blob: c62886cf6c2abd94b6124f96a9cc698d4fbc6199 [file] [log] [blame]
/*
* Copyright (c) 2016 - 2020, Broadcom
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdlib.h>
#include <stddef.h>
#include "bcm_emmc.h"
#include "emmc_chal_types.h"
#include "emmc_chal_sd.h"
#include "emmc_csl_sdprot.h"
#include "emmc_csl_sdcmd.h"
#include "emmc_csl_sd.h"
#include "emmc_chal_sd.h"
#include "emmc_pboot_hal_memory_drv.h"
int sd_cmd0(struct sd_handle *handle)
{
int res;
uint32_t argument = 0x0; /* Go to IDLE state. */
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_GO_IDLE_STATE, argument, 0, NULL);
if (res == SD_OK) {
/* Clear all other interrupts */
chal_sd_clear_irq((void *)handle->device, 0xffffffff);
}
return res;
}
int sd_cmd1(struct sd_handle *handle, uint32_t ocr, uint32_t *ocr_output)
{
int res;
uint32_t options;
struct sd_resp resp;
options = SD_CMDR_RSP_TYPE_R3_4 << SD_CMDR_RSP_TYPE_S;
if (ocr_output == NULL) {
EMMC_TRACE("Invalid args\n");
return SD_FAIL;
}
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_SEND_OPCOND, ocr, options, &resp);
if (res == SD_OK)
*ocr_output = resp.data.r3.ocr;
return res;
}
int sd_cmd2(struct sd_handle *handle)
{
uint32_t options;
struct sd_resp resp;
/* send cmd and parse result */
options = SD_CMDR_RSP_TYPE_R2 << SD_CMDR_RSP_TYPE_S;
return send_cmd(handle, SD_CMD_ALL_SEND_CID, 0, options, &resp);
}
int sd_cmd3(struct sd_handle *handle)
{
int res;
uint32_t options = 0;
uint32_t argument;
struct sd_resp resp;
/* use non zero and non 0x1 value for rca */
handle->device->ctrl.rca = 0x5;
argument = handle->device->ctrl.rca << SD_CMD7_ARG_RCA_SHIFT;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK |
SD4_EMMC_TOP_CMD_CRC_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_MMC_SET_RCA, argument, options, &resp);
if (res != SD_OK)
handle->device->ctrl.rca = 0;
return res;
}
int sd_cmd7(struct sd_handle *handle, uint32_t rca)
{
int res;
uint32_t argument, options;
struct sd_resp resp;
argument = (rca << SD_CMD7_ARG_RCA_SHIFT);
/*
* Response to CMD7 is:
* R1 while selectiing from Stand-By State to Transfer State
* R1b while selecting from Disconnected State to Programming State.
*
* In this driver, we only issue a CMD7 once, to go to transfer mode
* during init_mmc_card().
*/
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK |
SD4_EMMC_TOP_CMD_CRC_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_SELECT_DESELECT_CARD, argument, options,
&resp);
if (res == SD_OK)
/* Clear all other interrupts */
chal_sd_clear_irq((void *)handle->device, 0xffffffff);
return res;
}
/*
* CMD8 Get CSD_EXT
*/
int mmc_cmd8(struct sd_handle *handle, uint8_t *extCsdReg)
{
uint32_t res, options;
struct sd_resp resp;
data_xfer_setup(handle, extCsdReg, CEATA_EXT_CSDBLOCK_SIZE,
SD_XFER_CARD_TO_HOST);
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_DPS_MASK | SD4_EMMC_TOP_CMD_DTDS_MASK |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK | SD4_EMMC_TOP_CMD_CRC_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_READ_EXT_CSD, 0, options, &resp);
if (res == SD_OK)
res = process_data_xfer(handle, extCsdReg, 0,
CEATA_EXT_CSDBLOCK_SIZE,
SD_XFER_CARD_TO_HOST);
return res;
}
int sd_cmd9(struct sd_handle *handle, struct sd_card_data *card)
{
int res;
