blob: a803a3a9c1143ea0bac4a035016ae40a3c3ff88e [file] [log] [blame]
/*
* Copyright (c) 2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <limits.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/st/bsec.h>
#include <drivers/st/bsec3_reg.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <libfdt.h>
#include <platform_def.h>
#define BSEC_IP_VERSION_1_0 U(0x10)
#define BSEC_IP_ID_3 U(0x100033)
#define MAX_NB_TRIES U(3)
/*
* IP configuration
*/
#define BSEC_OTP_MASK GENMASK_32(4, 0)
#define BSEC_OTP_BANK_SHIFT U(5)
#define BSEC_TIMEOUT_VALUE U(0x800000) /* ~7sec @1.2GHz */
/* Magic use to indicated valid SHADOW = 'B' 'S' 'E' 'C' */
#define BSEC_MAGIC U(0x42534543)
#define OTP_MAX_SIZE (STM32MP2_OTP_MAX_ID + U(1))
struct bsec_shadow {
uint32_t magic;
uint32_t state;
uint32_t value[OTP_MAX_SIZE];
uint32_t status[OTP_MAX_SIZE];
};
static uint32_t otp_bank(uint32_t otp)
{
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
return (otp & ~BSEC_OTP_MASK) >> BSEC_OTP_BANK_SHIFT;
}
static uint32_t otp_bit_mask(uint32_t otp)
{
return BIT(otp & BSEC_OTP_MASK);
}
/*
* bsec_get_status: return status register value.
*/
static uint32_t bsec_get_status(void)
{
return mmio_read_32(BSEC_BASE + BSEC_OTPSR);
}
/*
* bsec_get_version: return BSEC version.
*/
static uint32_t bsec_get_version(void)
{
return mmio_read_32(BSEC_BASE + BSEC_VERR) & BSEC_VERR_MASK;
}
/*
* bsec_get_id: return BSEC ID.
*/
static uint32_t bsec_get_id(void)
{
return mmio_read_32(BSEC_BASE + BSEC_IPIDR);
}
static bool is_fuse_shadowed(uint32_t otp)
{
uint32_t bank = otp_bank(otp);
uint32_t otp_mask = otp_bit_mask(otp);
uint32_t bank_value;
bank_value = mmio_read_32(BSEC_BASE + BSEC_SFSR(bank));
if ((bank_value & otp_mask) != 0U) {
return true;
}
return false;
}
static void poll_otp_status_busy(void)
{
uint32_t timeout = BSEC_TIMEOUT_VALUE;
while (((bsec_get_status() & BSEC_OTPSR_BUSY) != 0U) && (timeout != 0U)) {
timeout--;
}
if ((bsec_get_status() & BSEC_OTPSR_BUSY) != 0U) {
ERROR("BSEC timeout\n");
panic();
}
}
static uint32_t check_read_error(uint32_t otp)
{
uint32_t status = bsec_get_status();
if ((status & BSEC_OTPSR_SECF) != 0U) {
VERBOSE("BSEC read %u single error correction detected\n", otp);
}
if ((status & BSEC_OTPSR_PPLF) != 0U) {
VERBOSE("BSEC read %u permanent programming lock detected.\n", otp);
}
if ((status & BSEC_OTPSR_PPLMF) != 0U) {
ERROR("BSEC read %u error 0x%x\n", otp, status);
return BSEC_ERROR;
}
if ((status & (BSEC_OTPSR_DISTURBF | BSEC_OTPSR_DEDF | BSEC_OTPSR_AMEF)) != 0U) {
ERROR("BSEC read %u error 0x%x with invalid FVR\n", otp, status);
return BSEC_RETRY;
}
return BSEC_OK;
}
static uint32_t check_program_error(uint32_t otp)
{
uint32_t status = bsec_get_status();
if ((status & BSEC_OTPSR_PROGFAIL) != 0U) {
ERROR("BSEC program %u error 0x%x\n", otp, status);
return BSEC_RETRY;
}
return BSEC_OK;
}
static void check_reset_error(void)
{
uint32_t status = bsec_get_status();
/* check initial status reporting */
if ((status & BSEC_OTPSR_BUSY) != 0U) {
VERBOSE("BSEC reset and busy when OTPSR read\n");
}
if ((status & BSEC_OTPSR_HIDEUP) != 0U) {
VERBOSE("BSEC upper fuse are not accessible (HIDEUP)\n");
}
if ((status & BSEC_OTPSR_OTPSEC) != 0U) {
VERBOSE("BSEC reset single error correction detected\n");
}
if ((status & BSEC_OTPSR_OTPNVIR) == 0U) {
VERBOSE("BSEC reset first fuse word 0 is detected zero\n");
}
if ((status & BSEC_OTPSR_OTPERR) != 0U) {
ERROR("BSEC reset critical error 0x%x\n", status);
panic();
}
if ((status & BSEC_OTPSR_FUSEOK) != BSEC_OTPSR_FUSEOK) {
