| /* |
| * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <errno.h> |
| |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include <drivers/arm/cci.h> |
| #include <drivers/arm/gicv2.h> |
| #include <drivers/ti/uart/uart_16550.h> |
| #include <lib/bakery_lock.h> |
| #include <lib/mmio.h> |
| #include <lib/psci/psci.h> |
| #include <plat/arm/common/plat_arm.h> |
| |
| #include <mcucfg.h> |
| #include <mt8173_def.h> |
| #include <mt_cpuxgpt.h> /* generic_timer_backup() */ |
| #include <plat_private.h> |
| #include <power_tracer.h> |
| #include <rtc.h> |
| #include <scu.h> |
| #include <spm_hotplug.h> |
| #include <spm_mcdi.h> |
| #include <spm_suspend.h> |
| #include <wdt.h> |
| |
| #define MTK_PWR_LVL0 0 |
| #define MTK_PWR_LVL1 1 |
| #define MTK_PWR_LVL2 2 |
| |
| /* Macros to read the MTK power domain state */ |
| #define MTK_CORE_PWR_STATE(state) (state)->pwr_domain_state[MTK_PWR_LVL0] |
| #define MTK_CLUSTER_PWR_STATE(state) (state)->pwr_domain_state[MTK_PWR_LVL1] |
| #define MTK_SYSTEM_PWR_STATE(state) ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) ?\ |
| (state)->pwr_domain_state[MTK_PWR_LVL2] : 0) |
| |
| #if PSCI_EXTENDED_STATE_ID |
| /* |
| * The table storing the valid idle power states. Ensure that the |
| * array entries are populated in ascending order of state-id to |
| * enable us to use binary search during power state validation. |
| * The table must be terminated by a NULL entry. |
| */ |
| const unsigned int mtk_pm_idle_states[] = { |
| /* State-id - 0x001 */ |
| mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN, |
| MTK_LOCAL_STATE_RET, MTK_PWR_LVL0, PSTATE_TYPE_STANDBY), |
| /* State-id - 0x002 */ |
| mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN, |
| MTK_LOCAL_STATE_OFF, MTK_PWR_LVL0, PSTATE_TYPE_POWERDOWN), |
| /* State-id - 0x022 */ |
| mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_OFF, |
| MTK_LOCAL_STATE_OFF, MTK_PWR_LVL1, PSTATE_TYPE_POWERDOWN), |
| #if PLAT_MAX_PWR_LVL > MTK_PWR_LVL1 |
| /* State-id - 0x222 */ |
| mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF, |
| MTK_LOCAL_STATE_OFF, MTK_PWR_LVL2, PSTATE_TYPE_POWERDOWN), |
| #endif |
| 0, |
| }; |
| #endif |
| |
| struct core_context { |
| unsigned long timer_data[8]; |
| unsigned int count; |
| unsigned int rst; |
| unsigned int abt; |
| unsigned int brk; |
| }; |
| |
| struct cluster_context { |
| struct core_context core[PLATFORM_MAX_CPUS_PER_CLUSTER]; |
| }; |
| |
| /* |
| * Top level structure to hold the complete context of a multi cluster system |
| */ |
| struct system_context { |
| struct cluster_context cluster[PLATFORM_CLUSTER_COUNT]; |
| }; |
| |
| /* |
| * Top level structure which encapsulates the context of the entire system |
| */ |
| static struct system_context dormant_data[1]; |
| |
| static inline struct cluster_context *system_cluster( |
| struct system_context *system, |
| uint32_t clusterid) |
| { |
| return &system->cluster[clusterid]; |
| } |
| |
| static inline struct core_context *cluster_core(struct cluster_context *cluster, |
| uint32_t cpuid) |
| { |
| return &cluster->core[cpuid]; |
| } |
| |
| static struct cluster_context *get_cluster_data(unsigned long mpidr) |
| { |
| uint32_t clusterid; |
| |
| clusterid = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS; |
| |
| return system_cluster(dormant_data, clusterid); |
| } |
| |
| static struct core_context *get_core_data(unsigned long mpidr) |
| { |
| struct cluster_context *cluster; |
| uint32_t cpuid; |
| |
| cluster = get_cluster_data(mpidr); |
| cpuid = mpidr & MPIDR_CPU_MASK; |
| |
| return cluster_core(cluster, cpuid); |
| } |
| |
| static void mt_save_generic_timer(unsigned long *container) |
| { |
| uint64_t ctl; |
| uint64_t val; |
| |
| __asm__ volatile("mrs %x0, cntkctl_el1\n\t" |
