| /* |
| * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <debug.h> |
| #include <gic_common.h> |
| #include <gicv2.h> |
| #include "../common/gic_common_private.h" |
| #include "gicv2_private.h" |
| |
| static const gicv2_driver_data_t *driver_data; |
| |
| /******************************************************************************* |
| * Enable secure interrupts and use FIQs to route them. Disable legacy bypass |
| * and set the priority mask register to allow all interrupts to trickle in. |
| ******************************************************************************/ |
| void gicv2_cpuif_enable(void) |
| { |
| unsigned int val; |
| |
| assert(driver_data); |
| assert(driver_data->gicc_base); |
| |
| /* |
| * Enable the Group 0 interrupts, FIQEn and disable Group 0/1 |
| * bypass. |
| */ |
| val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0; |
| val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; |
| |
| /* Program the idle priority in the PMR */ |
| gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK); |
| gicc_write_ctlr(driver_data->gicc_base, val); |
| } |
| |
| /******************************************************************************* |
| * Place the cpu interface in a state where it can never make a cpu exit wfi as |
| * as result of an asserted interrupt. This is critical for powering down a cpu |
| ******************************************************************************/ |
| void gicv2_cpuif_disable(void) |
| { |
| unsigned int val; |
| |
| assert(driver_data); |
| assert(driver_data->gicc_base); |
| |
| /* Disable secure, non-secure interrupts and disable their bypass */ |
| val = gicc_read_ctlr(driver_data->gicc_base); |
| val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT); |
| val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; |
| val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; |
| gicc_write_ctlr(driver_data->gicc_base, val); |
| } |
| |
| /******************************************************************************* |
| * Per cpu gic distributor setup which will be done by all cpus after a cold |
| * boot/hotplug. This marks out the secure SPIs and PPIs & enables them. |
| ******************************************************************************/ |
| void gicv2_pcpu_distif_init(void) |
| { |
| assert(driver_data); |
| assert(driver_data->gicd_base); |
| assert(driver_data->g0_interrupt_array); |
| |
| gicv2_secure_ppi_sgi_setup(driver_data->gicd_base, |
| driver_data->g0_interrupt_num, |
| driver_data->g0_interrupt_array); |
| } |
| |
| /******************************************************************************* |
| * Global gic distributor init which will be done by the primary cpu after a |
| * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It |
| * then enables the secure GIC distributor interface. |
| ******************************************************************************/ |
| void gicv2_distif_init(void) |
| { |
| unsigned int ctlr; |
| |
| assert(driver_data); |
| assert(driver_data->gicd_base); |
| assert(driver_data->g0_interrupt_array); |
| |
| /* Disable the distributor before going further */ |
| ctlr = gicd_read_ctlr(driver_data->gicd_base); |
| gicd_write_ctlr(driver_data->gicd_base, |
| ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT)); |
| |
| /* Set the default attribute of all SPIs */ |
| gicv2_spis_configure_defaults(driver_data->gicd_base); |
| |
| /* Configure the G0 SPIs */ |
| gicv2_secure_spis_configure(driver_data->gicd_base, |
| driver_data->g0_interrupt_num, |
| driver_data->g0_interrupt_array); |
| |
| /* Re-enable the secure SPIs now that they have been configured */ |
| gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT); |
| } |
| |
| /******************************************************************************* |
| * Initialize the ARM GICv2 driver with the provided platform inputs |
| ******************************************************************************/ |
| void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data) |
| { |
| unsigned int gic_version; |
| assert(plat_driver_data); |
| assert(plat_driver_data->gicd_base); |
| assert(plat_driver_data->gicc_base); |
| |
| /* |
| * The platform should provide a list of atleast one type of |
| * interrupts |
| */ |
| assert(plat_driver_data->g0_interrupt_array); |
| |
| /* |
| * If there are no interrupts of a particular type, then the number of |
| * interrupts of that type should be 0 and vice-versa. |
| */ |
| assert(plat_driver_data->g0_interrupt_array ? |