uint32_t argument, options, iBlkNum, multiFactor = 1;
uint32_t maxReadBlockLen = 1, maxWriteBlockLen = 1;
struct sd_resp resp;
argument = handle->device->ctrl.rca << SD_CMD7_ARG_RCA_SHIFT;
options = SD_CMDR_RSP_TYPE_R2 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CRC_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_SEND_CSD, argument, options, &resp);
if (res != SD_OK)
return res;
if (handle->card->type == SD_CARD_MMC) {
card->csd.mmc.structure = (resp.data.r2.rsp4 >> 22) & 0x3;
card->csd.mmc.csdSpecVer = (resp.data.r2.rsp4 >> 18) & 0x0f;
card->csd.mmc.taac = (resp.data.r2.rsp4 >> 8) & 0xff;
card->csd.mmc.nsac = resp.data.r2.rsp4 & 0xff;
card->csd.mmc.speed = resp.data.r2.rsp3 >> 24;
card->csd.mmc.classes = (resp.data.r2.rsp3 >> 12) & 0xfff;
card->csd.mmc.rdBlkLen = (resp.data.r2.rsp3 >> 8) & 0xf;
card->csd.mmc.rdBlkPartial = (resp.data.r2.rsp3 >> 7) & 0x01;
card->csd.mmc.wrBlkMisalign = (resp.data.r2.rsp3 >> 6) & 0x1;
card->csd.mmc.rdBlkMisalign = (resp.data.r2.rsp3 >> 5) & 0x1;
card->csd.mmc.dsr = (resp.data.r2.rsp2 >> 4) & 0x01;
card->csd.mmc.size =
((resp.data.r2.rsp3 & 0x3) << 10) +
((resp.data.r2.rsp2 >> 22) & 0x3ff);
card->csd.mmc.vddRdCurrMin = (resp.data.r2.rsp2 >> 19) & 0x7;
card->csd.mmc.vddRdCurrMax = (resp.data.r2.rsp2 >> 16) & 0x7;
card->csd.mmc.vddWrCurrMin = (resp.data.r2.rsp2 >> 13) & 0x7;
card->csd.mmc.vddWrCurrMax = (resp.data.r2.rsp2 >> 10) & 0x7;
card->csd.mmc.devSizeMulti = (resp.data.r2.rsp2 >> 7) & 0x7;
card->csd.mmc.eraseGrpSize = (resp.data.r2.rsp2 >> 2) & 0x1f;
card->csd.mmc.eraseGrpSizeMulti =
((resp.data.r2.rsp2 & 0x3) << 3) +
((resp.data.r2.rsp1 >> 29) & 0x7);
card->csd.mmc.wrProtGroupSize =
((resp.data.r2.rsp1 >> 24) & 0x1f);
card->csd.mmc.wrProtGroupEnable =
(resp.data.r2.rsp1 >> 23) & 0x1;
card->csd.mmc.manuDefEcc = (resp.data.r2.rsp1 >> 21) & 0x3;
card->csd.mmc.wrSpeedFactor = (resp.data.r2.rsp1 >> 18) & 0x7;
card->csd.mmc.wrBlkLen = (resp.data.r2.rsp1 >> 14) & 0xf;
card->csd.mmc.wrBlkPartial = (resp.data.r2.rsp1 >> 13) & 0x1;
card->csd.mmc.protAppl = (resp.data.r2.rsp1 >> 8) & 0x1;
card->csd.mmc.copyFlag = (resp.data.r2.rsp1 >> 7) & 0x1;
card->csd.mmc.permWrProt = (resp.data.r2.rsp1 >> 6) & 0x1;
card->csd.mmc.tmpWrProt = (resp.data.r2.rsp1 >> 5) & 0x1;
card->csd.mmc.fileFormat = (resp.data.r2.rsp1 >> 4) & 0x03;
card->csd.mmc.eccCode = resp.data.r2.rsp1 & 0x03;
maxReadBlockLen <<= card->csd.mmc.rdBlkLen;
maxWriteBlockLen <<= card->csd.mmc.wrBlkLen;
iBlkNum = card->csd.mmc.size + 1;
multiFactor = (1 << (card->csd.mmc.devSizeMulti + 2));
handle->card->size =
iBlkNum * multiFactor * (1 << card->csd.mmc.rdBlkLen);
}
handle->card->maxRdBlkLen = maxReadBlockLen;
handle->card->maxWtBlkLen = maxWriteBlockLen;
if (handle->card->size < 0xA00000) {
/*
* 10MB Too small size mean, cmd9 response is wrong,
* Use default value 1G
*/
handle->card->size = 0x40000000;
handle->card->maxRdBlkLen = 512;
handle->card->maxWtBlkLen = 512;
}
if ((handle->card->maxRdBlkLen > 512) ||
(handle->card->maxWtBlkLen > 512)) {
handle->card->maxRdBlkLen = 512;
handle->card->maxWtBlkLen = 512;
} else if ((handle->card->maxRdBlkLen == 0) ||
(handle->card->maxWtBlkLen == 0)) {
handle->card->maxRdBlkLen = 512;
handle->card->maxWtBlkLen = 512;
}
handle->device->cfg.blockSize = handle->card->maxRdBlkLen;
return res;
