| /* |
| * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include <common/interrupt_props.h> |
| #include <drivers/arm/gicv3.h> |
| #include <lib/spinlock.h> |
| |
| #include "gicv3_private.h" |
| |
| const gicv3_driver_data_t *gicv3_driver_data; |
| |
| /* |
| * Spinlock to guard registers needing read-modify-write. APIs protected by this |
| * spinlock are used either at boot time (when only a single CPU is active), or |
| * when the system is fully coherent. |
| */ |
| static spinlock_t gic_lock; |
| |
| /* |
| * Redistributor power operations are weakly bound so that they can be |
| * overridden |
| */ |
| #pragma weak gicv3_rdistif_off |
| #pragma weak gicv3_rdistif_on |
| |
| /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */ |
| static bool is_sgi_ppi(unsigned int id); |
| |
| /* |
| * Helper macros to save and restore GICR and GICD registers |
| * corresponding to their numbers to and from the context |
| */ |
| #define RESTORE_GICR_REG(base, ctx, name, i) \ |
| gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)]) |
| |
| #define SAVE_GICR_REG(base, ctx, name, i) \ |
| (ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i)) |
| |
| /* Helper macros to save and restore GICD registers to and from the context */ |
| #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG) \ |
| do { \ |
| for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\ |
| int_id += (1U << REG##R_SHIFT)) { \ |
| gicd_write_##reg((base), int_id, \ |
| (ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \ |
| REG##R_SHIFT]); \ |
| } \ |
| } while (false) |
| |
| #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG) \ |
| do { \ |
| for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\ |
| int_id += (1U << REG##R_SHIFT)) { \ |
| (ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \ |
| REG##R_SHIFT] = gicd_read_##reg((base), int_id); \ |
| } \ |
| } while (false) |
| |
| #if GIC_EXT_INTID |
| #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG) \ |
| do { \ |
| for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\ |
| int_id += (1U << REG##R_SHIFT)) { \ |
| gicd_write_##reg((base), int_id, \ |
| (ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\ |
| >> REG##R_SHIFT]); \ |
| } \ |
| } while (false) |
| |
| #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG) \ |
| do { \ |
| for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\ |
| int_id += (1U << REG##R_SHIFT)) { \ |
| (ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\ |
| >> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\ |
| } \ |
| } while (false) |
| #else |
| #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG) |
| #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG) |
| #endif /* GIC_EXT_INTID */ |
| |
| /******************************************************************************* |
| * This function initialises the ARM GICv3 driver in EL3 with provided platform |
| * inputs. |
| ******************************************************************************/ |
| void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data) |
| { |
| unsigned int gic_version; |
| unsigned int gicv2_compat; |
| |
| assert(plat_driver_data != NULL); |
| assert(plat_driver_data->gicd_base != 0U); |
| assert(plat_driver_data->rdistif_num != 0U); |
| assert(plat_driver_data->rdistif_base_addrs != NULL); |
| |
| assert(IS_IN_EL3()); |
| |
| assert((plat_driver_data->interrupt_props_num != 0U) ? |
| (plat_driver_data->interrupt_props != NULL) : 1); |
| |
| /* Check for system register support */ |
| #ifndef __aarch64__ |
| assert((read_id_pfr1() & |
| (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U); |
| #else |
| assert((read_id_aa64pfr0_el1() & |
| (ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U); |
| #endif /* !__aarch64__ */ |
| |
| gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); |
| gic_version >>= PIDR2_ARCH_REV_SHIFT; |
| gic_version &= PIDR2_ARCH_REV_MASK; |
| |
| /* Check GIC version */ |
| #if GIC_ENABLE_V4_EXTN |
| assert(gic_version == ARCH_REV_GICV4); |
| |
| /* GICv4 supports Direct Virtual LPI injection */ |
| assert((gicd_read_typer(plat_driver_data->gicd_base) |
| & TYPER_DVIS) != 0); |
| #else |
| assert(gic_version == ARCH_REV_GICV3); |
| #endif |
| /* |
| * Find out whether the GIC supports the GICv2 compatibility mode. |
| * The ARE_S bit resets to 0 if supported |
| */ |
| gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base); |
| gicv2_compat >>= CTLR_ARE_S_SHIFT; |
| gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK; |
| |
| if (plat_driver_data->gicr_base != 0U) { |
| /* |
| * Find the base address of each implemented Redistributor interface. |
| * The number of interfaces should be equal to the number of CPUs in the |
| * system. The memory for saving these addresses has to be allocated by |
| * the platform port |
| */ |
| gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs, |
| plat_driver_data->rdistif_num, |
| plat_driver_data->gicr_base, |
| plat_driver_data->mpidr_to_core_pos); |
| #if !HW_ASSISTED_COHERENCY |
| /* |
| * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver. |
| */ |
| flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs), |
| plat_driver_data->rdistif_num * |
| sizeof(*(plat_driver_data->rdistif_base_addrs))); |
| #endif |
| } |
| gicv3_driver_data = plat_driver_data; |
| |
| /* |
| * The GIC driver data is initialized by the primary CPU with caches |
| * enabled. When the secondary CPU boots up, it initializes the |
| * GICC/GICR interface with the caches disabled. Hence flush the |
| * driver data to ensure coherency. This is not required if the |
| * platform has HW_ASSISTED_COHERENCY enabled. |
| */ |
| #if !HW_ASSISTED_COHERENCY |
