blob: 5b4376041bd1971f8a12b56f62c563db863afed4 [file] [log] [blame]
/*
* Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <drivers/st/regulator.h>
#include <drivers/st/stm32_i2c.h>
#include <drivers/st/stm32mp_pmic.h>
#include <drivers/st/stpmic1.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
#define PMIC_NODE_NOT_FOUND 1
static struct i2c_handle_s i2c_handle;
static uint32_t pmic_i2c_addr;
static int register_pmic(void);
static int dt_get_pmic_node(void *fdt)
{
static int node = -FDT_ERR_BADOFFSET;
if (node == -FDT_ERR_BADOFFSET) {
node = fdt_node_offset_by_compatible(fdt, -1, "st,stpmic1");
}
return node;
}
int dt_pmic_status(void)
{
static int status = -FDT_ERR_BADVALUE;
int node;
void *fdt;
if (status != -FDT_ERR_BADVALUE) {
return status;
}
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = dt_get_pmic_node(fdt);
if (node <= 0) {
status = -FDT_ERR_NOTFOUND;
return status;
}
status = (int)fdt_get_status(node);
return status;
}
static bool dt_pmic_is_secure(void)
{
int status = dt_pmic_status();
return (status >= 0) &&
(status == DT_SECURE) &&
(i2c_handle.dt_status == DT_SECURE);
}
/*
* Get PMIC and its I2C bus configuration from the device tree.
* Return 0 on success, negative on error, 1 if no PMIC node is defined.
*/
static int dt_pmic_i2c_config(struct dt_node_info *i2c_info,
struct stm32_i2c_init_s *init)
{
static int i2c_node = -FDT_ERR_NOTFOUND;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
if (i2c_node == -FDT_ERR_NOTFOUND) {
int pmic_node;
const fdt32_t *cuint;
pmic_node = dt_get_pmic_node(fdt);
if (pmic_node < 0) {
return PMIC_NODE_NOT_FOUND;
}
cuint = fdt_getprop(fdt, pmic_node, "reg", NULL);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
pmic_i2c_addr = fdt32_to_cpu(*cuint) << 1;
if (pmic_i2c_addr > UINT16_MAX) {
return -FDT_ERR_BADVALUE;
}
i2c_node = fdt_parent_offset(fdt, pmic_node);
if (i2c_node < 0) {
return -FDT_ERR_NOTFOUND;
}
}
dt_fill_device_info(i2c_info, i2c_node);
if (i2c_info->base == 0U) {
return -FDT_ERR_NOTFOUND;
}
return stm32_i2c_get_setup_from_fdt(fdt, i2c_node, init);
}
bool initialize_pmic_i2c(void)
{
int ret;
struct dt_node_info i2c_info;
struct i2c_handle_s *i2c = &i2c_handle;
struct stm32_i2c_init_s i2c_init;
ret = dt_pmic_i2c_config(&i2c_info, &i2c_init);
if (ret < 0) {
ERROR("I2C configuration failed %d\n", ret);
panic();
}
if (ret != 0) {
return false;
}
/* Initialize PMIC I2C */
i2c->i2c_base_addr = i2c_info.base;
i2c->dt_status = i2c_info.status;
i2c->clock = i2c_info.clock;
i2c->i2c_state = I2C_STATE_RESET;
i2c_init.own_address1 = pmic_i2c_addr;
i2c_init.addressing_mode = I2C_ADDRESSINGMODE_7BIT;
i2c_init.dual_address_mode = I2C_DUALADDRESS_DISABLE;
i2c_init.own_address2 = 0;
i2c_init.own_address2_masks = I2C_OAR2_OA2NOMASK;
i2c_init.general_call_mode = I2C_GENERALCALL_DISABLE;
i2c_init.no_stretch_mode = I2C_NOSTRETCH_DISABLE;
i2c_init.analog_filter = 1;
i2c_init.digital_filter_coef = 0;
ret = stm32_i2c_init(i2c, &i2c_init);
if (ret != 0) {
ERROR("Cannot initialize I2C %x (%d)\n",
i2c->i2c_base_addr, ret);
panic();
}
if (!stm32_i2c_is_device_ready(i2c, pmic_i2c_addr, 1,
I2C_TIMEOUT_BUSY_MS)) {
ERROR("I2C device not ready\n");
panic();
}
stpmic1_bind_i2c(i2c, (uint16_t)pmic_i2c_addr);
return true;
}
static void register_pmic_shared_peripherals(void)
