blob: 5324fec904808df14eca1c4fab1becb141b8037a [file] [log] [blame]
/*
* Copyright (c) 2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <inttypes.h>
#include <stdint.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/extensions/ras.h>
#include <plat/common/platform.h>
#include <services/el3_spmd_logical_sp.h>
#include <services/ffa_svc.h>
#include <services/sdei.h>
#define CACTUS_SP_RAS_DELEGATE_CMD 0x72617365
#define EVENT_NOTIFY_OS_RAS_ERROR U(5000)
/*
* Note: Typical RAS error handling flow with Firmware First Handling
*
* Step 1: Exception resulting from a RAS error in the normal world is routed to
* EL3.
* Step 2: This exception is typically signaled as either a synchronous external
* abort or SError or interrupt. TF-A (EL3 firmware) delegates the
* control to platform specific handler built on top of the RAS helper
* utilities.
* Step 3: With the help of a Logical Secure Partition, TF-A sends a direct
* message to dedicated S-EL0 (or S-EL1) RAS Partition managed by SPMC.
* TF-A also populates a shared buffer with a data structure containing
* enough information (such as system registers) to identify and triage
* the RAS error.
* Step 4: RAS SP generates the Common Platform Error Record (CPER) and shares
* it with normal world firmware and/or OS kernel through a reserved
* buffer memory.
* Step 5: RAS SP responds to the direct message with information necessary for
* TF-A to notify the OS kernel.
* Step 6: Consequently, TF-A dispatches an SDEI event to notify the OS kernel
* about the CPER records for further logging.
*/
static int injected_fault_handler(const struct err_record_info *info,
int probe_data, const struct err_handler_data *const data)
{
/*
* At the moment, an FF-A compatible SP that supports RAS firmware is
* not available. Hence the sequence below does not exactly follow the
* steps outlined above. Therefore, some steps are essentially spoofed.
* The handling of RAS error is completely done in EL3 firmware.
*/
uint64_t status, cactus_cmd_ret;
int ret, event_num;
cpu_context_t *ns_cpu_context;
/* Get a reference to the non-secure context */
ns_cpu_context = cm_get_context(NON_SECURE);
assert(ns_cpu_context != NULL);
/*
* The faulting error record is already selected by the SER probe
* function.
*/
status = read_erxstatus_el1();
ERROR("Fault reported by system error record %d on 0x%lx: status=0x%" PRIx64 "\n",
probe_data, read_mpidr_el1(), status);
ERROR(" exception reason=%u syndrome=0x%" PRIx64 "\n", data->ea_reason,
data->flags);
/* Clear error */
write_erxstatus_el1(status);
/*
* Initiate an EL3 direct message from LSP to Cactus RAS Secure
* Partition (ID 8001). Currently, the payload is being spoofed.
* The direct message response contains the SDEI event ID for the
* associated RAS error.
*/
(void)plat_spmd_logical_sp_smc_handler(0, 0, 0, CACTUS_SP_RAS_DELEGATE_CMD,
EVENT_NOTIFY_OS_RAS_ERROR,
NULL, ns_cpu_context, 0);
cactus_cmd_ret = read_ctx_reg(get_gpregs_ctx(ns_cpu_context), CTX_GPREG_X3);
event_num = (int)read_ctx_reg(get_gpregs_ctx(ns_cpu_context), CTX_GPREG_X4);
if (cactus_cmd_ret != 0) {
ERROR("RAS error could not be handled by SP: %lx\n", cactus_cmd_ret);
panic();
}
if (event_num != EVENT_NOTIFY_OS_RAS_ERROR) {
ERROR("Unexpected event id sent by RAS SP: %d\n", event_num);
panic();
}
/* Dispatch the event to the SDEI client */
ret = sdei_dispatch_event(event_num);
if (ret < 0) {
ERROR("Can't dispatch event to SDEI\n");
panic();
} else {
INFO("SDEI event dispatched\n");
}
return 0;
}
struct ras_interrupt fvp_ras_interrupts[] = {
};
struct err_record_info fvp_err_records[] = {
/* Record for injected fault */
ERR_RECORD_SYSREG_V1(0, 2, ras_err_ser_probe_sysreg,
injected_fault_handler, NULL),
};
REGISTER_ERR_RECORD_INFO(fvp_err_records);
REGISTER_RAS_INTERRUPTS(fvp_ras_interrupts);