}
int sd_cmd13(struct sd_handle *handle, uint32_t *status)
{
int res;
uint32_t argument, options;
struct sd_resp resp;
argument = handle->device->ctrl.rca << SD_CMD7_ARG_RCA_SHIFT;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK |
SD4_EMMC_TOP_CMD_CRC_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_SEND_STATUS, argument, options, &resp);
if (res == SD_OK) {
*status = resp.cardStatus;
}
return res;
}
int sd_cmd16(struct sd_handle *handle, uint32_t length)
{
int res;
uint32_t argument, options, ntry;
struct sd_resp resp;
argument = length;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CRC_EN_MASK |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK;
ntry = 0;
do {
res = sd_cmd13(handle, &resp.cardStatus);
if (res != SD_OK) {
EMMC_TRACE(
"cmd13 failed before cmd16: rca 0x%0x, return %d, response 0x%0x\n",
handle->device->ctrl.rca, res, resp.cardStatus);
return res;
}
if (resp.cardStatus & 0x100)
break;
EMMC_TRACE("cmd13 rsp:0x%08x before cmd16\n", resp.cardStatus);
if (ntry > handle->device->cfg.retryLimit) {
EMMC_TRACE("cmd13 retry reach limit %d\n",
handle->device->cfg.retryLimit);
return SD_CMD_TIMEOUT;
}
ntry++;
EMMC_TRACE("cmd13 retry %d\n", ntry);
SD_US_DELAY(1000);
} while (1);
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_SET_BLOCKLEN, argument, options, &resp);
return res;
}
int sd_cmd17(struct sd_handle *handle,
uint32_t addr, uint32_t len, uint8_t *buffer)
{
int res;
uint32_t argument, options, ntry;
struct sd_resp resp;
ntry = 0;
do {
res = sd_cmd13(handle, &resp.cardStatus);
if (res != SD_OK) {
EMMC_TRACE(
"cmd 13 failed before cmd17: rca 0x%0x, return %d, response 0x%0x\n",
handle->device->ctrl.rca, res, resp.cardStatus);
return res;
}
if (resp.cardStatus & 0x100)
break;
EMMC_TRACE("cmd13 rsp:0x%08x before cmd17\n", resp.cardStatus);
if (ntry > handle->device->cfg.retryLimit) {
EMMC_TRACE("cmd13 retry reach limit %d\n",
handle->device->cfg.retryLimit);
return SD_CMD_TIMEOUT;
}
ntry++;
EMMC_TRACE("cmd13 retry %d\n", ntry);
SD_US_DELAY(1000);
} while (1);
data_xfer_setup(handle, buffer, len, SD_XFER_CARD_TO_HOST);
/* send cmd and parse result */
argument = addr;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_DPS_MASK | SD4_EMMC_TOP_CMD_DTDS_MASK |
SD4_EMMC_TOP_CMD_CRC_EN_MASK | SD4_EMMC_TOP_CMD_CCHK_EN_MASK;
res = send_cmd(handle, SD_CMD_READ_SINGLE_BLOCK, argument, options,
&resp);
if (res != SD_OK)
return res;
res = process_data_xfer(handle, buffer, addr, len, SD_XFER_CARD_TO_HOST);
return res;
}
int sd_cmd18(struct sd_handle *handle,
uint32_t addr, uint32_t len, uint8_t *buffer)
{
int res;
uint32_t argument, options, ntry;
struct sd_resp resp;
ntry = 0;
do {
res = sd_cmd13(handle, &resp.cardStatus);
if (res != SD_OK) {
EMMC_TRACE(
"cmd 13 failed before cmd18: rca 0x%0x, return %d, response 0x%0x\n",
handle->device->ctrl.rca, res, resp.cardStatus);
return res;
}
if (resp.cardStatus & 0x100)
break;
EMMC_TRACE("cmd13 rsp:0x%08x before cmd18\n", resp.cardStatus);
if (ntry > handle->device->cfg.retryLimit) {
EMMC_TRACE("cmd13 retry reach limit %d\n",
handle->device->cfg.retryLimit);
return SD_CMD_TIMEOUT;
}
ntry++;
EMMC_TRACE("cmd13 retry %d\n", ntry);
SD_US_DELAY(1000);
} while (1);
data_xfer_setup(handle, buffer, len, SD_XFER_CARD_TO_HOST);