| flush_dcache_range((uintptr_t)&gicv3_driver_data, |
| sizeof(gicv3_driver_data)); |
| flush_dcache_range((uintptr_t)gicv3_driver_data, |
| sizeof(*gicv3_driver_data)); |
| #endif |
| INFO("GICv%u with%s legacy support detected.\n", gic_version, |
| (gicv2_compat == 0U) ? "" : "out"); |
| INFO("ARM GICv%u driver initialized in EL3\n", gic_version); |
| } |
| |
| /******************************************************************************* |
| * This function initialises the GIC distributor interface based upon the data |
| * provided by the platform while initialising the driver. |
| ******************************************************************************/ |
| void __init gicv3_distif_init(void) |
| { |
| unsigned int bitmap; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| |
| assert(IS_IN_EL3()); |
| |
| /* |
| * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring |
| * the ARE_S bit. The Distributor might generate a system error |
| * otherwise. |
| */ |
| gicd_clr_ctlr(gicv3_driver_data->gicd_base, |
| CTLR_ENABLE_G0_BIT | |
| CTLR_ENABLE_G1S_BIT | |
| CTLR_ENABLE_G1NS_BIT, |
| RWP_TRUE); |
| |
| /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ |
| gicd_set_ctlr(gicv3_driver_data->gicd_base, |
| CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); |
| |
| /* Set the default attribute of all (E)SPIs */ |
| gicv3_spis_config_defaults(gicv3_driver_data->gicd_base); |
| |
| bitmap = gicv3_secure_spis_config_props( |
| gicv3_driver_data->gicd_base, |
| gicv3_driver_data->interrupt_props, |
| gicv3_driver_data->interrupt_props_num); |
| |
| /* Enable the secure (E)SPIs now that they have been configured */ |
| gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE); |
| } |
| |
| /******************************************************************************* |
| * This function initialises the GIC Redistributor interface of the calling CPU |
| * (identified by the 'proc_num' parameter) based upon the data provided by the |
| * platform while initialising the driver. |
| ******************************************************************************/ |
| void gicv3_rdistif_init(unsigned int proc_num) |
| { |
| uintptr_t gicr_base; |
| unsigned int bitmap; |
| uint32_t ctlr; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| |
| ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base); |
| assert((ctlr & CTLR_ARE_S_BIT) != 0U); |
| |
| assert(IS_IN_EL3()); |
| |
| /* Power on redistributor */ |
| gicv3_rdistif_on(proc_num); |
| |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| assert(gicr_base != 0U); |
| |
| /* Set the default attribute of all SGIs and (E)PPIs */ |
| gicv3_ppi_sgi_config_defaults(gicr_base); |
| |
| bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base, |
| gicv3_driver_data->interrupt_props, |
| gicv3_driver_data->interrupt_props_num); |
| |
| /* Enable interrupt groups as required, if not already */ |
| if ((ctlr & bitmap) != bitmap) { |
| gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE); |
| } |
| } |
| |
| /******************************************************************************* |
| * Functions to perform power operations on GIC Redistributor |
| ******************************************************************************/ |
| void gicv3_rdistif_off(unsigned int proc_num) |
| { |
| } |
| |
| void gicv3_rdistif_on(unsigned int proc_num) |
| { |
| } |
| |
| /******************************************************************************* |
| * This function enables the GIC CPU interface of the calling CPU using only |
| * system register accesses. |
| ******************************************************************************/ |
| void gicv3_cpuif_enable(unsigned int proc_num) |
| { |
| uintptr_t gicr_base; |
| u_register_t scr_el3; |
| unsigned int icc_sre_el3; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| assert(IS_IN_EL3()); |
| |
| /* Mark the connected core as awake */ |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| gicv3_rdistif_mark_core_awake(gicr_base); |
| |
| /* Disable the legacy interrupt bypass */ |
| icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT; |
| |
| /* |
| * Enable system register access for EL3 and allow lower exception |
| * levels to configure the same for themselves. If the legacy mode is |
| * not supported, the SRE bit is RAO/WI |
| */ |
| icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT); |
| write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3); |
| |
| scr_el3 = read_scr_el3(); |
| |
| /* |
| * Switch to NS state to write Non secure ICC_SRE_EL1 and |
| * ICC_SRE_EL2 registers. |
| */ |
| write_scr_el3(scr_el3 | SCR_NS_BIT); |
| isb(); |
| |
| write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3); |
| write_icc_sre_el1(ICC_SRE_SRE_BIT); |
| isb(); |
| |
| /* Switch to secure state. */ |
| write_scr_el3(scr_el3 & (~SCR_NS_BIT)); |
| isb(); |
| |
| /* Write the secure ICC_SRE_EL1 register */ |
| write_icc_sre_el1(ICC_SRE_SRE_BIT); |
| isb(); |
| |
| /* Program the idle priority in the PMR */ |
| write_icc_pmr_el1(GIC_PRI_MASK); |
| |
| /* Enable Group0 interrupts */ |
| write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT); |
| |
| /* Enable Group1 Secure interrupts */ |
| write_icc_igrpen1_el3(read_icc_igrpen1_el3() | |
| IGRPEN1_EL3_ENABLE_G1S_BIT); |
| isb(); |
| } |
| |
| /******************************************************************************* |
| * This function disables the GIC CPU interface of the calling CPU using |
| * only system register accesses. |
| ******************************************************************************/ |
| void gicv3_cpuif_disable(unsigned int proc_num) |
| { |
