blob: 38921512987b4d967058d9b06716584795524c37 [file] [log] [blame]
/*
* Copyright (c) 2015-2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <arch_helpers.h>
#include <bl32/sp_min/platform_sp_min.h>
#include <common/debug.h>
#include <drivers/arm/gic_common.h>
#include <drivers/arm/gicv2.h>
#include <drivers/clk.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <lib/mmio.h>
#include <lib/psci/psci.h>
#include <plat/common/platform.h>
#include <platform_def.h>
static uintptr_t stm32_sec_entrypoint;
static uint32_t cntfrq_core0;
/*******************************************************************************
* STM32MP1 handler called when a CPU is about to enter standby.
* call by core 1 to enter in wfi
******************************************************************************/
static void stm32_cpu_standby(plat_local_state_t cpu_state)
{
uint32_t interrupt = GIC_SPURIOUS_INTERRUPT;
assert(cpu_state == ARM_LOCAL_STATE_RET);
/*
* Enter standby state
* dsb is good practice before using wfi to enter low power states
*/
isb();
dsb();
while (interrupt == GIC_SPURIOUS_INTERRUPT) {
wfi();
/* Acknoledge IT */
interrupt = gicv2_acknowledge_interrupt();
/* If Interrupt == 1022 it will be acknowledged by non secure */
if ((interrupt != PENDING_G1_INTID) &&
(interrupt != GIC_SPURIOUS_INTERRUPT)) {
gicv2_end_of_interrupt(interrupt);
}
}
}
/*******************************************************************************
* STM32MP1 handler called when a power domain is about to be turned on. The
* mpidr determines the CPU to be turned on.
* call by core 0 to activate core 1
******************************************************************************/
static int stm32_pwr_domain_on(u_register_t mpidr)
{
unsigned long current_cpu_mpidr = read_mpidr_el1();
uintptr_t bkpr_core1_addr =
tamp_bkpr(BOOT_API_CORE1_BRANCH_ADDRESS_TAMP_BCK_REG_IDX);
uintptr_t bkpr_core1_magic =
tamp_bkpr(BOOT_API_CORE1_MAGIC_NUMBER_TAMP_BCK_REG_IDX);
if (mpidr == current_cpu_mpidr) {
return PSCI_E_INVALID_PARAMS;
}
/* Only one valid entry point */
if (stm32_sec_entrypoint != (uintptr_t)&sp_min_warm_entrypoint) {
return PSCI_E_INVALID_ADDRESS;
}
clk_enable(RTCAPB);
cntfrq_core0 = read_cntfrq_el0();
/* Write entrypoint in backup RAM register */
mmio_write_32(bkpr_core1_addr, stm32_sec_entrypoint);
/* Write magic number in backup register */
mmio_write_32(bkpr_core1_magic, BOOT_API_A7_CORE1_MAGIC_NUMBER);
clk_disable(RTCAPB);
/* Generate an IT to core 1 */
gicv2_raise_sgi(ARM_IRQ_SEC_SGI_0, STM32MP_SECONDARY_CPU);
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* STM32MP1 handler called when a power domain is about to be turned off. The
* target_state encodes the power state that each level should transition to.
******************************************************************************/
static void stm32_pwr_domain_off(const psci_power_state_t *target_state)
{
/* Nothing to do */
}
/*******************************************************************************
* STM32MP1 handler called when a power domain is about to be suspended. The
* target_state encodes the power state that each level should transition to.
******************************************************************************/
static void stm32_pwr_domain_suspend(const psci_power_state_t *target_state)
{
/* Nothing to do, power domain is not disabled */
}
/*******************************************************************************
* STM32MP1 handler called when a power domain has just been powered on after
* being turned off earlier. The target_state encodes the low power state that
* each level has woken up from.
* call by core 1 just after wake up
******************************************************************************/
static void stm32_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
stm32mp1_gic_pcpu_init();
write_cntfrq_el0(cntfrq_core0);
}
/*******************************************************************************
* STM32MP1 handler called when a power domain has just been powered on after
* having been suspended earlier. The target_state encodes the low power state
* that each level has woken up from.
******************************************************************************/
static void stm32_pwr_domain_suspend_finish(const psci_power_state_t
*target_state)
{
/* Nothing to do, power domain is not disabled */
}
static void __dead2 stm32_pwr_domain_pwr_down_wfi(const psci_power_state_t
*target_state)
{
ERROR("stm32mpu1 Power Down WFI: operation not handled.\n");
panic();
}
static void __dead2 stm32_system_off(void)
{
ERROR("stm32mpu1 System Off: operation not handled.\n");
panic();
}
static void __dead2 stm32_system_reset(void)
{
mmio_setbits_32(stm32mp_rcc_base() + RCC_MP_GRSTCSETR,
RCC_MP_GRSTCSETR_MPSYSRST);
/* Loop in case system reset is not immediately caught */
for ( ; ; ) {
;
}
}
static int stm32_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
int pstate = psci_get_pstate_type(power_state);
if (pstate != 0) {
return PSCI_E_INVALID_PARAMS;
}
if (psci_get_pstate_pwrlvl(power_state)) {
return PSCI_E_INVALID_PARAMS;
}
if (psci_get_pstate_id(power_state)) {
return PSCI_E_INVALID_PARAMS;
}
req_state->pwr_domain_state[0] = ARM_LOCAL_STATE_RET;
req_state->pwr_domain_state[1] = ARM_LOCAL_STATE_RUN;
return PSCI_E_SUCCESS;
}
static int stm32_validate_ns_entrypoint(uintptr_t entrypoint)
{
/* The non-secure entry point must be in DDR */
if (entrypoint < STM32MP_DDR_BASE) {
return PSCI_E_INVALID_ADDRESS;
}
return PSCI_E_SUCCESS;
}
static int stm32_node_hw_state(u_register_t target_cpu,
unsigned int power_level)
{
/*
* The format of 'power_level' is implementation-defined, but 0 must
* mean a CPU. Only allow level 0.
*/
if (power_level != MPIDR_AFFLVL0) {
return PSCI_E_INVALID_PARAMS;
}
/*
* From psci view the CPU 0 is always ON,
* CPU 1 can be SUSPEND or RUNNING.
* Therefore do not manage POWER OFF state and always return HW_ON.
*/
return (int)HW_ON;
}
/*******************************************************************************
* Export the platform handlers. The ARM Standard platform layer will take care
* of registering the handlers with PSCI.
******************************************************************************/
static const plat_psci_ops_t stm32_psci_ops = {
.cpu_standby = stm32_cpu_standby,
.pwr_domain_on = stm32_pwr_domain_on,
.pwr_domain_off = stm32_pwr_domain_off,
.pwr_domain_suspend = stm32_pwr_domain_suspend,
.pwr_domain_on_finish = stm32_pwr_domain_on_finish,
.pwr_domain_suspend_finish = stm32_pwr_domain_suspend_finish,
.pwr_domain_pwr_down_wfi = stm32_pwr_domain_pwr_down_wfi,
.system_off = stm32_system_off,
.system_reset = stm32_system_reset,
.validate_power_state = stm32_validate_power_state,
.validate_ns_entrypoint = stm32_validate_ns_entrypoint,
.get_node_hw_state = stm32_node_hw_state
};
/*******************************************************************************
* Export the platform specific power ops.
******************************************************************************/
int plat_setup_psci_ops(uintptr_t sec_entrypoint,
const plat_psci_ops_t **psci_ops)
{
stm32_sec_entrypoint = sec_entrypoint;
*psci_ops = &stm32_psci_ops;
return 0;
}