| plat_driver_data->g0_interrupt_num : |
| plat_driver_data->g0_interrupt_num == 0); |
| |
| /* Ensure that this is a GICv2 system */ |
| gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); |
| gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT) |
| & PIDR2_ARCH_REV_MASK; |
| assert(gic_version == ARCH_REV_GICV2); |
| |
| driver_data = plat_driver_data; |
| |
| /* |
| * The GIC driver data is initialized by the primary CPU with caches |
| * enabled. When the secondary CPU boots up, it initializes the |
| * GICC/GICR interface with the caches disabled. Hence flush the |
| * driver_data to ensure coherency. This is not required if the |
| * platform has HW_ASSISTED_COHERENCY enabled. |
| */ |
| #if !HW_ASSISTED_COHERENCY |
| flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data)); |
| flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data)); |
| #endif |
| INFO("ARM GICv2 driver initialized\n"); |
| } |
| |
| /****************************************************************************** |
| * This function returns whether FIQ is enabled in the GIC CPU interface. |
| *****************************************************************************/ |
| unsigned int gicv2_is_fiq_enabled(void) |
| { |
| unsigned int gicc_ctlr; |
| |
| assert(driver_data); |
| assert(driver_data->gicc_base); |
| |
| gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base); |
| return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1; |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the highest priority pending interrupt at |
| * the GIC cpu interface. The return values can be one of the following : |
| * PENDING_G1_INTID : The interrupt type is non secure Group 1. |
| * 0 - 1019 : The interrupt type is secure Group 0. |
| * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with |
| * sufficient priority to be signaled |
| ******************************************************************************/ |
| unsigned int gicv2_get_pending_interrupt_type(void) |
| { |
| assert(driver_data); |
| assert(driver_data->gicc_base); |
| |
| return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; |
| } |
| |
| /******************************************************************************* |
| * This function returns the id of the highest priority pending interrupt at |
| * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no |
| * interrupt pending. |
| ******************************************************************************/ |
| unsigned int gicv2_get_pending_interrupt_id(void) |
| { |
| unsigned int id; |
| |
| assert(driver_data); |
| assert(driver_data->gicc_base); |
| |
| id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; |
| |
| /* |
| * Find out which non-secure interrupt it is under the assumption that |
| * the GICC_CTLR.AckCtl bit is 0. |
| */ |
| if (id == PENDING_G1_INTID) |
| id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK; |
| |
| return id; |
| } |
| |
| /******************************************************************************* |
| * This functions reads the GIC cpu interface Interrupt Acknowledge register |
| * to start handling the pending secure 0 interrupt. It returns the |
| * contents of the IAR. |
| ******************************************************************************/ |
| unsigned int gicv2_acknowledge_interrupt(void) |
| { |
| assert(driver_data); |
| assert(driver_data->gicc_base); |
| |
| return gicc_read_IAR(driver_data->gicc_base); |
| } |
| |
| /******************************************************************************* |
| * This functions writes the GIC cpu interface End Of Interrupt register with |
| * the passed value to finish handling the active secure group 0 interrupt. |
| ******************************************************************************/ |
| void gicv2_end_of_interrupt(unsigned int id) |
| { |
| assert(driver_data); |
| assert(driver_data->gicc_base); |
| |
| gicc_write_EOIR(driver_data->gicc_base, id); |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the interrupt id depending upon the group |
| * this interrupt has been configured under by the interrupt controller i.e. |
| * group0 secure or group1 non secure. It returns zero for Group 0 secure and |
| * one for Group 1 non secure interrupt. |
| ******************************************************************************/ |
| unsigned int gicv2_get_interrupt_group(unsigned int id) |
| { |
| assert(driver_data); |
| assert(driver_data->gicd_base); |
| |
| return gicd_get_igroupr(driver_data->gicd_base, id); |
| } |