| uintptr_t gicr_base; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| assert(IS_IN_EL3()); |
| |
| /* Disable legacy interrupt bypass */ |
| write_icc_sre_el3(read_icc_sre_el3() | |
| (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT)); |
| |
| /* Disable Group0 interrupts */ |
| write_icc_igrpen0_el1(read_icc_igrpen0_el1() & |
| ~IGRPEN1_EL1_ENABLE_G0_BIT); |
| |
| /* Disable Group1 Secure and Non-Secure interrupts */ |
| write_icc_igrpen1_el3(read_icc_igrpen1_el3() & |
| ~(IGRPEN1_EL3_ENABLE_G1NS_BIT | |
| IGRPEN1_EL3_ENABLE_G1S_BIT)); |
| |
| /* Synchronise accesses to group enable registers */ |
| isb(); |
| |
| /* Mark the connected core as asleep */ |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| assert(gicr_base != 0U); |
| gicv3_rdistif_mark_core_asleep(gicr_base); |
| } |
| |
| /******************************************************************************* |
| * This function returns the id of the highest priority pending interrupt at |
| * the GIC cpu interface. |
| ******************************************************************************/ |
| unsigned int gicv3_get_pending_interrupt_id(void) |
| { |
| unsigned int id; |
| |
| assert(IS_IN_EL3()); |
| id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; |
| |
| /* |
| * If the ID is special identifier corresponding to G1S or G1NS |
| * interrupt, then read the highest pending group 1 interrupt. |
| */ |
| if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) { |
| return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK; |
| } |
| |
| return id; |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the highest priority pending interrupt at |
| * the GIC cpu interface. The return values can be one of the following : |
| * PENDING_G1S_INTID : The interrupt type is secure Group 1. |
| * PENDING_G1NS_INTID : The interrupt type is non secure Group 1. |
| * 0 - 1019 : The interrupt type is secure Group 0. |
| * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with |
| * sufficient priority to be signaled |
| ******************************************************************************/ |
| unsigned int gicv3_get_pending_interrupt_type(void) |
| { |
| assert(IS_IN_EL3()); |
| return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the interrupt id depending upon the group |
| * this interrupt has been configured under by the interrupt controller i.e. |
| * group0 or group1 Secure / Non Secure. The return value can be one of the |
| * following : |
| * INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt |
| * INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt |
| * INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure |
| * interrupt. |
| ******************************************************************************/ |
| unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num) |
| { |
| unsigned int igroup, grpmodr; |
| uintptr_t gicr_base; |
| |
| assert(IS_IN_EL3()); |
| assert(gicv3_driver_data != NULL); |
| |
| /* Ensure the parameters are valid */ |
| assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID)); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| |
| /* All LPI interrupts are Group 1 non secure */ |
| if (id >= MIN_LPI_ID) { |
| return INTR_GROUP1NS; |
| } |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */ |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| igroup = gicr_get_igroupr(gicr_base, id); |
| grpmodr = gicr_get_igrpmodr(gicr_base, id); |
| } else { |
| /* SPIs: 32-1019, ESPIs: 4096-5119 */ |
| assert(gicv3_driver_data->gicd_base != 0U); |
| igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id); |
| grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id); |
| } |
| |
| /* |
| * If the IGROUP bit is set, then it is a Group 1 Non secure |
| * interrupt |
| */ |
| if (igroup != 0U) { |
| return INTR_GROUP1NS; |
| } |
| |
| /* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */ |
| if (grpmodr != 0U) { |
| return INTR_GROUP1S; |
| } |
| |
| /* Else it is a Group 0 Secure interrupt */ |
| return INTR_GROUP0; |
| } |
| |
| /***************************************************************************** |
| * Function to save and disable the GIC ITS register context. The power |
| * management of GIC ITS is implementation-defined and this function doesn't |
| * save any memory structures required to support ITS. As the sequence to save |
| * this state is implementation defined, it should be executed in platform |
| * specific code. Calling this function alone and then powering down the GIC and |
| * ITS without implementing the aforementioned platform specific code will |
| * corrupt the ITS state. |
| * |
| * This function must be invoked after the GIC CPU interface is disabled. |
| *****************************************************************************/ |
| void gicv3_its_save_disable(uintptr_t gits_base, |
| gicv3_its_ctx_t * const its_ctx) |
| { |
| unsigned int i; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(IS_IN_EL3()); |
| assert(its_ctx != NULL); |
| assert(gits_base != 0U); |
| |
| its_ctx->gits_ctlr = gits_read_ctlr(gits_base); |
| |
| /* Disable the ITS */ |
| gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT); |
| |
| /* Wait for quiescent state */ |
| gits_wait_for_quiescent_bit(gits_base); |
| |
| its_ctx->gits_cbaser = gits_read_cbaser(gits_base); |
| its_ctx->gits_cwriter = gits_read_cwriter(gits_base); |
| |
| for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) { |
| its_ctx->gits_baser[i] = gits_read_baser(gits_base, i); |
| } |
| } |
| |
| /***************************************************************************** |
| * Function to restore the GIC ITS register context. The power |
| * management of GIC ITS is implementation defined and this function doesn't |
