blob: 6bed6c3cfa5327950835d7f722b3a7932cc1a827 [file] [log] [blame]
/*
* Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <cdefs.h>
#include <stdbool.h>
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/amu_private.h>
#include <plat/common/platform.h>
static struct amu_ctx amu_ctxs[PLATFORM_CORE_COUNT];
static inline __unused uint64_t read_id_aa64pfr0_el1_amu(void)
{
return (read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT) &
ID_AA64PFR0_AMU_MASK;
}
static inline __unused uint64_t read_hcr_el2_amvoffen(void)
{
return (read_hcr_el2() & HCR_AMVOFFEN_BIT) >>
HCR_AMVOFFEN_SHIFT;
}
static inline __unused void write_cptr_el2_tam(uint64_t value)
{
write_cptr_el2((read_cptr_el2() & ~CPTR_EL2_TAM_BIT) |
((value << CPTR_EL2_TAM_SHIFT) & CPTR_EL2_TAM_BIT));
}
static inline __unused void write_cptr_el3_tam(cpu_context_t *ctx, uint64_t tam)
{
uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3);
value &= ~TAM_BIT;
value |= (tam << TAM_SHIFT) & TAM_BIT;
write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, value);
}
static inline __unused void write_hcr_el2_amvoffen(uint64_t value)
{
write_hcr_el2((read_hcr_el2() & ~HCR_AMVOFFEN_BIT) |
((value << HCR_AMVOFFEN_SHIFT) & HCR_AMVOFFEN_BIT));
}
static inline __unused void write_amcr_el0_cg1rz(uint64_t value)
{
write_amcr_el0((read_amcr_el0() & ~AMCR_CG1RZ_BIT) |
((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT));
}
static inline __unused uint64_t read_amcfgr_el0_ncg(void)
{
return (read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT) &
AMCFGR_EL0_NCG_MASK;
}
static inline uint64_t read_amcgcr_el0_cg0nc(void)
{
return (read_amcgcr_el0() >> AMCGCR_EL0_CG0NC_SHIFT) &
AMCGCR_EL0_CG0NC_MASK;
}
static inline __unused uint64_t read_amcg1idr_el0_voff(void)
{
return (read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) &
AMCG1IDR_VOFF_MASK;
}
static inline __unused uint64_t read_amcgcr_el0_cg1nc(void)
{
return (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) &
AMCGCR_EL0_CG1NC_MASK;
}
static inline __unused uint64_t read_amcntenset0_el0_px(void)
{
return (read_amcntenset0_el0() >> AMCNTENSET0_EL0_Pn_SHIFT) &
AMCNTENSET0_EL0_Pn_MASK;
}
static inline __unused uint64_t read_amcntenset1_el0_px(void)
{
return (read_amcntenset1_el0() >> AMCNTENSET1_EL0_Pn_SHIFT) &
AMCNTENSET1_EL0_Pn_MASK;
}
static inline __unused void write_amcntenset0_el0_px(uint64_t px)
{
uint64_t value = read_amcntenset0_el0();
value &= ~AMCNTENSET0_EL0_Pn_MASK;
value |= (px << AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK;
write_amcntenset0_el0(value);
}
static inline __unused void write_amcntenset1_el0_px(uint64_t px)
{
uint64_t value = read_amcntenset1_el0();
value &= ~AMCNTENSET1_EL0_Pn_MASK;
value |= (px << AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK;
write_amcntenset1_el0(value);
}
static inline __unused void write_amcntenclr0_el0_px(uint64_t px)
{
uint64_t value = read_amcntenclr0_el0();
value &= ~AMCNTENCLR0_EL0_Pn_MASK;
value |= (px << AMCNTENCLR0_EL0_Pn_SHIFT) & AMCNTENCLR0_EL0_Pn_MASK;
write_amcntenclr0_el0(value);
}
static inline __unused void write_amcntenclr1_el0_px(uint64_t px)
{
uint64_t value = read_amcntenclr1_el0();
value &= ~AMCNTENCLR1_EL0_Pn_MASK;
value |= (px << AMCNTENCLR1_EL0_Pn_SHIFT) & AMCNTENCLR1_EL0_Pn_MASK;
write_amcntenclr1_el0(value);
}
static bool amu_supported(void)
{
return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1;
}
static bool amu_v1p1_supported(void)
{
return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1P1;
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
static bool amu_group1_supported(void)
{
return read_amcfgr_el0_ncg() > 0U;
}
#endif
/*
* Enable counters. This function is meant to be invoked
* by the context management library before exiting from EL3.