{
uintptr_t i2c_base = i2c_handle.i2c_base_addr;
if (dt_pmic_is_secure()) {
stm32mp_register_secure_periph_iomem(i2c_base);
} else {
if (i2c_base != 0U) {
stm32mp_register_non_secure_periph_iomem(i2c_base);
}
}
}
void initialize_pmic(void)
{
if (!initialize_pmic_i2c()) {
VERBOSE("No PMIC\n");
return;
}
register_pmic_shared_peripherals();
if (register_pmic() < 0) {
panic();
}
if (stpmic1_powerctrl_on() < 0) {
panic();
}
}
#if DEBUG
void print_pmic_info_and_debug(void)
{
unsigned long pmic_version;
if (stpmic1_get_version(&pmic_version) != 0) {
ERROR("Failed to access PMIC\n");
panic();
}
INFO("PMIC version = 0x%02lx\n", pmic_version);
}
#endif
int pmic_ddr_power_init(enum ddr_type ddr_type)
{
int status;
uint16_t buck3_min_mv;
struct rdev *buck2, *buck3, *vref;
struct rdev *ldo3 __unused;
buck2 = regulator_get_by_name("buck2");
if (buck2 == NULL) {
return -ENOENT;
}
#if STM32MP15
ldo3 = regulator_get_by_name("ldo3");
if (ldo3 == NULL) {
return -ENOENT;
}
#endif
vref = regulator_get_by_name("vref_ddr");
if (vref == NULL) {
return -ENOENT;
}
switch (ddr_type) {
case STM32MP_DDR3:
#if STM32MP15
status = regulator_set_flag(ldo3, REGUL_SINK_SOURCE);
if (status != 0) {
return status;
}
#endif
status = regulator_set_min_voltage(buck2);
if (status != 0) {
return status;
}
status = regulator_enable(buck2);
if (status != 0) {
return status;
}
status = regulator_enable(vref);
if (status != 0) {
return status;
}
#if STM32MP15
status = regulator_enable(ldo3);
if (status != 0) {
return status;
}
#endif
break;
case STM32MP_LPDDR2:
case STM32MP_LPDDR3:
/*
* Set LDO3 to 1.8V
* Set LDO3 to bypass mode if BUCK3 = 1.8V
* Set LDO3 to normal mode if BUCK3 != 1.8V
*/
buck3 = regulator_get_by_name("buck3");
if (buck3 == NULL) {
return -ENOENT;
}
regulator_get_range(buck3, &buck3_min_mv, NULL);
#if STM32MP15
if (buck3_min_mv != 1800) {
status = regulator_set_min_voltage(ldo3);
if (status != 0) {
return status;
}
} else {
status = regulator_set_flag(ldo3, REGUL_ENABLE_BYPASS);
if (status != 0) {
return status;
}
}
#endif
status = regulator_set_min_voltage(buck2);
if (status != 0) {
return status;
}
#if STM32MP15
status = regulator_enable(ldo3);
if (status != 0) {
return status;
}
#endif
status = regulator_enable(buck2);
if (status != 0) {
return status;
}
status = regulator_enable(vref);
if (status != 0) {
return status;
}
break;
default:
break;
};
return 0;
}
int pmic_voltages_init(void)
{
#if STM32MP13
struct rdev *buck1, *buck4;
int status;
buck1 = regulator_get_by_name("buck1");
if (buck1 == NULL) {
return -ENOENT;
}
buck4 = regulator_get_by_name("buck4");
if (buck4 == NULL) {
return -ENOENT;
}
status = regulator_set_min_voltage(buck1);
if (status != 0) {
return status;
}
status = regulator_set_min_voltage(buck4);
if (status != 0) {
return status;
}
#endif
return 0;
}
enum {
STPMIC1_BUCK1 = 0,
STPMIC1_BUCK2,
STPMIC1_BUCK3,
STPMIC1_BUCK4,
STPMIC1_LDO1,
STPMIC1_LDO2,
STPMIC1_LDO3,
STPMIC1_LDO4,
STPMIC1_LDO5,
STPMIC1_LDO6,
STPMIC1_VREF_DDR,
STPMIC1_BOOST,
STPMIC1_VBUS_OTG,
STPMIC1_SW_OUT,
};
static int pmic_set_state(const struct regul_description *desc, bool enable)
{
VERBOSE("%s: set state to %d\n", desc->node_name, enable);
if (enable == STATE_ENABLE) {
return stpmic1_regulator_enable(desc->node_name);
} else {