| * restore any memory structures required to support ITS. The assumption is |
| * that these structures are in memory and are retained during system suspend. |
| * |
| * This must be invoked before the GIC CPU interface is enabled. |
| *****************************************************************************/ |
| void gicv3_its_restore(uintptr_t gits_base, |
| const gicv3_its_ctx_t * const its_ctx) |
| { |
| unsigned int i; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(IS_IN_EL3()); |
| assert(its_ctx != NULL); |
| assert(gits_base != 0U); |
| |
| /* Assert that the GITS is disabled and quiescent */ |
| assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U); |
| assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U); |
| |
| gits_write_cbaser(gits_base, its_ctx->gits_cbaser); |
| gits_write_cwriter(gits_base, its_ctx->gits_cwriter); |
| |
| for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) { |
| gits_write_baser(gits_base, i, its_ctx->gits_baser[i]); |
| } |
| |
| /* Restore the ITS CTLR but leave the ITS disabled */ |
| gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT); |
| } |
| |
| /***************************************************************************** |
| * Function to save the GIC Redistributor register context. This function |
| * must be invoked after CPU interface disable and prior to Distributor save. |
| *****************************************************************************/ |
| void gicv3_rdistif_save(unsigned int proc_num, |
| gicv3_redist_ctx_t * const rdist_ctx) |
| { |
| uintptr_t gicr_base; |
| unsigned int i, ppi_regs_num, regs_num; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| assert(IS_IN_EL3()); |
| assert(rdist_ctx != NULL); |
| |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| |
| #if GIC_EXT_INTID |
| /* Calculate number of PPI registers */ |
| ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >> |
| TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1; |
| /* All other values except PPInum [0-2] are reserved */ |
| if (ppi_regs_num > 3U) { |
| ppi_regs_num = 1U; |
| } |
| #else |
| ppi_regs_num = 1U; |
| #endif |
| /* |
| * Wait for any write to GICR_CTLR to complete before trying to save any |
| * state. |
| */ |
| gicr_wait_for_pending_write(gicr_base); |
| |
| rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base); |
| |
| rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base); |
| rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base); |
| |
| /* 32 interrupt IDs per register */ |
| for (i = 0U; i < ppi_regs_num; ++i) { |
| SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i); |
| SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i); |
| SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i); |
| SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i); |
| SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i); |
| } |
| |
| /* 16 interrupt IDs per GICR_ICFGR register */ |
| regs_num = ppi_regs_num << 1; |
| for (i = 0U; i < regs_num; ++i) { |
| SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i); |
| } |
| |
| rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base); |
| |
| /* 4 interrupt IDs per GICR_IPRIORITYR register */ |
| regs_num = ppi_regs_num << 3; |
| for (i = 0U; i < regs_num; ++i) { |
| SAVE_GICR_REG(gicr_base, rdist_ctx, ipriorityr, i); |
| } |
| |
| /* |
| * Call the pre-save hook that implements the IMP DEF sequence that may |
| * be required on some GIC implementations. As this may need to access |
| * the Redistributor registers, we pass it proc_num. |
| */ |
| gicv3_distif_pre_save(proc_num); |
| } |
| |
| /***************************************************************************** |
| * Function to restore the GIC Redistributor register context. We disable |
| * LPI and per-cpu interrupts before we start restore of the Redistributor. |
| * This function must be invoked after Distributor restore but prior to |
| * CPU interface enable. The pending and active interrupts are restored |
| * after the interrupts are fully configured and enabled. |
| *****************************************************************************/ |
| void gicv3_rdistif_init_restore(unsigned int proc_num, |
| const gicv3_redist_ctx_t * const rdist_ctx) |
| { |
| uintptr_t gicr_base; |
| unsigned int i, ppi_regs_num, regs_num; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| assert(IS_IN_EL3()); |
| assert(rdist_ctx != NULL); |
| |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| |
| #if GIC_EXT_INTID |
| /* Calculate number of PPI registers */ |
| ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >> |
| TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1; |
| /* All other values except PPInum [0-2] are reserved */ |
| if (ppi_regs_num > 3U) { |
| ppi_regs_num = 1U; |
| } |
| #else |
| ppi_regs_num = 1U; |
| #endif |
| /* Power on redistributor */ |
| gicv3_rdistif_on(proc_num); |
| |
| /* |
| * Call the post-restore hook that implements the IMP DEF sequence that |
| * may be required on some GIC implementations. As this may need to |
| * access the Redistributor registers, we pass it proc_num. |
| */ |
| gicv3_distif_post_restore(proc_num); |
| |
| /* |
| * Disable all SGIs (imp. def.)/(E)PPIs before configuring them. |
| * This is a more scalable approach as it avoids clearing the enable |
| * bits in the GICD_CTLR. |
| */ |
| for (i = 0U; i < ppi_regs_num; ++i) { |
| gicr_write_icenabler(gicr_base, i, ~0U); |
| } |
| |
| /* Wait for pending writes to GICR_ICENABLER */ |
| gicr_wait_for_pending_write(gicr_base); |
| |
| /* |
| * Disable the LPIs to avoid unpredictable behavior when writing to |
| * GICR_PROPBASER and GICR_PENDBASER. |