*/
void amu_enable(bool el2_unused, cpu_context_t *ctx)
{
if (!amu_supported()) {
return;
}
if (el2_unused) {
/*
* CPTR_EL2.TAM: Set to zero so any accesses to
* the Activity Monitor registers do not trap to EL2.
*/
write_cptr_el2_tam(0U);
}
/*
* Retrieve and update the CPTR_EL3 value from the context mentioned
* in 'ctx'. Set CPTR_EL3.TAM to zero so that any accesses to
* the Activity Monitor registers do not trap to EL3.
*/
write_cptr_el3_tam(ctx, 0U);
/* Enable group 0 counters */
write_amcntenset0_el0_px((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amu_group1_supported()) {
/* Enable group 1 counters */
write_amcntenset1_el0_px(AMU_GROUP1_COUNTERS_MASK);
}
#endif
/* Initialize FEAT_AMUv1p1 features if present. */
if (!amu_v1p1_supported()) {
return;
}
if (el2_unused) {
/* Make sure virtual offsets are disabled if EL2 not used. */
write_hcr_el2_amvoffen(0U);
}
#if AMU_RESTRICT_COUNTERS
/*
* FEAT_AMUv1p1 adds a register field to restrict access to group 1
* counters at all but the highest implemented EL. This is controlled
* with the AMU_RESTRICT_COUNTERS compile time flag, when set, system
* register reads at lower ELs return zero. Reads from the memory
* mapped view are unaffected.
*/
VERBOSE("AMU group 1 counter access restricted.\n");
write_amcr_el0_cg1rz(1U);
#else
write_amcr_el0_cg1rz(0U);
#endif
}
/* Read the group 0 counter identified by the given `idx`. */
static uint64_t amu_group0_cnt_read(unsigned int idx)
{
assert(amu_supported());
assert(idx < read_amcgcr_el0_cg0nc());
return amu_group0_cnt_read_internal(idx);
}
/* Write the group 0 counter identified by the given `idx` with `val` */
static void amu_group0_cnt_write(unsigned int idx, uint64_t val)
{
assert(amu_supported());
assert(idx < read_amcgcr_el0_cg0nc());
amu_group0_cnt_write_internal(idx, val);
isb();
}
/*
* Read the group 0 offset register for a given index. Index must be 0, 2,
* or 3, the register for 1 does not exist.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static uint64_t amu_group0_voffset_read(unsigned int idx)
{
assert(amu_v1p1_supported());
assert(idx < read_amcgcr_el0_cg0nc());
assert(idx != 1U);
return amu_group0_voffset_read_internal(idx);
}
/*
* Write the group 0 offset register for a given index. Index must be 0, 2, or
* 3, the register for 1 does not exist.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static void amu_group0_voffset_write(unsigned int idx, uint64_t val)
{
assert(amu_v1p1_supported());
assert(idx < read_amcgcr_el0_cg0nc());
assert(idx != 1U);
amu_group0_voffset_write_internal(idx, val);
isb();
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
/* Read the group 1 counter identified by the given `idx` */
static uint64_t amu_group1_cnt_read(unsigned int idx)
{
assert(amu_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
return amu_group1_cnt_read_internal(idx);
}
/* Write the group 1 counter identified by the given `idx` with `val` */
static void amu_group1_cnt_write(unsigned int idx, uint64_t val)
{
assert(amu_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
amu_group1_cnt_write_internal(idx, val);
isb();
}
/*
* Read the group 1 offset register for a given index.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static uint64_t amu_group1_voffset_read(unsigned int idx)
{
assert(amu_v1p1_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
return amu_group1_voffset_read_internal(idx);
}
/*
* Write the group 1 offset register for a given index.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static void amu_group1_voffset_write(unsigned int idx, uint64_t val)
{
assert(amu_v1p1_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
amu_group1_voffset_write_internal(idx, val);
isb();
}
#endif
static void *amu_context_save(const void *arg)
{
struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()];
unsigned int i;
if (!amu_supported()) {
return (void *)-1;
}
/* Assert that group 0/1 counter configuration is what we expect */
assert(read_amcntenset0_el0_px() ==
((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U));
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amu_group1_supported()) {
assert(read_amcntenset1_el0_px() == AMU_GROUP1_COUNTERS_MASK);
}
#endif
/*
* Disable group 0/1 counters to avoid other observers like SCP sampling
* counter values from the future via the memory mapped view.