argument = addr;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_DPS_MASK | SD4_EMMC_TOP_CMD_DTDS_MASK |
SD4_EMMC_TOP_CMD_MSBS_MASK | SD4_EMMC_TOP_CMD_CCHK_EN_MASK |
SD4_EMMC_TOP_CMD_BCEN_MASK | SD4_EMMC_TOP_CMD_CRC_EN_MASK |
BIT(SD4_EMMC_TOP_CMD_ACMDEN_SHIFT);
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_READ_MULTIPLE_BLOCK, argument, options,
&resp);
if (res != SD_OK)
return res;
res = process_data_xfer(handle, buffer, addr, len, SD_XFER_CARD_TO_HOST);
return res;
}
#ifdef INCLUDE_EMMC_DRIVER_ERASE_CODE
static int card_sts_resp(struct sd_handle *handle, uint32_t *status)
{
int res;
uint32_t ntry = 0;
do {
res = sd_cmd13(handle, status);
if (res != SD_OK) {
EMMC_TRACE(
"cmd 13 failed before cmd35: rca 0x%0x, return %d\n",
handle->device->ctrl.rca, res);
return res;
}
if (*status & 0x100)
break;
EMMC_TRACE("cmd13 rsp:0x%08x before cmd35\n", resp.cardStatus);
if (ntry > handle->device->cfg.retryLimit) {
EMMC_TRACE("cmd13 retry reach limit %d\n",
handle->device->cfg.retryLimit);
return SD_CMD_TIMEOUT;
}
ntry++;
EMMC_TRACE("cmd13 retry %d\n", ntry);
SD_US_DELAY(1000);
} while (1);
return SD_OK;
}
int sd_cmd35(struct sd_handle *handle, uint32_t start)
{
int res;
uint32_t argument, options;
struct sd_resp resp;
res = card_sts_resp(handle, &resp.cardStatus);
if (res != SD_OK)
return res;
argument = start;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CRC_EN_MASK |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_ERASE_GROUP_START,
argument, options, &resp);
if (res != SD_OK)
return res;
return res;
}
int sd_cmd36(struct sd_handle *handle, uint32_t end)
{
int res;
uint32_t argument, options;
struct sd_resp resp;
res = card_sts_resp(handle, &resp.cardStatus);
if (res != SD_OK)
return res;
argument = end;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CRC_EN_MASK |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_ERASE_GROUP_END,
argument, options, &resp);
if (res != SD_OK)
return res;
return res;
}
int sd_cmd38(struct sd_handle *handle)
{
int res;
uint32_t argument, options;
struct sd_resp resp;
res = card_sts_resp(handle, &resp.cardStatus);
if (res != SD_OK)
return res;
argument = 0;
options = (SD_CMDR_RSP_TYPE_R1b_5b << SD_CMDR_RSP_TYPE_S) |
SD4_EMMC_TOP_CMD_CRC_EN_MASK |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_ERASE, argument, options, &resp);
if (res != SD_OK)
return res;
return res;
}
#endif
#ifdef INCLUDE_EMMC_DRIVER_WRITE_CODE
int sd_cmd24(struct sd_handle *handle,
uint32_t addr, uint32_t len, uint8_t *buffer)
{
int res;
uint32_t argument, options, ntry;
struct sd_resp resp;
ntry = 0;
do {
res = sd_cmd13(handle, &resp.cardStatus);
if (res != SD_OK) {
EMMC_TRACE(
"cmd 13 failed before cmd24: rca 0x%0x, return %d, response 0x%0x\n",
handle->device->ctrl.rca, res, &resp.cardStatus);
return res;
}
if (resp.cardStatus & 0x100)
break;
EMMC_TRACE("cmd13 rsp:0x%08x before cmd24\n", resp.cardStatus);
if (ntry > handle->device->cfg.retryLimit) {
EMMC_TRACE("cmd13 retry reach limit %d\n",
handle->device->cfg.retryLimit);
return SD_CMD_TIMEOUT;
}
ntry++;
EMMC_TRACE("cmd13 retry %d\n", ntry);
SD_US_DELAY(1000);
} while (1);
data_xfer_setup(handle, buffer, len, SD_XFER_HOST_TO_CARD);
argument = addr;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_DPS_MASK | SD4_EMMC_TOP_CMD_CRC_EN_MASK |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK;