| */ |
| gicr_write_ctlr(gicr_base, |
| rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT)); |
| |
| /* Restore registers' content */ |
| gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser); |
| gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser); |
| |
| /* 32 interrupt IDs per register */ |
| for (i = 0U; i < ppi_regs_num; ++i) { |
| RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i); |
| RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i); |
| } |
| |
| /* 4 interrupt IDs per GICR_IPRIORITYR register */ |
| regs_num = ppi_regs_num << 3; |
| for (i = 0U; i < regs_num; ++i) { |
| RESTORE_GICR_REG(gicr_base, rdist_ctx, ipriorityr, i); |
| } |
| |
| /* 16 interrupt IDs per GICR_ICFGR register */ |
| regs_num = ppi_regs_num << 1; |
| for (i = 0U; i < regs_num; ++i) { |
| RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i); |
| } |
| |
| gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr); |
| |
| /* Restore after group and priorities are set. |
| * 32 interrupt IDs per register |
| */ |
| for (i = 0U; i < ppi_regs_num; ++i) { |
| RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i); |
| RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i); |
| } |
| |
| /* |
| * Wait for all writes to the Distributor to complete before enabling |
| * the SGI and (E)PPIs. |
| */ |
| gicr_wait_for_upstream_pending_write(gicr_base); |
| |
| /* 32 interrupt IDs per GICR_ISENABLER register */ |
| for (i = 0U; i < ppi_regs_num; ++i) { |
| RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i); |
| } |
| |
| /* |
| * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case |
| * the first write to GICR_CTLR was still in flight (this write only |
| * restores GICR_CTLR.Enable_LPIs and no waiting is required for this |
| * bit). |
| */ |
| gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr); |
| gicr_wait_for_pending_write(gicr_base); |
| } |
| |
| /***************************************************************************** |
| * Function to save the GIC Distributor register context. This function |
| * must be invoked after CPU interface disable and Redistributor save. |
| *****************************************************************************/ |
| void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx) |
| { |
| unsigned int typer_reg, num_ints; |
| #if GIC_EXT_INTID |
| unsigned int num_eints; |
| #endif |
| |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(IS_IN_EL3()); |
| assert(dist_ctx != NULL); |
| |
| uintptr_t gicd_base = gicv3_driver_data->gicd_base; |
| |
| typer_reg = gicd_read_typer(gicd_base); |
| |
| /* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */ |
| num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5; |
| |
| /* Filter out special INTIDs 1020-1023 */ |
| if (num_ints > (MAX_SPI_ID + 1U)) { |
| num_ints = MAX_SPI_ID + 1U; |
| } |
| |
| #if GIC_EXT_INTID |
| /* Check if extended SPI range is implemented */ |
| if ((typer_reg & TYPER_ESPI) != 0U) { |
| /* |
| * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095 |
| */ |
| num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) & |
| TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1; |
| } else { |
| num_eints = 0U; |
| } |
| #endif |
| /* Wait for pending write to complete */ |
| gicd_wait_for_pending_write(gicd_base); |
| |
| /* Save the GICD_CTLR */ |
| dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base); |
| |
| /* Save GICD_IGROUPR for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP); |
| |
| /* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP); |
| |
| /* Save GICD_ISENABLER for INT_IDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE); |
| |
| /* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE); |
| |
| /* Save GICD_ISPENDR for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND); |
| |
| /* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND); |
| |
| /* Save GICD_ISACTIVER for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE); |
| |
| /* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE); |
| |
| /* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY); |
| |
| /* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY); |
| |
| /* Save GICD_ICFGR for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG); |
| |
| /* Save GICD_ICFGRE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG); |
| |
| /* Save GICD_IGRPMODR for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD); |
| |
| /* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD); |
| |
| /* Save GICD_NSACR for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC); |
| |
| /* Save GICD_NSACRE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC); |
| |
| /* Save GICD_IROUTER for INTIDs 32 - 1019 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE); |
| |
| /* Save GICD_IROUTERE for INTIDs 4096 - 5119 */ |
| SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE); |
| |
| /* |
| * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when |
| * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3 |
| * driver. |
| */ |
| } |
| |
| /***************************************************************************** |
| * Function to restore the GIC Distributor register context. We disable G0, G1S |
| * and G1NS interrupt groups before we start restore of the Distributor. This |
| * function must be invoked prior to Redistributor restore and CPU interface |
| * enable. The pending and active interrupts are restored after the interrupts |
| * are fully configured and enabled. |
| *****************************************************************************/ |
| void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx) |
| { |
| unsigned int typer_reg, num_ints; |