| "mrs %x1, cntp_cval_el0\n\t" |
| "stp %x0, %x1, [%2, #0]" |
| : "=&r" (ctl), "=&r" (val) |
| : "r" (container) |
| : "memory"); |
| |
| __asm__ volatile("mrs %x0, cntp_tval_el0\n\t" |
| "mrs %x1, cntp_ctl_el0\n\t" |
| "stp %x0, %x1, [%2, #16]" |
| : "=&r" (val), "=&r" (ctl) |
| : "r" (container) |
| : "memory"); |
| |
| __asm__ volatile("mrs %x0, cntv_tval_el0\n\t" |
| "mrs %x1, cntv_ctl_el0\n\t" |
| "stp %x0, %x1, [%2, #32]" |
| : "=&r" (val), "=&r" (ctl) |
| : "r" (container) |
| : "memory"); |
| } |
| |
| static void mt_restore_generic_timer(unsigned long *container) |
| { |
| uint64_t ctl; |
| uint64_t val; |
| |
| __asm__ volatile("ldp %x0, %x1, [%2, #0]\n\t" |
| "msr cntkctl_el1, %x0\n\t" |
| "msr cntp_cval_el0, %x1" |
| : "=&r" (ctl), "=&r" (val) |
| : "r" (container) |
| : "memory"); |
| |
| __asm__ volatile("ldp %x0, %x1, [%2, #16]\n\t" |
| "msr cntp_tval_el0, %x0\n\t" |
| "msr cntp_ctl_el0, %x1" |
| : "=&r" (val), "=&r" (ctl) |
| : "r" (container) |
| : "memory"); |
| |
| __asm__ volatile("ldp %x0, %x1, [%2, #32]\n\t" |
| "msr cntv_tval_el0, %x0\n\t" |
| "msr cntv_ctl_el0, %x1" |
| : "=&r" (val), "=&r" (ctl) |
| : "r" (container) |
| : "memory"); |
| } |
| |
| static inline uint64_t read_cntpctl(void) |
| { |
| uint64_t cntpctl; |
| |
| __asm__ volatile("mrs %x0, cntp_ctl_el0" |
| : "=r" (cntpctl) : : "memory"); |
| |
| return cntpctl; |
| } |
| |
| static inline void write_cntpctl(uint64_t cntpctl) |
| { |
| __asm__ volatile("msr cntp_ctl_el0, %x0" : : "r"(cntpctl)); |
| } |
| |
| static void stop_generic_timer(void) |
| { |
| /* |
| * Disable the timer and mask the irq to prevent |
| * suprious interrupts on this cpu interface. It |
| * will bite us when we come back if we don't. It |
| * will be replayed on the inbound cluster. |
| */ |
| uint64_t cntpctl = read_cntpctl(); |
| |
| write_cntpctl(clr_cntp_ctl_enable(cntpctl)); |
| } |
| |
| static void mt_cpu_save(unsigned long mpidr) |
| { |
| struct core_context *core; |
| |
| core = get_core_data(mpidr); |
| mt_save_generic_timer(core->timer_data); |
| |
| /* disable timer irq, and upper layer should enable it again. */ |
| stop_generic_timer(); |
| } |
| |
| static void mt_cpu_restore(unsigned long mpidr) |
| { |
| struct core_context *core; |
| |
| core = get_core_data(mpidr); |
| mt_restore_generic_timer(core->timer_data); |
| } |
| |
| static void mt_platform_save_context(unsigned long mpidr) |
| { |
| /* mcusys_save_context: */ |
| mt_cpu_save(mpidr); |
| } |
| |
| static void mt_platform_restore_context(unsigned long mpidr) |
| { |
| /* mcusys_restore_context: */ |
| mt_cpu_restore(mpidr); |
| } |
| |
| static void plat_cpu_standby(plat_local_state_t cpu_state) |
| { |
| u_register_t scr; |
| |
| scr = read_scr_el3(); |
| write_scr_el3(scr | SCR_IRQ_BIT); |
| isb(); |
| dsb(); |
| wfi(); |
| write_scr_el3(scr); |
| } |
| |
| /******************************************************************************* |
| * MTK_platform handler called when an affinity instance is about to be turned |
| * on. The level and mpidr determine the affinity instance. |
| ******************************************************************************/ |
| static uintptr_t secure_entrypoint; |
| |
| static int plat_power_domain_on(unsigned long mpidr) |
| { |
| int rc = PSCI_E_SUCCESS; |
| unsigned long cpu_id; |
| unsigned long cluster_id; |
| uintptr_t rv; |
| |
| cpu_id = mpidr & MPIDR_CPU_MASK; |
| cluster_id = mpidr & MPIDR_CLUSTER_MASK; |
| |
| if (cluster_id) |
| rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw; |
| else |
| rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw; |
| |
| mmio_write_32(rv, secure_entrypoint); |
| INFO("mt_on[%ld:%ld], entry %x\n", |
| cluster_id, cpu_id, mmio_read_32(rv)); |
| |
| spm_hotplug_on(mpidr); |
| return rc; |