*/
write_amcntenclr0_el0_px((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amu_group1_supported()) {
write_amcntenclr1_el0_px(AMU_GROUP1_COUNTERS_MASK);
}
#endif
isb();
/* Save all group 0 counters */
for (i = 0U; i < read_amcgcr_el0_cg0nc(); i++) {
ctx->group0_cnts[i] = amu_group0_cnt_read(i);
}
/* Save group 0 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
/* Not using a loop because count is fixed and index 1 DNE. */
ctx->group0_voffsets[0U] = amu_group0_voffset_read(0U);
ctx->group0_voffsets[1U] = amu_group0_voffset_read(2U);
ctx->group0_voffsets[2U] = amu_group0_voffset_read(3U);
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amu_group1_supported()) {
/* Save group 1 counters */
for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) {
if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) {
ctx->group1_cnts[i] = amu_group1_cnt_read(i);
}
}
/* Save group 1 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
uint64_t amcg1idr = read_amcg1idr_el0_voff() &
AMU_GROUP1_COUNTERS_MASK;
for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) {
if (((amcg1idr >> i) & 1ULL) != 0ULL) {
ctx->group1_voffsets[i] =
amu_group1_voffset_read(i);
}
}
}
}
#endif
return (void *)0;
}
static void *amu_context_restore(const void *arg)
{
struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()];
unsigned int i;
if (!amu_supported()) {
return (void *)-1;
}
/* Counters were disabled in `amu_context_save()` */
assert(read_amcntenset0_el0_px() == 0U);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amu_group1_supported()) {
assert(read_amcntenset1_el0_px() == 0U);
}
#endif
/* Restore all group 0 counters */
for (i = 0U; i < read_amcgcr_el0_cg0nc(); i++) {
amu_group0_cnt_write(i, ctx->group0_cnts[i]);
}
/* Restore group 0 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
/* Not using a loop because count is fixed and index 1 DNE. */
amu_group0_voffset_write(0U, ctx->group0_voffsets[0U]);
amu_group0_voffset_write(2U, ctx->group0_voffsets[1U]);
amu_group0_voffset_write(3U, ctx->group0_voffsets[2U]);
}
/* Restore group 0 counter configuration */
write_amcntenset0_el0_px((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amu_group1_supported()) {
/* Restore group 1 counters */
for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) {
if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) {
amu_group1_cnt_write(i, ctx->group1_cnts[i]);
}
}
/* Restore group 1 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
uint64_t amcg1idr = read_amcg1idr_el0_voff() &
AMU_GROUP1_COUNTERS_MASK;
for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) {
if (((amcg1idr >> i) & 1ULL) != 0ULL) {
amu_group1_voffset_write(i,
ctx->group1_voffsets[i]);
}
}
}
/* Restore group 1 counter configuration */
write_amcntenset1_el0_px(AMU_GROUP1_COUNTERS_MASK);
}
#endif
return (void *)0;
}
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save);
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);