| /* |
| * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <amu.h> |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <context.h> |
| #include <context_mgmt.h> |
| #include <interrupt_mgmt.h> |
| #include <platform.h> |
| #include <platform_def.h> |
| #include <pubsub_events.h> |
| #include <smccc_helpers.h> |
| #include <spe.h> |
| #include <string.h> |
| #include <sve.h> |
| #include <utils.h> |
| |
| |
| /******************************************************************************* |
| * Context management library initialisation routine. This library is used by |
| * runtime services to share pointers to 'cpu_context' structures for the secure |
| * and non-secure states. Management of the structures and their associated |
| * memory is not done by the context management library e.g. the PSCI service |
| * manages the cpu context used for entry from and exit to the non-secure state. |
| * The Secure payload dispatcher service manages the context(s) corresponding to |
| * the secure state. It also uses this library to get access to the non-secure |
| * state cpu context pointers. |
| * Lastly, this library provides the api to make SP_EL3 point to the cpu context |
| * which will used for programming an entry into a lower EL. The same context |
| * will used to save state upon exception entry from that EL. |
| ******************************************************************************/ |
| void cm_init(void) |
| { |
| /* |
| * The context management library has only global data to intialize, but |
| * that will be done when the BSS is zeroed out |
| */ |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context 'ctx' for |
| * first use, and sets the initial entrypoint state as specified by the |
| * entry_point_info structure. |
| * |
| * The security state to initialize is determined by the SECURE attribute |
| * of the entry_point_info. |
| * |
| * The EE and ST attributes are used to configure the endianess and secure |
| * timer availability for the new execution context. |
| * |
| * To prepare the register state for entry call cm_prepare_el3_exit() and |
| * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to |
| * cm_e1_sysreg_context_restore(). |
| ******************************************************************************/ |
| void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) |
| { |
| unsigned int security_state; |
| uint32_t scr_el3, pmcr_el0; |
| el3_state_t *state; |
| gp_regs_t *gp_regs; |
| unsigned long sctlr_elx, actlr_elx; |
| |
| assert(ctx); |
| |
| security_state = GET_SECURITY_STATE(ep->h.attr); |
| |
| /* Clear any residual register values from the context */ |
| zeromem(ctx, sizeof(*ctx)); |
| |
| /* |
| * SCR_EL3 was initialised during reset sequence in macro |
| * el3_arch_init_common. This code modifies the SCR_EL3 fields that |
| * affect the next EL. |
| * |
| * The following fields are initially set to zero and then updated to |
| * the required value depending on the state of the SPSR_EL3 and the |
| * Security state and entrypoint attributes of the next EL. |
| */ |
| scr_el3 = read_scr(); |
| scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | |
| SCR_ST_BIT | SCR_HCE_BIT); |
| /* |
| * SCR_NS: Set the security state of the next EL. |
| */ |
| if (security_state != SECURE) |
| scr_el3 |= SCR_NS_BIT; |
| /* |
| * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next |
| * Exception level as specified by SPSR. |
| */ |
| if (GET_RW(ep->spsr) == MODE_RW_64) |
| scr_el3 |= SCR_RW_BIT; |
| /* |
| * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical |
| * Secure timer registers to EL3, from AArch64 state only, if specified |
| * by the entrypoint attributes. |
| */ |
| if (EP_GET_ST(ep->h.attr)) |
| scr_el3 |= SCR_ST_BIT; |
| |
| #ifndef HANDLE_EA_EL3_FIRST |
| /* |
| * SCR_EL3.EA: Do not route External Abort and SError Interrupt External |
| * to EL3 when executing at a lower EL. When executing at EL3, External |
| * Aborts are taken to EL3. |
| */ |
| scr_el3 &= ~SCR_EA_BIT; |
| #endif |
| |
| #if FAULT_INJECTION_SUPPORT |
| /* Enable fault injection from lower ELs */ |
| scr_el3 |= SCR_FIEN_BIT; |
| #endif |
| |
| #ifdef IMAGE_BL31 |
| /* |
| * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as |
| * indicated by the interrupt routing model for BL31. |
| */ |
| scr_el3 |= get_scr_el3_from_routing_model(security_state); |
| #endif |
| |
| /* |
| * SCR_EL3.HCE: Enable HVC instructions if next execution state is |
| * AArch64 and next EL is EL2, or if next execution state is AArch32 and |
| * next mode is Hyp. |
| */ |
| if ((GET_RW(ep->spsr) == MODE_RW_64 |
| && GET_EL(ep->spsr) == MODE_EL2) |
| || (GET_RW(ep->spsr) != MODE_RW_64 |
| && GET_M32(ep->spsr) == MODE32_hyp)) { |