ERROR("BSEC reset critical error 0x%x\n", status);
panic();
}
}
static bool is_bsec_write_locked(void)
{
return (mmio_read_32(BSEC_BASE + BSEC_LOCKR) & BSEC_LOCKR_GWLOCK_MASK) != 0U;
}
/*
* bsec_probe: initialize BSEC driver.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_probe(void)
{
uint32_t version = bsec_get_version();
uint32_t id = bsec_get_id();
if ((version != BSEC_IP_VERSION_1_0) || (id != BSEC_IP_ID_3)) {
ERROR("%s: version = 0x%x, id = 0x%x\n", __func__, version, id);
panic();
}
check_reset_error();
return BSEC_OK;
}
/*
* bsec_shadow_register: copy SAFMEM OTP to BSEC data.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
static uint32_t bsec_shadow_register(uint32_t otp)
{
uint32_t result;
uint32_t i;
bool value;
result = bsec_read_sr_lock(otp, &value);
if (result != BSEC_OK) {
WARN("BSEC: %u Sticky-read bit read Error %u\n", otp, result);
} else if (value) {
VERBOSE("BSEC: OTP %u is locked and will not be refreshed\n", otp);
}
for (i = 0U; i < MAX_NB_TRIES; i++) {
mmio_write_32(BSEC_BASE + BSEC_OTPCR, otp);
poll_otp_status_busy();
result = check_read_error(otp);
if (result != BSEC_RETRY) {
break;
}
}
return result;
}
/*
* bsec_write_otp: write a value in shadow OTP.
* val: value to program.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_write_otp(uint32_t val, uint32_t otp)
{
bool state;
uint32_t result;
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
if (!is_fuse_shadowed(otp)) {
return BSEC_ERROR;
}
if (is_bsec_write_locked()) {
return BSEC_WRITE_LOCKED;
}
result = bsec_read_sw_lock(otp, &state);
if (result != BSEC_OK) {
WARN("Shadow register is SW locked\n");
return result;
}
mmio_write_32(BSEC_BASE + BSEC_FVR(otp), val);
return BSEC_OK;
}
/*
* bsec_program_otp: program a bit in SAFMEM after the prog.
* The OTP data is not refreshed.
* val: value to program.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_program_otp(uint32_t val, uint32_t otp)
{
uint32_t result;
uint32_t i;
bool value;
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
if (is_bsec_write_locked() == true) {
return BSEC_WRITE_LOCKED;
}
result = bsec_read_sp_lock(otp, &value);
if (result != BSEC_OK) {
WARN("BSEC: %u Sticky-prog bit read Error %u\n", otp, result);
} else if (value) {
WARN("BSEC: OTP locked, prog will be ignored\n");
return BSEC_WRITE_LOCKED;
}
mmio_write_32(BSEC_BASE + BSEC_WDR, val);
for (i = 0U; i < MAX_NB_TRIES; i++) {
mmio_write_32(BSEC_BASE + BSEC_OTPCR, otp | BSEC_OTPCR_PROG);
poll_otp_status_busy();
result = check_program_error(otp);
if (result != BSEC_RETRY) {
break;
}
}
return result;
}
/*
* bsec_read_debug_conf: read debug configuration.
*/
uint32_t bsec_read_debug_conf(void)
{
return mmio_read_32(BSEC_BASE + BSEC_DENR);
}
static uint32_t bsec_lock_register_set(uint32_t offset, uint32_t mask)
{
uint32_t value = mmio_read_32(BSEC_BASE + offset);
/* The lock is already set */
if ((value & mask) != 0U) {
return BSEC_OK;
}
if (is_bsec_write_locked()) {
return BSEC_WRITE_LOCKED;
}
value |= mask;
mmio_write_32(BSEC_BASE + offset, value);
return BSEC_OK;
}
static bool bsec_lock_register_get(uint32_t offset, uint32_t mask)
{
uint32_t value = mmio_read_32(BSEC_BASE + offset);
return (value & mask) != 0U;
}
/*
* bsec_set_sr_lock: set shadow-read lock.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_set_sr_lock(uint32_t otp)
{
uint32_t bank = otp_bank(otp);
uint32_t otp_mask = otp_bit_mask(otp);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
return bsec_lock_register_set(BSEC_SRLOCK(bank), otp_mask);
}
/*
* bsec_read_sr_lock: read shadow-read lock.
