blob: f2ccf15569ffe3c9226d3aa8e8a82a1db4c550f6 [file] [log] [blame]
/*
* Copyright (c) 2023-2024, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stddef.h>
#include <string.h>
/* mbed TLS headers */
#include <mbedtls/md.h>
#include <mbedtls/memory_buffer_alloc.h>
#include <mbedtls/oid.h>
#include <mbedtls/platform.h>
#include <mbedtls/psa_util.h>
#include <mbedtls/x509.h>
#include <psa/crypto.h>
#include <psa/crypto_platform.h>
#include <psa/crypto_types.h>
#include <psa/crypto_values.h>
#include <common/debug.h>
#include <drivers/auth/crypto_mod.h>
#include <drivers/auth/mbedtls/mbedtls_common.h>
#include <plat/common/platform.h>
#define LIB_NAME "mbed TLS PSA"
/* Maximum length of R_S pair in the ECDSA signature in bytes */
#define MAX_ECDSA_R_S_PAIR_LEN 64U
/* Size of ASN.1 length and tag in bytes*/
#define SIZE_OF_ASN1_LEN 1U
#define SIZE_OF_ASN1_TAG 1U
#if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
/*
* CRYPTO_MD_MAX_SIZE value is as per current stronger algorithm available
* so make sure that mbed TLS MD maximum size must be lesser than this.
*/
CASSERT(CRYPTO_MD_MAX_SIZE >= MBEDTLS_MD_MAX_SIZE,
assert_mbedtls_md_size_overflow);
#endif /*
* CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
/*
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER,
* parameters ANY DEFINED BY algorithm OPTIONAL
* }
*
* SubjectPublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* subjectPublicKey BIT STRING
* }
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm AlgorithmIdentifier,
* digest OCTET STRING
* }
*/
/*
* We pretend using an external RNG (through MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG
* mbedTLS config option) so we need to provide an implementation of
* mbedtls_psa_external_get_random(). Provide a fake one, since we do not
* actually have any external RNG and TF-A itself doesn't engage in
* cryptographic operations that demands randomness.
*/
psa_status_t mbedtls_psa_external_get_random(
mbedtls_psa_external_random_context_t *context,
uint8_t *output, size_t output_size,
size_t *output_length)
{
return PSA_ERROR_INSUFFICIENT_ENTROPY;
}
/*
* Initialize the library and export the descriptor
*/
static void init(void)
{
/* Initialize mbed TLS */
mbedtls_init();
/* Initialise PSA mbedTLS */
psa_status_t status = psa_crypto_init();
if (status != PSA_SUCCESS) {
ERROR("Failed to initialize %s crypto (%d).\n", LIB_NAME, status);
panic();
}
INFO("PSA crypto initialized successfully!\n");
}
#if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
/*
* NOTE: This has been made internal in mbedtls 3.6.0 and the mbedtls team has
* advised that it's better to copy out the declaration than it would be to
* update to 3.5.2, where this function is exposed.
*/
int mbedtls_x509_get_sig_alg(const mbedtls_x509_buf *sig_oid,
const mbedtls_x509_buf *sig_params,
mbedtls_md_type_t *md_alg,
mbedtls_pk_type_t *pk_alg,
void **sig_opts);
/*
* This is a helper function which parses a SignatureAlgorithm OID.
* It extracts the pk algorithm and constructs a psa_algorithm_t object
* to be used by PSA calls.
*/
static int construct_psa_alg(void *sig_alg, unsigned int sig_alg_len,
mbedtls_pk_type_t *pk_alg, psa_algorithm_t *psa_alg)
{
int rc;
mbedtls_md_type_t md_alg;
void *sig_opts = NULL;
mbedtls_asn1_buf sig_alg_oid, params;
unsigned char *p = (unsigned char *) sig_alg;
unsigned char *end = (unsigned char *) sig_alg + sig_alg_len;
rc = mbedtls_asn1_get_alg(&p, end, &sig_alg_oid, &params);
if (rc != 0) {
rc = CRYPTO_ERR_SIGNATURE;
goto end;
}
rc = mbedtls_x509_get_sig_alg(&sig_alg_oid, &params, &md_alg, pk_alg, &sig_opts);
if (rc != 0) {
rc = CRYPTO_ERR_SIGNATURE;
goto end;
}
psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
switch (*pk_alg) {
case MBEDTLS_PK_RSASSA_PSS:
*psa_alg = PSA_ALG_RSA_PSS(psa_md_alg);
rc = CRYPTO_SUCCESS;
break;
case MBEDTLS_PK_ECDSA:
*psa_alg = PSA_ALG_ECDSA(psa_md_alg);
rc = CRYPTO_SUCCESS;
break;
default:
*psa_alg = PSA_ALG_NONE;
rc = CRYPTO_ERR_SIGNATURE;
break;
}
end:
mbedtls_free(sig_opts);
return rc;
}
/*
* Helper functions for mbedtls PK contexts.
