blob: 1a38f25deaa13d0c1dd8b945351a48687a672000 [file] [log] [blame]
/*
* Copyright (c) 2020, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <arch_features.h>
#include <common/fdt_fixup.h>
#include <common/fdt_wrappers.h>
#include <drivers/arm/gicv3.h>
#include <drivers/delay_timer.h>
#include <drivers/generic_delay_timer.h>
#include <lib/extensions/spe.h>
#include <lib/mmio.h>
#include <libfdt.h>
#include "fpga_private.h"
#include <plat/common/platform.h>
#include <platform_def.h>
static entry_point_info_t bl33_image_ep_info;
static unsigned int system_freq;
volatile uint32_t secondary_core_spinlock;
uintptr_t plat_get_ns_image_entrypoint(void)
{
#ifdef PRELOADED_BL33_BASE
return PRELOADED_BL33_BASE;
#else
return 0ULL;
#endif
}
uint32_t fpga_get_spsr_for_bl33_entry(void)
{
return SPSR_64(MODE_EL2, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
}
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
/* Add this core to the VALID mpids list */
fpga_valid_mpids[plat_my_core_pos()] = VALID_MPID;
/*
* Notify the secondary CPUs that the C runtime is ready
* so they can announce themselves.
*/
secondary_core_spinlock = C_RUNTIME_READY_KEY;
dsbish();
sev();
fpga_console_init();
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
bl33_image_ep_info.spsr = fpga_get_spsr_for_bl33_entry();
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
/* Set x0-x3 for the primary CPU as expected by the kernel */
bl33_image_ep_info.args.arg0 = (u_register_t)FPGA_PRELOADED_DTB_BASE;
bl33_image_ep_info.args.arg1 = 0U;
bl33_image_ep_info.args.arg2 = 0U;
bl33_image_ep_info.args.arg3 = 0U;
}
void bl31_plat_arch_setup(void)
{
}
void bl31_platform_setup(void)
{
/* Write frequency to CNTCRL and initialize timer */
generic_delay_timer_init();
/*
* Before doing anything else, wait for some time to ensure that
* the secondary CPUs have populated the fpga_valid_mpids array.
* As the number of secondary cores is unknown and can even be 0,
* it is not possible to rely on any signal from them, so use a
* delay instead.
*/
mdelay(5);
/*
* On the event of a cold reset issued by, for instance, a reset pin
* assertion, we cannot guarantee memory to be initialized to zero.
* In such scenario, if the secondary cores reached
* plat_secondary_cold_boot_setup before the primary one initialized
* .BSS, we could end up having a race condition if the spinlock
* was not cleared before.
*
* Similarly, if there were a reset before the spinlock had been
* cleared, the secondary cores would find the lock opened before
* .BSS is cleared, causing another race condition.
*
* So clean the spinlock as soon as we think it is safe to reduce the
* chances of any race condition on a reset.
*/
secondary_core_spinlock = 0UL;
/* Initialize the GIC driver, cpu and distributor interfaces */
plat_fpga_gic_init();
}
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
next_image_info = &bl33_image_ep_info;
/* Only expecting BL33: the kernel will run in EL2NS */
assert(type == NON_SECURE);
/* None of the images can have 0x0 as the entrypoint */
if (next_image_info->pc) {
return next_image_info;
} else {
return NULL;
}
}
/*
* Even though we sell the FPGA UART as an SBSA variant, it is actually
* a full fledged PL011. So the baudrate divider registers exist.
*/
#ifndef UARTIBRD
#define UARTIBRD 0x024
#define UARTFBRD 0x028
#endif
/* Round an integer to the closest multiple of a value. */
static unsigned int round_multiple(unsigned int x, unsigned int multiple)
{
if (multiple < 2) {
return x;
}
return ((x + (multiple / 2 - 1)) / multiple) * multiple;
}
#define PL011_FRAC_SHIFT 6
#define FPGA_DEFAULT_BAUDRATE 38400
#define PL011_OVERSAMPLING 16
static unsigned int pl011_freq_from_divider(unsigned int divider)
{
unsigned int freq;
freq = divider * FPGA_DEFAULT_BAUDRATE * PL011_OVERSAMPLING;
return freq >> PL011_FRAC_SHIFT;
}
/*
* The FPGAs run most peripherals from one main clock, among them the CPUs,
* the arch timer, and the UART baud base clock.
* The SCP knows this frequency and programs the UART clock divider for a
* 38400 bps baudrate. Recalculate the base input clock from there.
*/
static unsigned int fpga_get_system_frequency(void)
{
const void *fdt = (void *)(uintptr_t)FPGA_PRELOADED_DTB_BASE;
int node, err;
/*
* If the arch timer DT node has an explicit clock-frequency property
* set, use that, to allow people overriding auto-detection.
*/
node = fdt_node_offset_by_compatible(fdt, 0, "arm,armv8-timer");
if (node >= 0) {
uint32_t freq;
err = fdt_read_uint32(fdt, node, "clock-frequency", &freq);
if (err >= 0) {
return freq;
}
}
node = fdt_node_offset_by_compatible(fdt, 0, "arm,pl011");
if (node >= 0) {
uintptr_t pl011_base;
unsigned int divider;
err = fdt_get_reg_props_by_index(fdt, node, 0,
&pl011_base, NULL);
if (err >= 0) {
divider = mmio_read_32(pl011_base + UARTIBRD);
divider <<= PL011_FRAC_SHIFT;
divider += mmio_read_32(pl011_base + UARTFBRD);
/*
* The result won't be exact, due to rounding errors,
* but the input frequency was a multiple of 250 KHz.