| #if GIC_EXT_INTID |
| unsigned int num_eints; |
| #endif |
| |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(IS_IN_EL3()); |
| assert(dist_ctx != NULL); |
| |
| uintptr_t gicd_base = gicv3_driver_data->gicd_base; |
| |
| /* |
| * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring |
| * the ARE_S bit. The Distributor might generate a system error |
| * otherwise. |
| */ |
| gicd_clr_ctlr(gicd_base, |
| CTLR_ENABLE_G0_BIT | |
| CTLR_ENABLE_G1S_BIT | |
| CTLR_ENABLE_G1NS_BIT, |
| RWP_TRUE); |
| |
| /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ |
| gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); |
| |
| typer_reg = gicd_read_typer(gicd_base); |
| |
| /* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */ |
| num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5; |
| |
| /* Filter out special INTIDs 1020-1023 */ |
| if (num_ints > (MAX_SPI_ID + 1U)) { |
| num_ints = MAX_SPI_ID + 1U; |
| } |
| |
| #if GIC_EXT_INTID |
| /* Check if extended SPI range is implemented */ |
| if ((typer_reg & TYPER_ESPI) != 0U) { |
| /* |
| * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095 |
| */ |
| num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) & |
| TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1; |
| } else { |
| num_eints = 0U; |
| } |
| #endif |
| /* Restore GICD_IGROUPR for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP); |
| |
| /* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP); |
| |
| /* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY); |
| |
| /* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY); |
| |
| /* Restore GICD_ICFGR for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG); |
| |
| /* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG); |
| |
| /* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD); |
| |
| /* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD); |
| |
| /* Restore GICD_NSACR for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC); |
| |
| /* Restore GICD_NSACRE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC); |
| |
| /* Restore GICD_IROUTER for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE); |
| |
| /* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE); |
| |
| /* |
| * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after |
| * the interrupts are configured. |
| */ |
| |
| /* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE); |
| |
| /* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE); |
| |
| /* Restore GICD_ISPENDR for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND); |
| |
| /* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND); |
| |
| /* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE); |
| |
| /* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */ |
| RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE); |
| |
| /* Restore the GICD_CTLR */ |
| gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr); |
| gicd_wait_for_pending_write(gicd_base); |
| } |
| |
| /******************************************************************************* |
| * This function gets the priority of the interrupt the processor is currently |
| * servicing. |
| ******************************************************************************/ |
| unsigned int gicv3_get_running_priority(void) |
| { |
| return (unsigned int)read_icc_rpr_el1(); |
| } |
| |
| /******************************************************************************* |
| * This function checks if the interrupt identified by id is active (whether the |
| * state is either active, or active and pending). The proc_num is used if the |
| * interrupt is SGI or (E)PPI and programs the corresponding Redistributor |
| * interface. |
| ******************************************************************************/ |
| unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num) |
| { |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */ |
| return gicr_get_isactiver( |
| gicv3_driver_data->rdistif_base_addrs[proc_num], id); |
| } |
| |
| /* For SPIs: 32-1019 and ESPIs: 4096-5119 */ |
| return gicd_get_isactiver(gicv3_driver_data->gicd_base, id); |
| } |
| |
| /******************************************************************************* |
| * This function enables the interrupt identified by id. The proc_num |
| * is used if the interrupt is SGI or PPI, and programs the corresponding |
| * Redistributor interface. |
| ******************************************************************************/ |
| void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num) |
| { |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| /* |
| * Ensure that any shared variable updates depending on out of band |
| * interrupt trigger are observed before enabling interrupt. |
| */ |
| dsbishst(); |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */ |
| gicr_set_isenabler( |
| gicv3_driver_data->rdistif_base_addrs[proc_num], id); |
| } else { |
| /* For SPIs: 32-1019 and ESPIs: 4096-5119 */ |
| gicd_set_isenabler(gicv3_driver_data->gicd_base, id); |
| } |
| } |
| |
| /******************************************************************************* |
| * This function disables the interrupt identified by id. The proc_num |
| * is used if the interrupt is SGI or PPI, and programs the corresponding |
| * Redistributor interface. |
| ******************************************************************************/ |
| void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num) |
| { |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| /* |
| * Disable interrupt, and ensure that any shared variable updates |
| * depending on out of band interrupt trigger are observed afterwards. |