* otp: OTP number.
* value: read value (true or false).
* return value: BSEC_OK if no error.
*/
uint32_t bsec_read_sr_lock(uint32_t otp, bool *value)
{
uint32_t bank = otp_bank(otp);
uint32_t otp_mask = otp_bit_mask(otp);
assert(value != NULL);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
*value = bsec_lock_register_get(BSEC_SRLOCK(bank), otp_mask);
return BSEC_OK;
}
/*
* bsec_set_sw_lock: set shadow-write lock.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_set_sw_lock(uint32_t otp)
{
uint32_t bank = otp_bank(otp);
uint32_t otp_mask = otp_bit_mask(otp);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
return bsec_lock_register_set(BSEC_SWLOCK(bank), otp_mask);
}
/*
* bsec_read_sw_lock: read shadow-write lock.
* otp: OTP number.
* value: read value (true or false).
* return value: BSEC_OK if no error.
*/
uint32_t bsec_read_sw_lock(uint32_t otp, bool *value)
{
uint32_t bank = otp_bank(otp);
uint32_t otp_mask = otp_bit_mask(otp);
assert(value != NULL);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
*value = bsec_lock_register_get(BSEC_SWLOCK(bank), otp_mask);
return BSEC_OK;
}
/*
* bsec_set_sp_lock: set shadow-program lock.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_set_sp_lock(uint32_t otp)
{
uint32_t bank = otp_bank(otp);
uint32_t otp_mask = otp_bit_mask(otp);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
return bsec_lock_register_set(BSEC_SPLOCK(bank), otp_mask);
}
/*
* bsec_read_sp_lock: read shadow-program lock.
* otp: OTP number.
* value: read value (true or false).
* return value: BSEC_OK if no error.
*/
uint32_t bsec_read_sp_lock(uint32_t otp, bool *value)
{
uint32_t bank = otp_bank(otp);
uint32_t otp_mask = otp_bit_mask(otp);
assert(value != NULL);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
*value = bsec_lock_register_get(BSEC_SPLOCK(bank), otp_mask);
return BSEC_OK;
}
/*
* bsec_get_secure_state: read state in BSEC status register.
* return: secure state
*/
uint32_t bsec_get_secure_state(void)
{
uint32_t state = BSEC_STATE_INVALID;
uint32_t status = bsec_get_status();
uint32_t bsec_sr = mmio_read_32(BSEC_BASE + BSEC_SR);
if ((status & BSEC_OTPSR_FUSEOK) == BSEC_OTPSR_FUSEOK) {
/* NVSTATE is only valid if FUSEOK */
uint32_t nvstates = (bsec_sr & BSEC_SR_NVSTATE_MASK) >> BSEC_SR_NVSTATE_SHIFT;
if (nvstates == BSEC_SR_NVSTATE_OPEN) {
state = BSEC_STATE_SEC_OPEN;
} else if (nvstates == BSEC_SR_NVSTATE_CLOSED) {
state = BSEC_STATE_SEC_CLOSED;
} else {
VERBOSE("%s nvstates = %u\n", __func__, nvstates);
}
}
return state;
}
/*
* bsec_shadow_read_otp: Load OTP from SAFMEM and provide its value
* val: read value.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_shadow_read_otp(uint32_t *val, uint32_t otp)
{
assert(val != NULL);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
*val = 0U;
if (is_bsec_write_locked()) {
return BSEC_WRITE_LOCKED;
}
if (!is_fuse_shadowed(otp)) {
uint32_t result = bsec_shadow_register(otp);
if (result != BSEC_OK) {
ERROR("BSEC: %u Shadowing Error %u\n", otp, result);
return result;
}
}
*val = mmio_read_32(BSEC_BASE + BSEC_FVR(otp));
return BSEC_OK;
}
/*
* bsec_read_otp: read an OTP data value.
* val: read value.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_read_otp(uint32_t *val, uint32_t otp)
{
assert(val != NULL);
if (otp > STM32MP2_OTP_MAX_ID) {
panic();
}
return bsec_shadow_read_otp(val, otp);
}