blob: 706b69d9f83d1cb69cd92982072f35501db51467 [file] [log] [blame]
/*
* Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <errno.h>
#include <bl31/bl31.h>
#include <bl31/ehf.h>
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/smccc.h>
#include <lib/spinlock.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>
#include <services/mm_svc.h>
#include <services/secure_partition.h>
#include <services/spm_svc.h>
#include <smccc_helpers.h>
#include "spm_private.h"
/*******************************************************************************
* Secure Partition context information.
******************************************************************************/
static sp_context_t sp_ctx;
/*******************************************************************************
* Set state of a Secure Partition context.
******************************************************************************/
void sp_state_set(sp_context_t *sp_ptr, sp_state_t state)
{
spin_lock(&(sp_ptr->state_lock));
sp_ptr->state = state;
spin_unlock(&(sp_ptr->state_lock));
}
/*******************************************************************************
* Wait until the state of a Secure Partition is the specified one and change it
* to the desired state.
******************************************************************************/
void sp_state_wait_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
{
int success = 0;
while (success == 0) {
spin_lock(&(sp_ptr->state_lock));
if (sp_ptr->state == from) {
sp_ptr->state = to;
success = 1;
}
spin_unlock(&(sp_ptr->state_lock));
}
}
/*******************************************************************************
* Check if the state of a Secure Partition is the specified one and, if so,
* change it to the desired state. Returns 0 on success, -1 on error.
******************************************************************************/
int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
{
int ret = -1;
spin_lock(&(sp_ptr->state_lock));
if (sp_ptr->state == from) {
sp_ptr->state = to;
ret = 0;
}
spin_unlock(&(sp_ptr->state_lock));
return ret;
}
/*******************************************************************************
* This function takes an SP context pointer and performs a synchronous entry
* into it.
******************************************************************************/
static uint64_t spm_sp_synchronous_entry(sp_context_t *ctx)
{
uint64_t rc;
assert(ctx != NULL);
/* Assign the context of the SP to this CPU */
cm_set_context(&(ctx->cpu_ctx), SECURE);
/* Restore the context assigned above */
cm_el1_sysregs_context_restore(SECURE);
cm_set_next_eret_context(SECURE);
/* Invalidate TLBs at EL1. */
tlbivmalle1();
dsbish();
/* Enter Secure Partition */
rc = spm_secure_partition_enter(&ctx->c_rt_ctx);
/* Save secure state */
cm_el1_sysregs_context_save(SECURE);
return rc;
}
/*******************************************************************************
* This function returns to the place where spm_sp_synchronous_entry() was
* called originally.
******************************************************************************/
__dead2 static void spm_sp_synchronous_exit(uint64_t rc)
{
sp_context_t *ctx = &sp_ctx;
/*
* The SPM must have initiated the original request through a
* synchronous entry into the secure partition. Jump back to the
* original C runtime context with the value of rc in x0;
*/
spm_secure_partition_exit(ctx->c_rt_ctx, rc);
panic();
}
/*******************************************************************************
* Jump to each Secure Partition for the first time.
******************************************************************************/
static int32_t spm_init(void)
{
uint64_t rc;
sp_context_t *ctx;
INFO("Secure Partition init...\n");
ctx = &sp_ctx;
ctx->state = SP_STATE_RESET;
rc = spm_sp_synchronous_entry(ctx);
assert(rc == 0);
ctx->state = SP_STATE_IDLE;
INFO("Secure Partition initialized.\n");
return !rc;
}
/*******************************************************************************
* Initialize contexts of all Secure Partitions.
******************************************************************************/
int32_t spm_setup(void)
{
sp_context_t *ctx;
/* Disable MMU at EL1 (initialized by BL2) */
disable_mmu_icache_el1();
/* Initialize context of the SP */
INFO("Secure Partition context setup start...\n");
ctx = &sp_ctx;
/* Assign translation tables context. */
ctx->xlat_ctx_handle = spm_get_sp_xlat_context();
spm_sp_setup(ctx);
/* Register init function for deferred init. */
bl31_register_bl32_init(&spm_init);
INFO("Secure Partition setup done.\n");
return 0;
}
/*******************************************************************************
* Function to perform a call to a Secure Partition.