| } |
| |
| /******************************************************************************* |
| * MTK_platform handler called when an affinity instance is about to be turned |
| * off. The level and mpidr determine the affinity instance. The 'state' arg. |
| * allows the platform to decide whether the cluster is being turned off and |
| * take apt actions. |
| * |
| * CAUTION: This function is called with coherent stacks so that caches can be |
| * turned off, flushed and coherency disabled. There is no guarantee that caches |
| * will remain turned on across calls to this function as each affinity level is |
| * dealt with. So do not write & read global variables across calls. It will be |
| * wise to do flush a write to the global to prevent unpredictable results. |
| ******************************************************************************/ |
| static void plat_power_domain_off(const psci_power_state_t *state) |
| { |
| unsigned long mpidr = read_mpidr_el1(); |
| |
| /* Prevent interrupts from spuriously waking up this cpu */ |
| gicv2_cpuif_disable(); |
| |
| spm_hotplug_off(mpidr); |
| |
| trace_power_flow(mpidr, CPU_DOWN); |
| |
| if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) { |
| /* Disable coherency if this cluster is to be turned off */ |
| plat_cci_disable(); |
| |
| trace_power_flow(mpidr, CLUSTER_DOWN); |
| } |
| } |
| |
| /******************************************************************************* |
| * MTK_platform handler called when an affinity instance is about to be |
| * suspended. The level and mpidr determine the affinity instance. The 'state' |
| * arg. allows the platform to decide whether the cluster is being turned off |
| * and take apt actions. |
| * |
| * CAUTION: This function is called with coherent stacks so that caches can be |
| * turned off, flushed and coherency disabled. There is no guarantee that caches |
| * will remain turned on across calls to this function as each affinity level is |
| * dealt with. So do not write & read global variables across calls. It will be |
| * wise to do flush a write to the global to prevent unpredictable results. |
| ******************************************************************************/ |
| static void plat_power_domain_suspend(const psci_power_state_t *state) |
| { |
| unsigned long mpidr = read_mpidr_el1(); |
| unsigned long cluster_id; |
| unsigned long cpu_id; |
| uintptr_t rv; |
| |
| cpu_id = mpidr & MPIDR_CPU_MASK; |
| cluster_id = mpidr & MPIDR_CLUSTER_MASK; |
| |
| if (cluster_id) |
| rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw; |
| else |
| rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw; |
| |
| mmio_write_32(rv, secure_entrypoint); |
| |
| if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) { |
| spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL0); |
| if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) |
| spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL1); |
| } |
| |
| mt_platform_save_context(mpidr); |
| |
| /* Perform the common cluster specific operations */ |
| if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) { |
| /* Disable coherency if this cluster is to be turned off */ |
| plat_cci_disable(); |
| } |
| |
| if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) { |
| wdt_suspend(); |
| disable_scu(mpidr); |
| generic_timer_backup(); |
| spm_system_suspend(); |
| /* Prevent interrupts from spuriously waking up this cpu */ |
| gicv2_cpuif_disable(); |
| } |
| } |
| |
| /******************************************************************************* |
| * MTK_platform handler called when an affinity instance has just been powered |
| * on after being turned off earlier. The level and mpidr determine the affinity |