| scr_el3 |= SCR_HCE_BIT; |
| } |
| |
| /* |
| * Initialise SCTLR_EL1 to the reset value corresponding to the target |
| * execution state setting all fields rather than relying of the hw. |
| * Some fields have architecturally UNKNOWN reset values and these are |
| * set to zero. |
| * |
| * SCTLR.EE: Endianness is taken from the entrypoint attributes. |
| * |
| * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as |
| * required by PSCI specification) |
| */ |
| sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; |
| if (GET_RW(ep->spsr) == MODE_RW_64) |
| sctlr_elx |= SCTLR_EL1_RES1; |
| else { |
| /* |
| * If the target execution state is AArch32 then the following |
| * fields need to be set. |
| * |
| * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE |
| * instructions are not trapped to EL1. |
| * |
| * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI |
| * instructions are not trapped to EL1. |
| * |
| * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the |
| * CP15DMB, CP15DSB, and CP15ISB instructions. |
| */ |
| sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT |
| | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; |
| } |
| |
| /* |
| * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 |
| * and other EL2 registers are set up by cm_preapre_ns_entry() as they |
| * are not part of the stored cpu_context. |
| */ |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); |
| |
| /* |
| * Base the context ACTLR_EL1 on the current value, as it is |
| * implementation defined. The context restore process will write |
| * the value from the context to the actual register and can cause |
| * problems for processor cores that don't expect certain bits to |
| * be zero. |
| */ |
| actlr_elx = read_actlr_el1(); |
| write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); |
| |
| if (security_state == SECURE) { |
| /* |
| * Initialise PMCR_EL0 for secure context only, setting all |
| * fields rather than relying on hw. Some fields are |
| * architecturally UNKNOWN on reset. |
| * |
| * PMCR_EL0.LC: Set to one so that cycle counter overflow, that |
| * is recorded in PMOVSCLR_EL0[31], occurs on the increment |
| * that changes PMCCNTR_EL0[63] from 1 to 0. |
| * |
| * PMCR_EL0.DP: Set to one so that the cycle counter, |
| * PMCCNTR_EL0 does not count when event counting is prohibited. |
| * |
| * PMCR_EL0.X: Set to zero to disable export of events. |
| * |
| * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 |
| * counts on every clock cycle. |
| */ |
| pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT |
| | PMCR_EL0_DP_BIT) |
| & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); |
| } |
| |
| /* Populate EL3 state so that we've the right context before doing ERET */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| write_ctx_reg(state, CTX_ELR_EL3, ep->pc); |
| write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); |
| |
| /* |
| * Store the X0-X7 value from the entrypoint into the context |
| * Use memcpy as we are in control of the layout of the structures |
| */ |
| gp_regs = get_gpregs_ctx(ctx); |
| memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); |
| } |
| |
| /******************************************************************************* |
| * Enable architecture extensions on first entry to Non-secure world. |
| * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise |
| * it is zero. |
| ******************************************************************************/ |
| static void enable_extensions_nonsecure(int el2_unused) |
| { |
| #if IMAGE_BL31 |
| #if ENABLE_SPE_FOR_LOWER_ELS |
| spe_enable(el2_unused); |
| #endif |
| |
| #if ENABLE_AMU |
| amu_enable(el2_unused); |
| #endif |
| |
| #if ENABLE_SVE_FOR_NS |
| sve_enable(el2_unused); |
| #endif |
| #endif |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context for a CPU specified by |
| * its `cpu_idx` for first use, and sets the initial entrypoint state as |
| * specified by the entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_context_by_index(unsigned int cpu_idx, |
| const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); |
| cm_setup_context(ctx, ep); |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context for the current CPU |
| * for first use, and sets the initial entrypoint state as specified by the |
| * entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_my_context(const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); |
| cm_setup_context(ctx, ep); |
| } |
| |
| /******************************************************************************* |
| * Prepare the CPU system registers for first entry into secure or normal world |
| * |
| * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized |
| * If execution is requested to non-secure EL1 or svc mode, and the CPU supports |
| * EL2 then EL2 is disabled by configuring all necessary EL2 registers. |
| * For all entries, the EL1 registers are initialized from the cpu_context |
| ******************************************************************************/ |
| void cm_prepare_el3_exit(uint32_t security_state) |
| { |
| uint32_t sctlr_elx, scr_el3, mdcr_el2; |
| cpu_context_t *ctx = cm_get_context(security_state); |
| int el2_unused = 0; |
| |
| assert(ctx); |
| |
| if (security_state == NON_SECURE) { |
| scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); |
| if (scr_el3 & SCR_HCE_BIT) { |
| /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ |
| sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), |
| CTX_SCTLR_EL1); |
| sctlr_elx &= SCTLR_EE_BIT; |
| sctlr_elx |= SCTLR_EL2_RES1; |
| write_sctlr_el2(sctlr_elx); |
| } else if (EL_IMPLEMENTED(2)) { |
| el2_unused = 1; |
| |
| /* |
| * EL2 present but unused, need to disable safely. |
| * SCTLR_EL2 can be ignored in this case. |
| * |
| * Initialise all fields in HCR_EL2, except HCR_EL2.RW, |
| * to zero so that Non-secure operations do not trap to |
| * EL2. |
| * |
| * HCR_EL2.RW: Set this field to match SCR_EL3.RW |
| */ |
| write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); |
| |
| /* |
| * Initialise CPTR_EL2 setting all fields rather than |
| * relying on the hw. All fields have architecturally |
| * UNKNOWN reset values. |
| * |
| * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 |
| * accesses to the CPACR_EL1 or CPACR from both |
| * Execution states do not trap to EL2. |
| * |
| * CPTR_EL2.TTA: Set to zero so that Non-secure System |
| * register accesses to the trace registers from both |
| * Execution states do not trap to EL2. |
| * |
| * CPTR_EL2.TFP: Set to zero so that Non-secure accesses |
| * to SIMD and floating-point functionality from both |
| * Execution states do not trap to EL2. |
| */ |
| write_cptr_el2(CPTR_EL2_RESET_VAL & |
| ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT |
| | CPTR_EL2_TFP_BIT)); |
| |
| /* |
| * Initiliase CNTHCTL_EL2. All fields are |
| * architecturally UNKNOWN on reset and are set to zero |
| * except for field(s) listed below. |
| * |
| * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to |
| * Hyp mode of Non-secure EL0 and EL1 accesses to the |
| * physical timer registers. |
| * |
| * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to |
| * Hyp mode of Non-secure EL0 and EL1 accesses to the |
| * physical counter registers. |
| */ |
| write_cnthctl_el2(CNTHCTL_RESET_VAL | |
| EL1PCEN_BIT | EL1PCTEN_BIT); |
| |
| /* |
| * Initialise CNTVOFF_EL2 to zero as it resets to an |
| * architecturally UNKNOWN value. |
| */ |
| write_cntvoff_el2(0); |
| |
| /* |
| * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and |
| * MPIDR_EL1 respectively. |
| */ |
| write_vpidr_el2(read_midr_el1()); |
| write_vmpidr_el2(read_mpidr_el1()); |
| |
| /* |
| * Initialise VTTBR_EL2. All fields are architecturally |
| * UNKNOWN on reset. |
| * |
| * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage |
| * 2 address translation is disabled, cache maintenance |
| * operations depend on the VMID. |
| * |
| * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address |
| * translation is disabled. |
| */ |
| write_vttbr_el2(VTTBR_RESET_VAL & |
| ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
| | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); |
| |
| /* |
| * Initialise MDCR_EL2, setting all fields rather than |
| * relying on hw. Some fields are architecturally |
| * UNKNOWN on reset. |
| * |
| * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and |
| * EL1 System register accesses to the Debug ROM |
| * registers are not trapped to EL2. |
| * |
| * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 |
| * System register accesses to the powerdown debug |
| * registers are not trapped to EL2. |
| * |
| * MDCR_EL2.TDA: Set to zero so that System register |
| * accesses to the debug registers do not trap to EL2. |
| * |
| * MDCR_EL2.TDE: Set to zero so that debug exceptions |
| * are not routed to EL2. |
| * |
| * MDCR_EL2.HPME: Set to zero to disable EL2 Performance |
| * Monitors. |
| * |
| * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and |
| * EL1 accesses to all Performance Monitors registers |
| * are not trapped to EL2. |
| * |
| * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 |
| * and EL1 accesses to the PMCR_EL0 or PMCR are not |
| * trapped to EL2. |
| * |
| * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the |
| * architecturally-defined reset value. |