******************************************************************************/
uint64_t spm_sp_call(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3)
{
uint64_t rc;
sp_context_t *sp_ptr = &sp_ctx;
/* Wait until the Secure Partition is idle and set it to busy. */
sp_state_wait_switch(sp_ptr, SP_STATE_IDLE, SP_STATE_BUSY);
/* Set values for registers on SP entry */
cpu_context_t *cpu_ctx = &(sp_ptr->cpu_ctx);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X0, smc_fid);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X1, x1);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X2, x2);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X3, x3);
/* Jump to the Secure Partition. */
rc = spm_sp_synchronous_entry(sp_ptr);
/* Flag Secure Partition as idle. */
assert(sp_ptr->state == SP_STATE_BUSY);
sp_state_set(sp_ptr, SP_STATE_IDLE);
return rc;
}
/*******************************************************************************
* MM_COMMUNICATE handler
******************************************************************************/
static uint64_t mm_communicate(uint32_t smc_fid, uint64_t mm_cookie,
uint64_t comm_buffer_address,
uint64_t comm_size_address, void *handle)
{
uint64_t rc;
/* Cookie. Reserved for future use. It must be zero. */
if (mm_cookie != 0U) {
ERROR("MM_COMMUNICATE: cookie is not zero\n");
SMC_RET1(handle, SPM_INVALID_PARAMETER);
}
if (comm_buffer_address == 0U) {
ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n");
SMC_RET1(handle, SPM_INVALID_PARAMETER);
}
if (comm_size_address != 0U) {
VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n");
}
/*
* The current secure partition design mandates
* - at any point, only a single core can be
* executing in the secure partiton.
* - a core cannot be preempted by an interrupt
* while executing in secure partition.
* Raise the running priority of the core to the
* interrupt level configured for secure partition
* so as to block any interrupt from preempting this
* core.
*/
ehf_activate_priority(PLAT_SP_PRI);
/* Save the Normal world context */
cm_el1_sysregs_context_save(NON_SECURE);
rc = spm_sp_call(smc_fid, comm_buffer_address, comm_size_address,
plat_my_core_pos());
/* Restore non-secure state */
cm_el1_sysregs_context_restore(NON_SECURE);
cm_set_next_eret_context(NON_SECURE);
/*
* Exited from secure partition. This core can take
* interrupts now.
*/
ehf_deactivate_priority(PLAT_SP_PRI);
SMC_RET1(handle, rc);
}
/*******************************************************************************
* Secure Partition Manager SMC handler.
******************************************************************************/
uint64_t spm_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
unsigned int ns;
/* Determine which security state this SMC originated from */
ns = is_caller_non_secure(flags);
if (ns == SMC_FROM_SECURE) {
/* Handle SMCs from Secure world. */
assert(handle == cm_get_context(SECURE));
/* Make next ERET jump to S-EL0 instead of S-EL1. */
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
switch (smc_fid) {
case SPM_VERSION_AARCH32:
SMC_RET1(handle, SPM_VERSION_COMPILED);
case SP_EVENT_COMPLETE_AARCH64:
spm_sp_synchronous_exit(x1);
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
if (sp_ctx.state != SP_STATE_RESET) {
WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
}
SMC_RET1(handle,
spm_memory_attributes_get_smc_handler(
&sp_ctx, x1));
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
if (sp_ctx.state != SP_STATE_RESET) {
WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
}
SMC_RET1(handle,
spm_memory_attributes_set_smc_handler(
&sp_ctx, x1, x2, x3));
default:
break;
}
} else {
/* Handle SMCs from Non-secure world. */
assert(handle == cm_get_context(NON_SECURE));
switch (smc_fid) {
case MM_VERSION_AARCH32:
SMC_RET1(handle, MM_VERSION_COMPILED);
case MM_COMMUNICATE_AARCH32:
case MM_COMMUNICATE_AARCH64:
return mm_communicate(smc_fid, x1, x2, x3, handle);
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
/* SMC interfaces reserved for secure callers. */
SMC_RET1(handle, SPM_NOT_SUPPORTED);
default:
break;
}
}
SMC_RET1(handle, SMC_UNK);
}