| */ |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */ |
| gicr_set_icenabler( |
| gicv3_driver_data->rdistif_base_addrs[proc_num], id); |
| |
| /* Write to clear enable requires waiting for pending writes */ |
| gicr_wait_for_pending_write( |
| gicv3_driver_data->rdistif_base_addrs[proc_num]); |
| } else { |
| /* For SPIs: 32-1019 and ESPIs: 4096-5119 */ |
| gicd_set_icenabler(gicv3_driver_data->gicd_base, id); |
| |
| /* Write to clear enable requires waiting for pending writes */ |
| gicd_wait_for_pending_write(gicv3_driver_data->gicd_base); |
| } |
| |
| dsbishst(); |
| } |
| |
| /******************************************************************************* |
| * This function sets the interrupt priority as supplied for the given interrupt |
| * id. |
| ******************************************************************************/ |
| void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num, |
| unsigned int priority) |
| { |
| uintptr_t gicr_base; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */ |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| gicr_set_ipriorityr(gicr_base, id, priority); |
| } else { |
| /* For SPIs: 32-1019 and ESPIs: 4096-5119 */ |
| gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority); |
| } |
| } |
| |
| /******************************************************************************* |
| * This function assigns group for the interrupt identified by id. The proc_num |
| * is used if the interrupt is SGI or (E)PPI, and programs the corresponding |
| * Redistributor interface. The group can be any of GICV3_INTR_GROUP* |
| ******************************************************************************/ |
| void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num, |
| unsigned int type) |
| { |
| bool igroup = false, grpmod = false; |
| uintptr_t gicr_base; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| switch (type) { |
| case INTR_GROUP1S: |
| igroup = false; |
| grpmod = true; |
| break; |
| case INTR_GROUP0: |
| igroup = false; |
| grpmod = false; |
| break; |
| case INTR_GROUP1NS: |
| igroup = true; |
| grpmod = false; |
| break; |
| default: |
| assert(false); |
| break; |
| } |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */ |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| |
| igroup ? gicr_set_igroupr(gicr_base, id) : |
| gicr_clr_igroupr(gicr_base, id); |
| grpmod ? gicr_set_igrpmodr(gicr_base, id) : |
| gicr_clr_igrpmodr(gicr_base, id); |
| } else { |
| /* For SPIs: 32-1019 and ESPIs: 4096-5119 */ |
| |
| /* Serialize read-modify-write to Distributor registers */ |
| spin_lock(&gic_lock); |
| |
| igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) : |
| gicd_clr_igroupr(gicv3_driver_data->gicd_base, id); |
| grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) : |
| gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id); |
| |
| spin_unlock(&gic_lock); |
| } |
| } |
| |
| /******************************************************************************* |
| * This function raises the specified Secure Group 0 SGI. |
| * |
| * The target parameter must be a valid MPIDR in the system. |
| ******************************************************************************/ |
| void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target) |
| { |
| unsigned int tgt, aff3, aff2, aff1, aff0; |
| uint64_t sgi_val; |
| |
| /* Verify interrupt number is in the SGI range */ |
| assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID)); |
| |
| /* Extract affinity fields from target */ |
| aff0 = MPIDR_AFFLVL0_VAL(target); |
| aff1 = MPIDR_AFFLVL1_VAL(target); |
| aff2 = MPIDR_AFFLVL2_VAL(target); |
| aff3 = MPIDR_AFFLVL3_VAL(target); |
| |
| /* |
| * Make target list from affinity 0, and ensure GICv3 SGI can target |
| * this PE. |
| */ |
| assert(aff0 < GICV3_MAX_SGI_TARGETS); |
| tgt = BIT_32(aff0); |
| |
| /* Raise SGI to PE specified by its affinity */ |
| sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF, |
| tgt); |
| |
| /* |
| * Ensure that any shared variable updates depending on out of band |
| * interrupt trigger are observed before raising SGI. |
| */ |
| dsbishst(); |
| write_icc_sgi0r_el1(sgi_val); |
| isb(); |
| } |
| |
| /******************************************************************************* |
| * This function sets the interrupt routing for the given (E)SPI interrupt id. |
| * The interrupt routing is specified in routing mode and mpidr. |
| * |
| * The routing mode can be either of: |
| * - GICV3_IRM_ANY |
| * - GICV3_IRM_PE |
| * |
| * The mpidr is the affinity of the PE to which the interrupt will be routed, |
| * and is ignored for routing mode GICV3_IRM_ANY. |
| ******************************************************************************/ |
| void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr) |
| { |
| unsigned long long aff; |
| uint64_t router; |
| |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| |
| assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE)); |
| |
| assert(IS_SPI(id)); |
| |
| aff = gicd_irouter_val_from_mpidr(mpidr, irm); |
| gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff); |
| |
| /* |
| * In implementations that do not require 1 of N distribution of SPIs, |
| * IRM might be RAZ/WI. Read back and verify IRM bit. |
| */ |
| if (irm == GICV3_IRM_ANY) { |
| router = gicd_read_irouter(gicv3_driver_data->gicd_base, id); |
| if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) { |
| ERROR("GICv3 implementation doesn't support routing ANY\n"); |
| panic(); |
| } |
| } |
| } |
| |
| /******************************************************************************* |
| * This function clears the pending status of an interrupt identified by id. |
| * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the |
| * corresponding Redistributor interface. |
| ******************************************************************************/ |
| void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num) |
| { |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| /* |
| * Clear pending interrupt, and ensure that any shared variable updates |
| * depending on out of band interrupt trigger are observed afterwards. |
| */ |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */ |
| gicr_set_icpendr( |
| gicv3_driver_data->rdistif_base_addrs[proc_num], id); |
| } else { |
| /* For SPIs: 32-1019 and ESPIs: 4096-5119 */ |
| gicd_set_icpendr(gicv3_driver_data->gicd_base, id); |
| } |
| |
| dsbishst(); |
| } |
| |
| /******************************************************************************* |
| * This function sets the pending status of an interrupt identified by id. |
| * The proc_num is used if the interrupt is SGI or PPI and programs the |
| * corresponding Redistributor interface. |
| ******************************************************************************/ |
| void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num) |
| { |
| assert(gicv3_driver_data != NULL); |
| assert(gicv3_driver_data->gicd_base != 0U); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs != NULL); |
| |
| /* |
| * Ensure that any shared variable updates depending on out of band |
| * interrupt trigger are observed before setting interrupt pending. |
| */ |
| dsbishst(); |
| |
| /* Check interrupt ID */ |
| if (is_sgi_ppi(id)) { |
| /* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */ |
| gicr_set_ispendr( |
| gicv3_driver_data->rdistif_base_addrs[proc_num], id); |
| } else { |
| /* For SPIs: 32-1019 and ESPIs: 4096-5119 */ |
| gicd_set_ispendr(gicv3_driver_data->gicd_base, id); |
| } |
| } |
| |
| /******************************************************************************* |
| * This function sets the PMR register with the supplied value. Returns the |
| * original PMR. |
| ******************************************************************************/ |
| unsigned int gicv3_set_pmr(unsigned int mask) |
| { |
| unsigned int old_mask; |
| |
| old_mask = (unsigned int)read_icc_pmr_el1(); |
| |
| /* |
| * Order memory updates w.r.t. PMR write, and ensure they're visible |
| * before potential out of band interrupt trigger because of PMR update. |
| * PMR system register writes are self-synchronizing, so no ISB required |
| * thereafter. |
| */ |
| dsbishst(); |
| write_icc_pmr_el1(mask); |
| |
| return old_mask; |
| } |
| |
| /******************************************************************************* |
| * This function delegates the responsibility of discovering the corresponding |
| * Redistributor frames to each CPU itself. It is a modified version of |
| * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform |
| * unlike the previous way in which only the Primary CPU did the discovery of |
| * all the Redistributor frames for every CPU. It also handles the scenario in |
| * which the frames of various CPUs are not contiguous in physical memory. |
| ******************************************************************************/ |
| int gicv3_rdistif_probe(const uintptr_t gicr_frame) |
| { |
| u_register_t mpidr; |
| unsigned int proc_num, proc_self; |
| uint64_t typer_val; |
| uintptr_t rdistif_base; |
| bool gicr_frame_found = false; |
| |
| assert(gicv3_driver_data->gicr_base == 0U); |
| |
| /* Ensure this function is called with Data Cache enabled */ |
| #ifndef __aarch64__ |
| assert((read_sctlr() & SCTLR_C_BIT) != 0U); |
| #else |
| assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U); |
| #endif /* !__aarch64__ */ |
| |
| proc_self = gicv3_driver_data->mpidr_to_core_pos(read_mpidr_el1()); |
| rdistif_base = gicr_frame; |
| do { |
| typer_val = gicr_read_typer(rdistif_base); |
| if (gicv3_driver_data->mpidr_to_core_pos != NULL) { |
| mpidr = mpidr_from_gicr_typer(typer_val); |
| proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr); |
| } else { |
| proc_num = (unsigned int)(typer_val >> |
| TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK; |
| } |
| if (proc_num == proc_self) { |
| /* The base address doesn't need to be initialized on |
| * every warm boot. |
| */ |
| if (gicv3_driver_data->rdistif_base_addrs[proc_num] |
| != 0U) { |
| return 0; |
| } |
| gicv3_driver_data->rdistif_base_addrs[proc_num] = |
| rdistif_base; |
| gicr_frame_found = true; |
| break; |
| } |
| rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT); |
| } while ((typer_val & TYPER_LAST_BIT) == 0U); |
| |
| if (!gicr_frame_found) { |
| return -1; |
| } |
| |
| /* |
| * Flush the driver data to ensure coherency. This is |
| * not required if platform has HW_ASSISTED_COHERENCY |
| * enabled. |
| */ |
| #if !HW_ASSISTED_COHERENCY |
| /* |
| * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver. |
| */ |
| flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]), |
| sizeof(*(gicv3_driver_data->rdistif_base_addrs))); |
| #endif |
| return 0; /* Found matching GICR frame */ |
| } |
| |
| /****************************************************************************** |
| * This function checks the interrupt ID and returns true for SGIs and (E)PPIs |
| * and false for (E)SPIs IDs. |
| *****************************************************************************/ |
| static bool is_sgi_ppi(unsigned int id) |
| { |
| /* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */ |
| if (IS_SGI_PPI(id)) { |
| return true; |
| } |
| |
| /* SPIs: 32-1019, ESPIs: 4096-5119 */ |
| if (IS_SPI(id)) { |
| return false; |
| } |
| |
| assert(false); |
| panic(); |
| } |