*/
static void initialize_pk_context(mbedtls_pk_context *pk, bool *pk_initialized)
{
mbedtls_pk_init(pk);
*pk_initialized = true;
}
static void cleanup_pk_context(mbedtls_pk_context *pk, bool *pk_initialized)
{
if (*pk_initialized) {
mbedtls_pk_free(pk);
*pk_initialized = false;
}
}
/*
* Verify a signature.
*
* Parameters are passed using the DER encoding format following the ASN.1
* structures detailed above.
*/
static int verify_signature(void *data_ptr, unsigned int data_len,
void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len)
{
unsigned char *p, *end;
mbedtls_pk_context pk;
bool pk_initialized = false;
int rc = CRYPTO_ERR_SIGNATURE;
psa_status_t psa_status = PSA_ERROR_CORRUPTION_DETECTED;
psa_key_attributes_t psa_key_attr = PSA_KEY_ATTRIBUTES_INIT;
psa_key_id_t psa_key_id;
mbedtls_pk_type_t pk_alg;
psa_algorithm_t psa_alg;
__unused unsigned char reformatted_sig[MAX_ECDSA_R_S_PAIR_LEN] = {0};
unsigned char *local_sig_ptr;
size_t local_sig_len;
/* Load the key into the PSA key store. */
initialize_pk_context(&pk, &pk_initialized);
p = (unsigned char *) pk_ptr;
end = p + pk_len;
rc = mbedtls_pk_parse_subpubkey(&p, end, &pk);
if (rc != 0) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
rc = mbedtls_pk_get_psa_attributes(&pk, PSA_KEY_USAGE_VERIFY_MESSAGE, &psa_key_attr);
if (rc != 0) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
rc = construct_psa_alg(sig_alg, sig_alg_len, &pk_alg, &psa_alg);
if (rc != CRYPTO_SUCCESS) {
goto end2;
}
psa_set_key_algorithm(&psa_key_attr, psa_alg);
rc = mbedtls_pk_import_into_psa(&pk, &psa_key_attr, &psa_key_id);
if (rc != 0) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
/* Optimize mbedtls heap usage by freeing the pk context now. */
cleanup_pk_context(&pk, &pk_initialized);
/* Extract the signature from sig_ptr. */
p = (unsigned char *) sig_ptr;
end = p + sig_len;
rc = mbedtls_asn1_get_bitstring_null(&p, end, &local_sig_len);
if (rc != 0) {
rc = CRYPTO_ERR_SIGNATURE;
goto end1;
}
local_sig_ptr = p;
#if TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
if (pk_alg == MBEDTLS_PK_ECDSA) {
/* Convert the DER ASN.1 signature to raw format. */
size_t key_bits = psa_get_key_bits(&psa_key_attr);
rc = mbedtls_ecdsa_der_to_raw(key_bits, p, local_sig_len,
reformatted_sig, MAX_ECDSA_R_S_PAIR_LEN,
&local_sig_len);
if (rc != 0) {
rc = CRYPTO_ERR_SIGNATURE;
goto end1;
}
local_sig_ptr = reformatted_sig;
}
#endif /*
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
**/
/* Verify the signature. */
psa_status = psa_verify_message(psa_key_id, psa_alg,
data_ptr, data_len,
local_sig_ptr, local_sig_len);
if (psa_status == PSA_SUCCESS) {
/* The signature has been successfully verified. */
rc = CRYPTO_SUCCESS;
} else {
rc = CRYPTO_ERR_SIGNATURE;
}
end1:
/* Destroy the key from the PSA subsystem. */
psa_destroy_key(psa_key_id);
end2:
/* Free the pk context, if it is initialized. */
cleanup_pk_context(&pk, &pk_initialized);
return rc;
}
/*
* Match a hash
*
* Digest info is passed in DER format following the ASN.1 structure detailed
* above.
*/
static int verify_hash(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len)
{
mbedtls_asn1_buf hash_oid, params;
mbedtls_md_type_t md_alg;
unsigned char *p, *end, *hash;
size_t len;
int rc;
psa_status_t status;
psa_algorithm_t psa_md_alg;
/*
* Digest info should be an MBEDTLS_ASN1_SEQUENCE, but padding after
* it is allowed. This is necessary to support multiple hash
* algorithms.
*/
p = (unsigned char *)digest_info_ptr;
end = p + digest_info_len;
rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
end = p + len;
/* Get the hash algorithm */
rc = mbedtls_asn1_get_alg(&p, end, &hash_oid, &params);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
/* Hash should be octet string type and consume all bytes */
rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING);
if ((rc != 0) || ((size_t)(end - p) != len)) {
return CRYPTO_ERR_HASH;
}
hash = p;
rc = mbedtls_oid_get_md_alg(&hash_oid, &md_alg);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
/* convert the md_alg to psa_algo */
psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
/* Length of hash must match the algorithm's size */
if (len != PSA_HASH_LENGTH(psa_md_alg)) {
return CRYPTO_ERR_HASH;
}
/*
* Calculate Hash and compare it against the retrieved hash from
* the certificate (one shot API).