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_WRITE_BLOCK, argument, options, &resp);
if (res != SD_OK)
return res;
res = process_data_xfer(handle, buffer, addr, len, SD_XFER_HOST_TO_CARD);
return res;
}
int sd_cmd25(struct sd_handle *handle,
uint32_t addr, uint32_t len, uint8_t *buffer)
{
int res = SD_OK;
uint32_t argument, options, ntry;
struct sd_resp resp;
ntry = 0;
do {
res = sd_cmd13(handle, &resp.cardStatus);
if (res != SD_OK) {
EMMC_TRACE(
"cmd 13 failed before cmd25: rca 0x%0x, return %d, response 0x%0x\n",
handle->device->ctrl.rca, res, &resp.cardStatus);
return res;
}
if (resp.cardStatus & 0x100)
break;
EMMC_TRACE("cmd13 rsp:0x%08x before cmd25\n", resp.cardStatus);
if (ntry > handle->device->cfg.retryLimit) {
EMMC_TRACE("cmd13 retry reach limit %d\n",
handle->device->cfg.retryLimit);
return SD_CMD_TIMEOUT;
}
ntry++;
EMMC_TRACE("cmd13 retry %d\n", ntry);
SD_US_DELAY(1000);
} while (1);
data_xfer_setup(handle, buffer, len, SD_XFER_HOST_TO_CARD);
argument = addr;
options = SD_CMDR_RSP_TYPE_R1_5_6 << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_DPS_MASK | SD4_EMMC_TOP_CMD_MSBS_MASK |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK | SD4_EMMC_TOP_CMD_BCEN_MASK |
SD4_EMMC_TOP_CMD_CRC_EN_MASK |
BIT(SD4_EMMC_TOP_CMD_ACMDEN_SHIFT);
/* send cmd and parse result */
res = send_cmd(handle, SD_CMD_WRITE_MULTIPLE_BLOCK,
argument, options, &resp);
if (res != SD_OK)
return res;
res = process_data_xfer(handle, buffer, addr, len, SD_XFER_HOST_TO_CARD);
return res;
}
#endif /* INCLUDE_EMMC_DRIVER_WRITE_CODE */
int mmc_cmd6(struct sd_handle *handle, uint32_t argument)
{
int res;
uint32_t options;
struct sd_resp resp;
options = SD_CMDR_RSP_TYPE_R1b_5b << SD_CMDR_RSP_TYPE_S |
SD4_EMMC_TOP_CMD_CCHK_EN_MASK | SD4_EMMC_TOP_CMD_CRC_EN_MASK;
EMMC_TRACE("Sending CMD6 with argument 0x%X\n", argument);
/* send cmd and parse result */
res = send_cmd(handle, SD_ACMD_SET_BUS_WIDTH, argument, options, &resp);
/*
* For R1b type response:
* controller issues a COMMAND COMPLETE interrupt when the R1
* response is received,
* then controller monitors DAT0 for busy status,
* controller issues a TRANSFER COMPLETE interrupt when busy signal
* clears.
*/
wait_for_event(handle,
SD4_EMMC_TOP_INTR_TXDONE_MASK | SD_ERR_INTERRUPTS,
handle->device->cfg.wfe_retry);
if (res == SD_OK) {
/* Check result of Cmd6 using Cmd13 to check card status */
/* Check status using Cmd13 */
res = sd_cmd13(handle, &resp.cardStatus);
if (res == SD_OK) {
/* Check bit 7 (SWITCH_ERROR) in card status */
if ((resp.cardStatus & 0x80) != 0) {
EMMC_TRACE("cmd6 failed: SWITCH_ERROR\n");
res = SD_FAIL;
}
} else {
EMMC_TRACE("cmd13 failed after cmd6: ");
EMMC_TRACE("rca 0x%0x, return %d, response 0x%0x\n",
handle->device->ctrl.rca, res, resp.cardStatus);
}
}
return res;
}
#define SD_BUSY_CHECK 0x00203000
#define DAT0_LEVEL_MASK 0x100000 /* bit20 in PSTATE */
#define DEV_BUSY_TIMEOUT 600000 /* 60 Sec : 600000 * 100us */
int send_cmd(struct sd_handle *handle, uint32_t cmdIndex, uint32_t argument,
uint32_t options, struct sd_resp *resp)
{
int status = SD_OK;
uint32_t event = 0, present, timeout = 0, retry = 0, mask = 3;
uint32_t temp_resp[4];
if (handle == NULL) {