*/
return round_multiple(pl011_freq_from_divider(divider),
250000);
} else {
WARN("Cannot read PL011 MMIO base\n");
}
} else {
WARN("No PL011 DT node\n");
}
/* No PL011 DT node or calculation failed. */
return FPGA_DEFAULT_TIMER_FREQUENCY;
}
unsigned int plat_get_syscnt_freq2(void)
{
if (system_freq == 0U) {
system_freq = fpga_get_system_frequency();
}
return system_freq;
}
static void fpga_dtb_update_clock(void *fdt, unsigned int freq)
{
uint32_t freq_dtb = fdt32_to_cpu(freq);
uint32_t phandle;
int node, err;
node = fdt_node_offset_by_compatible(fdt, 0, "arm,pl011");
if (node < 0) {
WARN("%s(): No PL011 DT node found\n", __func__);
return;
}
err = fdt_read_uint32(fdt, node, "clocks", &phandle);
if (err != 0) {
WARN("Cannot find clocks property\n");
return;
}
node = fdt_node_offset_by_phandle(fdt, phandle);
if (node < 0) {
WARN("Cannot get phandle\n");
return;
}
err = fdt_setprop_inplace(fdt, node,
"clock-frequency",
&freq_dtb,
sizeof(freq_dtb));
if (err < 0) {
WARN("Could not update DT baud clock frequency\n");
return;
}
}
#define CMDLINE_SIGNATURE "CMD:"
static int fpga_dtb_set_commandline(void *fdt, const char *cmdline)
{
int chosen;
const char *eol;
char nul = 0;
int slen, err;
chosen = fdt_add_subnode(fdt, 0, "chosen");
if (chosen == -FDT_ERR_EXISTS) {
chosen = fdt_path_offset(fdt, "/chosen");
}
if (chosen < 0) {
return chosen;
}
/*
* There is most likely an EOL at the end of the
* command line, make sure we terminate the line there.
* We can't replace the EOL with a NUL byte in the
* source, as this is in read-only memory. So we first
* create the property without any termination, then
* append a single NUL byte.
*/
eol = strchr(cmdline, '\n');
if (eol == NULL) {
eol = strchr(cmdline, 0);
}
/* Skip the signature and omit the EOL/NUL byte. */
slen = eol - (cmdline + strlen(CMDLINE_SIGNATURE));
/*
* Let's limit the size of the property, just in case
* we find the signature by accident. The Linux kernel
* limits to 4096 characters at most (in fact 2048 for
* arm64), so that sounds like a reasonable number.
*/
if (slen > 4095) {
slen = 4095;
}
err = fdt_setprop(fdt, chosen, "bootargs",
cmdline + strlen(CMDLINE_SIGNATURE), slen);
if (err != 0) {
return err;
}
return fdt_appendprop(fdt, chosen, "bootargs", &nul, 1);
}
static void fpga_prepare_dtb(void)
{
void *fdt = (void *)(uintptr_t)FPGA_PRELOADED_DTB_BASE;
const char *cmdline = (void *)(uintptr_t)FPGA_PRELOADED_CMD_LINE;
int err;
err = fdt_open_into(fdt, fdt, FPGA_MAX_DTB_SIZE);
if (err < 0) {
ERROR("cannot open devicetree at %p: %d\n", fdt, err);
panic();
}
/* Reserve memory used by Trusted Firmware. */
if (fdt_add_reserved_memory(fdt, "tf-a@80000000", BL31_BASE,
BL31_LIMIT - BL31_BASE)) {
WARN("Failed to add reserved memory node to DT\n");
}
/* Check for the command line signature. */
if (!strncmp(cmdline, CMDLINE_SIGNATURE, strlen(CMDLINE_SIGNATURE))) {
err = fpga_dtb_set_commandline(fdt, cmdline);
if (err == 0) {
INFO("using command line at 0x%x\n",
FPGA_PRELOADED_CMD_LINE);
} else {
ERROR("failed to put command line into DTB: %d\n", err);
}
}
if (err < 0) {
ERROR("Error %d extending Device Tree\n", err);
panic();
}
err = fdt_add_cpus_node(fdt, FPGA_MAX_PE_PER_CPU,
FPGA_MAX_CPUS_PER_CLUSTER,
FPGA_MAX_CLUSTER_COUNT);
if (err == -EEXIST) {
WARN("Not overwriting already existing /cpus node in DTB\n");
} else {
if (err < 0) {
ERROR("Error %d creating the /cpus DT node\n", err);
panic();
} else {
unsigned int nr_cores = fpga_get_nr_gic_cores();
INFO("Adjusting GICR DT region to cover %u cores\n",
nr_cores);
err = fdt_adjust_gic_redist(fdt, nr_cores,
fpga_get_redist_base(),
fpga_get_redist_size());
if (err < 0) {
ERROR("Error %d fixing up GIC DT node\n", err);
}
}
}
fpga_dtb_update_clock(fdt, system_freq);
/* Check whether we support the SPE PMU. Remove the DT node if not. */
if (!is_feat_spe_supported()) {
int node = fdt_node_offset_by_compatible(fdt, 0,
"arm,statistical-profiling-extension-v1");
if (node >= 0) {
fdt_del_node(fdt, node);
}
}
/* Check whether we have an ITS. Remove the DT node if not. */
if (!fpga_has_its()) {
int node = fdt_node_offset_by_compatible(fdt, 0,
"arm,gic-v3-its");
if (node >= 0) {
fdt_del_node(fdt, node);
}
}
err = fdt_pack(fdt);
if (err < 0) {
ERROR("Failed to pack Device Tree at %p: error %d\n", fdt, err);
}
clean_dcache_range((uintptr_t)fdt, fdt_blob_size(fdt));
}
void bl31_plat_runtime_setup(void)
{
fpga_prepare_dtb();
}
void bl31_plat_enable_mmu(uint32_t flags)
{
/* TODO: determine if MMU needs to be enabled */
}