*/
status = psa_hash_compare(psa_md_alg,
data_ptr, (size_t)data_len,
(const uint8_t *)hash, len);
if (status != PSA_SUCCESS) {
return CRYPTO_ERR_HASH;
}
return CRYPTO_SUCCESS;
}
#endif /*
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
#if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
/*
* Map a generic crypto message digest algorithm to the corresponding macro used
* by Mbed TLS.
*/
static inline mbedtls_md_type_t md_type(enum crypto_md_algo algo)
{
switch (algo) {
case CRYPTO_MD_SHA512:
return MBEDTLS_MD_SHA512;
case CRYPTO_MD_SHA384:
return MBEDTLS_MD_SHA384;
case CRYPTO_MD_SHA256:
return MBEDTLS_MD_SHA256;
default:
/* Invalid hash algorithm. */
return MBEDTLS_MD_NONE;
}
}
/*
* Calculate a hash
*
* output points to the computed hash
*/
static int calc_hash(enum crypto_md_algo md_algo, void *data_ptr,
unsigned int data_len,
unsigned char output[CRYPTO_MD_MAX_SIZE])
{
size_t hash_length;
psa_status_t status;
psa_algorithm_t psa_md_alg;
/* convert the md_alg to psa_algo */
psa_md_alg = mbedtls_md_psa_alg_from_type(md_type(md_algo));
/*
* Calculate the hash of the data, it is safe to pass the
* 'output' hash buffer pointer considering its size is always
* bigger than or equal to MBEDTLS_MD_MAX_SIZE.
*/
status = psa_hash_compute(psa_md_alg, data_ptr, (size_t)data_len,
(uint8_t *)output, CRYPTO_MD_MAX_SIZE,
&hash_length);
if (status != PSA_SUCCESS) {
return CRYPTO_ERR_HASH;
}
return CRYPTO_SUCCESS;
}
#endif /*
* CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
#if TF_MBEDTLS_USE_AES_GCM
/*
* Stack based buffer allocation for decryption operation. It could
* be configured to balance stack usage vs execution speed.
*/
#define DEC_OP_BUF_SIZE 128
static int aes_gcm_decrypt(void *data_ptr, size_t len, const void *key,
unsigned int key_len, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)
{
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t psa_status = PSA_ERROR_GENERIC_ERROR;
unsigned char buf[DEC_OP_BUF_SIZE];
unsigned char *pt = data_ptr;
size_t dec_len;
size_t output_length;
/* Load the key into the PSA key store. */
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, PSA_ALG_GCM);
psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);
psa_status = psa_import_key(&attributes, key, key_len, &key_id);
if (psa_status != PSA_SUCCESS) {
return CRYPTO_ERR_DECRYPTION;
}
/* Perform the decryption. */
psa_status = psa_aead_decrypt_setup(&operation, key_id, PSA_ALG_GCM);
if (psa_status != PSA_SUCCESS) {
goto err;
}
psa_status = psa_aead_set_nonce(&operation, iv, iv_len);
if (psa_status != PSA_SUCCESS) {
goto err;
}
while (len > 0) {
dec_len = MIN(sizeof(buf), len);
psa_status = psa_aead_update(&operation, pt, dec_len, buf,
sizeof(buf), &output_length);
if (psa_status != PSA_SUCCESS) {
goto err;
}
memcpy(pt, buf, output_length);
pt += output_length;
len -= dec_len;
}
/* Verify the tag. */
psa_status = psa_aead_verify(&operation, NULL, 0, &output_length, tag, tag_len);
if (psa_status == PSA_SUCCESS) {
psa_destroy_key(key_id);
return CRYPTO_SUCCESS;
}
err:
psa_aead_abort(&operation);
psa_destroy_key(key_id);
return CRYPTO_ERR_DECRYPTION;
}
/*
* Authenticated decryption of an image
*/
static int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr,
size_t len, const void *key, unsigned int key_len,
unsigned int key_flags, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)
{
int rc;
assert((key_flags & ENC_KEY_IS_IDENTIFIER) == 0);
switch (dec_algo) {
case CRYPTO_GCM_DECRYPT:
rc = aes_gcm_decrypt(data_ptr, len, key, key_len, iv, iv_len,
tag, tag_len);
if (rc != 0)
return rc;
break;
default:
return CRYPTO_ERR_DECRYPTION;
}
return CRYPTO_SUCCESS;
}
#endif /* TF_MBEDTLS_USE_AES_GCM */
/*
* Register crypto library descriptor
*/
#if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
#if TF_MBEDTLS_USE_AES_GCM
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash,
auth_decrypt, NULL);
#else
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash,
NULL, NULL);
#endif
#elif CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY
#if TF_MBEDTLS_USE_AES_GCM
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL,
auth_decrypt, NULL);
#else
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL,
NULL, NULL);
#endif
#elif CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY
REGISTER_CRYPTO_LIB(LIB_NAME, init, NULL, NULL, calc_hash, NULL, NULL);
#endif /* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC */