
if (video_mem_base != 0U) {
tegra_clear_videomem_nonoverlap(phys_base, size_in_bytes);
tegra_unlock_videomem_nonoverlap();
}
/* store new values */
video_mem_base = phys_base;
video_mem_size_mb = (uint64_t)size_in_bytes >> 20;
}
/*
* This feature exists only for v1 of the Tegra Memory Controller.
*/
void tegra_memctrl_disable_ahb_redirection(void)
{
; /* do nothing */
}
void tegra_memctrl_clear_pending_interrupts(void)
{
; /* do nothing */
}