| */ |
| mdcr_el2 = ((MDCR_EL2_RESET_VAL | |
| ((read_pmcr_el0() & PMCR_EL0_N_BITS) |
| >> PMCR_EL0_N_SHIFT)) & |
| ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
| | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
| | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
| | MDCR_EL2_TPMCR_BIT)); |
| |
| write_mdcr_el2(mdcr_el2); |
| |
| /* |
| * Initialise HSTR_EL2. All fields are architecturally |
| * UNKNOWN on reset. |
| * |
| * HSTR_EL2.T<n>: Set all these fields to zero so that |
| * Non-secure EL0 or EL1 accesses to System registers |
| * do not trap to EL2. |
| */ |
| write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); |
| /* |
| * Initialise CNTHP_CTL_EL2. All fields are |
| * architecturally UNKNOWN on reset. |
| * |
| * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 |
| * physical timer and prevent timer interrupts. |
| */ |
| write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & |
| ~(CNTHP_CTL_ENABLE_BIT)); |
| } |
| enable_extensions_nonsecure(el2_unused); |
| } |
| |
| cm_el1_sysregs_context_restore(security_state); |
| cm_set_next_eret_context(security_state); |
| } |
| |
| /******************************************************************************* |
| * The next four functions are used by runtime services to save and restore |
| * EL1 context on the 'cpu_context' structure for the specified security |
| * state. |
| ******************************************************************************/ |
| void cm_el1_sysregs_context_save(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| el1_sysregs_context_save(get_sysregs_ctx(ctx)); |
| |
| #if IMAGE_BL31 |
| if (security_state == SECURE) |
| PUBLISH_EVENT(cm_exited_secure_world); |
| else |
| PUBLISH_EVENT(cm_exited_normal_world); |
| #endif |
| } |
| |
| void cm_el1_sysregs_context_restore(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| el1_sysregs_context_restore(get_sysregs_ctx(ctx)); |
| |
| #if IMAGE_BL31 |
| if (security_state == SECURE) |
| PUBLISH_EVENT(cm_entering_secure_world); |
| else |
| PUBLISH_EVENT(cm_entering_normal_world); |
| #endif |
| } |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 member of 'cpu_context' pertaining to the |
| * given security state with the given entrypoint |
| ******************************************************************************/ |
| void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| } |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' |
| * pertaining to the given security state |
| ******************************************************************************/ |
| void cm_set_elr_spsr_el3(uint32_t security_state, |
| uintptr_t entrypoint, uint32_t spsr) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| write_ctx_reg(state, CTX_SPSR_EL3, spsr); |
| } |
| |
| /******************************************************************************* |
| * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' |
| * pertaining to the given security state using the value and bit position |
| * specified in the parameters. It preserves all other bits. |
| ******************************************************************************/ |
| void cm_write_scr_el3_bit(uint32_t security_state, |
| uint32_t bit_pos, |
| uint32_t value) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| uint32_t scr_el3; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Ensure that the bit position is a valid one */ |
| assert((1 << bit_pos) & SCR_VALID_BIT_MASK); |
| |
| /* Ensure that the 'value' is only a bit wide */ |
| assert(value <= 1); |
| |
| /* |
| * Get the SCR_EL3 value from the cpu context, clear the desired bit |
| * and set it to its new value. |
| */ |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| scr_el3 &= ~(1 << bit_pos); |
| scr_el3 |= value << bit_pos; |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| } |
| |
| /******************************************************************************* |
| * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the |
| * given security state. |
| ******************************************************************************/ |
| uint32_t cm_get_scr_el3(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| return read_ctx_reg(state, CTX_SCR_EL3); |
| } |
| |
| /******************************************************************************* |
| * This function is used to program the context that's used for exception |
| * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for |
| * the required security state |
| ******************************************************************************/ |
| void cm_set_next_eret_context(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| cm_set_next_context(ctx); |
| } |