EMMC_TRACE("Invalid handle for cmd%d\n", cmdIndex);
return SD_INVALID_HANDLE;
}
mask = (SD_BUSY_CHECK & options) ? 3 : 1;
RETRY_WRITE_CMD:
do {
/* Make sure it is ok to send command */
present =
chal_sd_get_present_status((CHAL_HANDLE *) handle->device);
timeout++;
if (present & mask)
SD_US_DELAY(1000);
else
break;
} while (timeout < EMMC_BUSY_CMD_TIMEOUT_MS);
if (timeout >= EMMC_BUSY_CMD_TIMEOUT_MS) {
status = SD_CMD_MISSING;
EMMC_TRACE("cmd%d timedout %dms\n", cmdIndex, timeout);
}
/* Reset both DAT and CMD line if only of them are stuck */
if (present & mask)
check_error(handle, SD4_EMMC_TOP_INTR_CMDERROR_MASK);
handle->device->ctrl.argReg = argument;
chal_sd_send_cmd((CHAL_HANDLE *) handle->device, cmdIndex,
handle->device->ctrl.argReg, options);
handle->device->ctrl.cmdIndex = cmdIndex;
event = wait_for_event(handle,
(SD4_EMMC_TOP_INTR_CMDDONE_MASK |
SD_ERR_INTERRUPTS),
handle->device->cfg.wfe_retry);
if (handle->device->ctrl.cmdStatus == SD_CMD_MISSING) {
retry++;
if (retry >= handle->device->cfg.retryLimit) {
status = SD_CMD_MISSING;
EMMC_TRACE("cmd%d retry reaches the limit %d\n",
cmdIndex, retry);
} else {
/* reset both DAT & CMD line if one of them is stuck */
present = chal_sd_get_present_status((CHAL_HANDLE *)
handle->device);
if (present & mask)
check_error(handle,
SD4_EMMC_TOP_INTR_CMDERROR_MASK);
EMMC_TRACE("cmd%d retry %d PSTATE[0x%08x]\n",
cmdIndex, retry,
chal_sd_get_present_status((CHAL_HANDLE *)
handle->device));
goto RETRY_WRITE_CMD;
}
}
if (handle->device->ctrl.cmdStatus == SD_OK) {
if (resp != NULL) {
status =
chal_sd_get_response((CHAL_HANDLE *) handle->device,
temp_resp);
process_cmd_response(handle,
handle->device->ctrl.cmdIndex,
temp_resp[0], temp_resp[1],
temp_resp[2], temp_resp[3], resp);
}
/* Check Device busy after CMD */
if ((cmdIndex == 5) || (cmdIndex == 6) || (cmdIndex == 7) ||
(cmdIndex == 28) || (cmdIndex == 29) || (cmdIndex == 38)) {
timeout = 0;
do {
present =
chal_sd_get_present_status((CHAL_HANDLE *)
handle->device);
timeout++;
/* Dat[0]:bit20 low means device busy */
if ((present & DAT0_LEVEL_MASK) == 0) {
EMMC_TRACE("Device busy: ");
EMMC_TRACE(
"cmd%d arg:0x%08x: PSTATE[0x%08x]\n",
cmdIndex, argument, present);
SD_US_DELAY(100);
} else {
break;
}
} while (timeout < DEV_BUSY_TIMEOUT);
}
} else if (handle->device->ctrl.cmdStatus &&
handle->device->ctrl.cmdStatus != SD_CMD_MISSING) {
retry++;
status = check_error(handle, handle->device->ctrl.cmdStatus);
EMMC_TRACE(
"cmd%d error: cmdStatus:0x%08x error_status:0x%08x\n",
cmdIndex, handle->device->ctrl.cmdStatus, status);
if ((handle->device->ctrl.cmdIndex == 1) ||
(handle->device->ctrl.cmdIndex == 5)) {
status = event;
} else if ((handle->device->ctrl.cmdIndex == 7) ||
(handle->device->ctrl.cmdIndex == 41)) {
status = event;
} else if ((status == SD_ERROR_RECOVERABLE) &&
(retry < handle->device->cfg.retryLimit)) {
EMMC_TRACE("cmd%d recoverable error ", cmdIndex);
EMMC_TRACE("retry %d PSTATE[0x%08x].\n", retry,
chal_sd_get_present_status((CHAL_HANDLE *)
handle->device));
goto RETRY_WRITE_CMD;
} else {
EMMC_TRACE("cmd%d retry reaches the limit %d\n",
cmdIndex, retry);
status = event;
}
}
handle->device->ctrl.blkReg = 0;
/* clear error status for next command */
handle->device->ctrl.cmdStatus = 0;
return status;
}