return stpmic1_regulator_disable(desc->node_name);
}
}
static int pmic_get_state(const struct regul_description *desc)
{
VERBOSE("%s: get state\n", desc->node_name);
return stpmic1_is_regulator_enabled(desc->node_name);
}
static int pmic_get_voltage(const struct regul_description *desc)
{
VERBOSE("%s: get volt\n", desc->node_name);
return stpmic1_regulator_voltage_get(desc->node_name);
}
static int pmic_set_voltage(const struct regul_description *desc, uint16_t mv)
{
VERBOSE("%s: get volt\n", desc->node_name);
return stpmic1_regulator_voltage_set(desc->node_name, mv);
}
static int pmic_list_voltages(const struct regul_description *desc,
const uint16_t **levels, size_t *count)
{
VERBOSE("%s: list volt\n", desc->node_name);
return stpmic1_regulator_levels_mv(desc->node_name, levels, count);
}
static int pmic_set_flag(const struct regul_description *desc, uint16_t flag)
{
VERBOSE("%s: set_flag 0x%x\n", desc->node_name, flag);
switch (flag) {
case REGUL_OCP:
return stpmic1_regulator_icc_set(desc->node_name);
case REGUL_ACTIVE_DISCHARGE:
return stpmic1_active_discharge_mode_set(desc->node_name);
case REGUL_PULL_DOWN:
return stpmic1_regulator_pull_down_set(desc->node_name);
case REGUL_MASK_RESET:
return stpmic1_regulator_mask_reset_set(desc->node_name);
case REGUL_SINK_SOURCE:
return stpmic1_regulator_sink_mode_set(desc->node_name);
case REGUL_ENABLE_BYPASS:
return stpmic1_regulator_bypass_mode_set(desc->node_name);
default:
return -EINVAL;
}
}
static const struct regul_ops pmic_ops = {
.set_state = pmic_set_state,
.get_state = pmic_get_state,
.set_voltage = pmic_set_voltage,
.get_voltage = pmic_get_voltage,
.list_voltages = pmic_list_voltages,
.set_flag = pmic_set_flag,
};
#define DEFINE_REGU(name) { \
.node_name = name, \
.ops = &pmic_ops, \
.driver_data = NULL, \
.enable_ramp_delay = 1000, \
}
static const struct regul_description pmic_regs[] = {
[STPMIC1_BUCK1] = DEFINE_REGU("buck1"),
[STPMIC1_BUCK2] = DEFINE_REGU("buck2"),
[STPMIC1_BUCK3] = DEFINE_REGU("buck3"),
[STPMIC1_BUCK4] = DEFINE_REGU("buck4"),
[STPMIC1_LDO1] = DEFINE_REGU("ldo1"),
[STPMIC1_LDO2] = DEFINE_REGU("ldo2"),
[STPMIC1_LDO3] = DEFINE_REGU("ldo3"),
[STPMIC1_LDO4] = DEFINE_REGU("ldo4"),
[STPMIC1_LDO5] = DEFINE_REGU("ldo5"),
[STPMIC1_LDO6] = DEFINE_REGU("ldo6"),
[STPMIC1_VREF_DDR] = DEFINE_REGU("vref_ddr"),
[STPMIC1_BOOST] = DEFINE_REGU("boost"),
[STPMIC1_VBUS_OTG] = DEFINE_REGU("pwr_sw1"),
[STPMIC1_SW_OUT] = DEFINE_REGU("pwr_sw2"),
};
#define NB_REG ARRAY_SIZE(pmic_regs)
static int register_pmic(void)
{
void *fdt;
int pmic_node, regulators_node, subnode;
VERBOSE("Register pmic\n");
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
pmic_node = dt_get_pmic_node(fdt);
if (pmic_node < 0) {
return pmic_node;
}
regulators_node = fdt_subnode_offset(fdt, pmic_node, "regulators");
if (regulators_node < 0) {
return -ENOENT;
}
fdt_for_each_subnode(subnode, fdt, regulators_node) {
const char *reg_name = fdt_get_name(fdt, subnode, NULL);
const struct regul_description *desc;
unsigned int i;
int ret;
for (i = 0; i < NB_REG; i++) {
desc = &pmic_regs[i];
if (strcmp(desc->node_name, reg_name) == 0) {
break;
}
}
assert(i < NB_REG);
ret = regulator_register(desc, subnode);
if (ret != 0) {
WARN("%s:%d failed to register %s\n", __func__,
__LINE__, reg_name);
return ret;
}
}
return 0;
}