| * instance. The 'state' arg. allows the platform to decide whether the cluster |
| * was turned off prior to wakeup and do what's necessary to setup it up |
| * correctly. |
| ******************************************************************************/ |
| void mtk_system_pwr_domain_resume(void); |
| |
| static void plat_power_domain_on_finish(const psci_power_state_t *state) |
| { |
| unsigned long mpidr = read_mpidr_el1(); |
| |
| assert(state->pwr_domain_state[MPIDR_AFFLVL0] == MTK_LOCAL_STATE_OFF); |
| |
| if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) && |
| (state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF)) |
| mtk_system_pwr_domain_resume(); |
| |
| if (state->pwr_domain_state[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF) { |
| plat_cci_enable(); |
| trace_power_flow(mpidr, CLUSTER_UP); |
| } |
| |
| if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) && |
| (state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF)) |
| return; |
| |
| /* Enable the gic cpu interface */ |
| gicv2_cpuif_enable(); |
| gicv2_pcpu_distif_init(); |
| trace_power_flow(mpidr, CPU_UP); |
| } |
| |
| /******************************************************************************* |
| * MTK_platform handler called when an affinity instance has just been powered |
| * on after having been suspended earlier. The level and mpidr determine the |
| * affinity instance. |
| ******************************************************************************/ |
| static void plat_power_domain_suspend_finish(const psci_power_state_t *state) |
| { |
| unsigned long mpidr = read_mpidr_el1(); |
| |
| if (state->pwr_domain_state[MTK_PWR_LVL0] == MTK_LOCAL_STATE_RET) |
| return; |
| |
| if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) { |
| /* Enable the gic cpu interface */ |
| plat_arm_gic_init(); |
| spm_system_suspend_finish(); |
| enable_scu(mpidr); |
| wdt_resume(); |
| } |
| |
| /* Perform the common cluster specific operations */ |
| if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) { |
| /* Enable coherency if this cluster was off */ |
| plat_cci_enable(); |
| } |
| |
| mt_platform_restore_context(mpidr); |
| |
| if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) { |
| spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL0); |
| if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) |
| spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL1); |
| } |
| |
| gicv2_pcpu_distif_init(); |
| } |
| |
| static void plat_get_sys_suspend_power_state(psci_power_state_t *req_state) |
| { |
| assert(PLAT_MAX_PWR_LVL >= 2); |
| |
| for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++) |
| req_state->pwr_domain_state[i] = MTK_LOCAL_STATE_OFF; |
| } |
| |
| /******************************************************************************* |
| * MTK handlers to shutdown/reboot the system |
| ******************************************************************************/ |
| static void __dead2 plat_system_off(void) |
| { |
| INFO("MTK System Off\n"); |
| |
| rtc_bbpu_power_down(); |
| |
| wfi(); |
| ERROR("MTK System Off: operation not handled.\n"); |
| panic(); |
| } |
| |
| static void __dead2 plat_system_reset(void) |
| { |
| /* Write the System Configuration Control Register */ |
| INFO("MTK System Reset\n"); |
| |
| wdt_trigger_reset(); |
| |
| wfi(); |
| ERROR("MTK System Reset: operation not handled.\n"); |
| panic(); |
| } |
| |
| #if !PSCI_EXTENDED_STATE_ID |
| static int plat_validate_power_state(unsigned int power_state, |
| psci_power_state_t *req_state) |
| { |
| int pstate = psci_get_pstate_type(power_state); |
| int pwr_lvl = psci_get_pstate_pwrlvl(power_state); |
| int i; |
| |
| assert(req_state); |
| |
| if (pwr_lvl > PLAT_MAX_PWR_LVL) |
| return PSCI_E_INVALID_PARAMS; |
| |
| /* Sanity check the requested state */ |
| if (pstate == PSTATE_TYPE_STANDBY) { |
| /* |
| * It's possible to enter standby only on power level 0 |
| * Ignore any other power level. |
| */ |
| if (pwr_lvl != 0) |
| return PSCI_E_INVALID_PARAMS; |
| |
| req_state->pwr_domain_state[MTK_PWR_LVL0] = |
| MTK_LOCAL_STATE_RET; |
| } else { |
| for (i = 0; i <= pwr_lvl; i++) |
| req_state->pwr_domain_state[i] = |
| MTK_LOCAL_STATE_OFF; |
| } |
| |
| /* |
| * We expect the 'state id' to be zero. |
| */ |
| if (psci_get_pstate_id(power_state)) |
| return PSCI_E_INVALID_PARAMS; |
| |
| return PSCI_E_SUCCESS; |
| } |
| #else |
| int plat_validate_power_state(unsigned int power_state, |
| psci_power_state_t *req_state) |
| { |
| unsigned int state_id; |
| int i; |
| |
| assert(req_state); |
| |
| /* |
| * Currently we are using a linear search for finding the matching |
| * entry in the idle power state array. This can be made a binary |
| * search if the number of entries justify the additional complexity. |
| */ |
| for (i = 0; !!mtk_pm_idle_states[i]; i++) { |
| if (power_state == mtk_pm_idle_states[i]) |
| break; |
| } |
| |
| /* Return error if entry not found in the idle state array */ |
| if (!mtk_pm_idle_states[i]) |
| return PSCI_E_INVALID_PARAMS; |
| |
| i = 0; |
| state_id = psci_get_pstate_id(power_state); |
| |
| /* Parse the State ID and populate the state info parameter */ |
| while (state_id) { |
| req_state->pwr_domain_state[i++] = state_id & |
| MTK_LOCAL_PSTATE_MASK; |
| state_id >>= MTK_LOCAL_PSTATE_WIDTH; |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| #endif |
| |
| void mtk_system_pwr_domain_resume(void) |
| { |
| console_switch_state(CONSOLE_FLAG_BOOT); |
| |
| /* Assert system power domain is available on the platform */ |
| assert(PLAT_MAX_PWR_LVL >= MTK_PWR_LVL2); |
| |
| plat_arm_gic_init(); |
| |
| console_switch_state(CONSOLE_FLAG_RUNTIME); |
| } |
| |
| static const plat_psci_ops_t plat_plat_pm_ops = { |
| .cpu_standby = plat_cpu_standby, |
| .pwr_domain_on = plat_power_domain_on, |
| .pwr_domain_on_finish = plat_power_domain_on_finish, |
| .pwr_domain_off = plat_power_domain_off, |
| .pwr_domain_suspend = plat_power_domain_suspend, |
| .pwr_domain_suspend_finish = plat_power_domain_suspend_finish, |
| .system_off = plat_system_off, |
| .system_reset = plat_system_reset, |
| .validate_power_state = plat_validate_power_state, |
| .get_sys_suspend_power_state = plat_get_sys_suspend_power_state, |
| }; |
| |
| int plat_setup_psci_ops(uintptr_t sec_entrypoint, |
| const plat_psci_ops_t **psci_ops) |
| { |
| *psci_ops = &plat_plat_pm_ops; |
| secure_entrypoint = sec_entrypoint; |
| return 0; |
| } |
| |
| /* |
| * The PSCI generic code uses this API to let the platform participate in state |
| * coordination during a power management operation. It compares the platform |
| * specific local power states requested by each cpu for a given power domain |
| * and returns the coordinated target power state that the domain should |
| * enter. A platform assigns a number to a local power state. This default |
| * implementation assumes that the platform assigns these numbers in order of |
| * increasing depth of the power state i.e. for two power states X & Y, if X < Y |
| * then X represents a shallower power state than Y. As a result, the |
| * coordinated target local power state for a power domain will be the minimum |
| * of the requested local power states. |
| */ |
| plat_local_state_t plat_get_target_pwr_state(unsigned int lvl, |
| const plat_local_state_t *states, |
| unsigned int ncpu) |
| { |
| plat_local_state_t target = PLAT_MAX_OFF_STATE, temp; |
| |
| assert(ncpu); |
| |
| do { |
| temp = *states++; |
| if (temp < target) |
| target = temp; |
| } while (--ncpu); |
| |
| return target; |
| } |