| /* |
| * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch_helpers.h> |
| #include <assert.h> |
| |
| #include <platform_def.h> |
| |
| #include <common/debug.h> |
| #include <lib/xlat_tables/xlat_tables_defs.h> |
| #include <lib/xlat_tables/xlat_tables_v2.h> |
| |
| #include "xlat_tables_private.h" |
| |
| /* |
| * MMU configuration register values for the active translation context. Used |
| * from the MMU assembly helpers. |
| */ |
| uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX]; |
| |
| /* |
| * Allocate and initialise the default translation context for the BL image |
| * currently executing. |
| */ |
| REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES, |
| PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE); |
| |
| void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size, |
| unsigned int attr) |
| { |
| mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); |
| |
| mmap_add_region_ctx(&tf_xlat_ctx, &mm); |
| } |
| |
| void mmap_add(const mmap_region_t *mm) |
| { |
| mmap_add_ctx(&tf_xlat_ctx, mm); |
| } |
| |
| void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va, |
| size_t size, unsigned int attr) |
| { |
| mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr); |
| |
| mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, &mm); |
| |
| *base_va = mm.base_va; |
| } |
| |
| void mmap_add_alloc_va(mmap_region_t *mm) |
| { |
| while (mm->granularity != 0U) { |
| assert(mm->base_va == 0U); |
| mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, mm); |
| mm++; |
| } |
| } |
| |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| |
| int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, |
| size_t size, unsigned int attr) |
| { |
| mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); |
| |
| return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm); |
| } |
| |
| int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa, |
| uintptr_t *base_va, size_t size, |
| unsigned int attr) |
| { |
| mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr); |
| |
| int rc = mmap_add_dynamic_region_alloc_va_ctx(&tf_xlat_ctx, &mm); |
| |
| *base_va = mm.base_va; |
| |
| return rc; |
| } |
| |
| |
| int mmap_remove_dynamic_region(uintptr_t base_va, size_t size) |
| { |
| return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx, |
| base_va, size); |
| } |
| |
| #endif /* PLAT_XLAT_TABLES_DYNAMIC */ |
| |
| void __init init_xlat_tables(void) |
| { |
| assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID); |
| |
| unsigned int current_el = xlat_arch_current_el(); |
| |
| if (current_el == 1U) { |
| tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME; |
| } else if (current_el == 2U) { |
| tf_xlat_ctx.xlat_regime = EL2_REGIME; |
| } else { |
| assert(current_el == 3U); |
| tf_xlat_ctx.xlat_regime = EL3_REGIME; |
| } |
| |
| init_xlat_tables_ctx(&tf_xlat_ctx); |
| } |
| |
| int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr) |
| { |
| return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr); |
| } |
| |
| int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr) |
| { |
| return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr); |
| } |
| |
| #if PLAT_RO_XLAT_TABLES |
| /* Change the memory attributes of the descriptors which resolve the address |
| * range that belongs to the translation tables themselves, which are by default |
| * mapped as part of read-write data in the BL image's memory. |
| * |
| * Since the translation tables map themselves via these level 3 (page) |
| * descriptors, any change applied to them with the MMU on would introduce a |
| * chicken and egg problem because of the break-before-make sequence. |
| * Eventually, it would reach the descriptor that resolves the very table it |
| * belongs to and the invalidation (break step) would cause the subsequent write |
| * (make step) to it to generate an MMU fault. Therefore, the MMU is disabled |
| * before making the change. |
| * |
| * No assumption is made about what data this function needs, therefore all the |
| * caches are flushed in order to ensure coherency. A future optimization would |
| * be to only flush the required data to main memory. |
| */ |
| int xlat_make_tables_readonly(void) |
| { |
| assert(tf_xlat_ctx.initialized == true); |
| #ifdef __aarch64__ |
| if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) { |
| disable_mmu_el1(); |
| } else if (tf_xlat_ctx.xlat_regime == EL3_REGIME) { |
| disable_mmu_el3(); |
| } else { |
| assert(tf_xlat_ctx.xlat_regime == EL2_REGIME); |
| return -1; |
| } |
| |
| /* Flush all caches. */ |
| dcsw_op_all(DCCISW); |
| #else /* !__aarch64__ */ |
| assert(tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME); |
| /* On AArch32, we flush the caches before disabling the MMU. The reason |
| * for this is that the dcsw_op_all AArch32 function pushes some |
| * registers onto the stack under the assumption that it is writing to |
| * cache, which is not true with the MMU off. This would result in the |
| * stack becoming corrupted and a wrong/junk value for the LR being |
| * restored at the end of the routine. |
| */ |
| dcsw_op_all(DC_OP_CISW); |
| disable_mmu_secure(); |
| #endif |
| |
| int rc = xlat_change_mem_attributes_ctx(&tf_xlat_ctx, |
| (uintptr_t)tf_xlat_ctx.tables, |
| tf_xlat_ctx.tables_num * XLAT_TABLE_SIZE, |
| MT_RO_DATA | MT_SECURE); |
| |
| #ifdef __aarch64__ |
| if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) { |
| enable_mmu_el1(0U); |
| } else { |
| assert(tf_xlat_ctx.xlat_regime == EL3_REGIME); |
| enable_mmu_el3(0U); |
| } |
| #else /* !__aarch64__ */ |
| enable_mmu_svc_mon(0U); |
| #endif |
| |
| if (rc == 0) { |
| tf_xlat_ctx.readonly_tables = true; |
| } |
| |
| return rc; |
| } |
| #endif /* PLAT_RO_XLAT_TABLES */ |
| |
| /* |
| * If dynamic allocation of new regions is disabled then by the time we call the |
| * function enabling the MMU, we'll have registered all the memory regions to |
| * map for the system's lifetime. Therefore, at this point we know the maximum |
| * physical address that will ever be mapped. |
| * |
| * If dynamic allocation is enabled then we can't make any such assumption |
| * because the maximum physical address could get pushed while adding a new |
| * region. Therefore, in this case we have to assume that the whole address |
| * space size might be mapped. |
| */ |
| #ifdef PLAT_XLAT_TABLES_DYNAMIC |
| #define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address |
| #else |
| #define MAX_PHYS_ADDR tf_xlat_ctx.max_pa |
| #endif |
| |
| #ifdef __aarch64__ |
| |
| void enable_mmu_el1(unsigned int flags) |
| { |
| setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, |
| tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); |
| enable_mmu_direct_el1(flags); |
| } |
| |
| void enable_mmu_el2(unsigned int flags) |
| { |
| setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, |
| tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address, EL2_REGIME); |
| enable_mmu_direct_el2(flags); |
| } |
| |
| void enable_mmu_el3(unsigned int flags) |
| { |
| setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, |
| tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address, EL3_REGIME); |
| enable_mmu_direct_el3(flags); |
| } |
| |
| void enable_mmu(unsigned int flags) |
| { |
| switch (get_current_el_maybe_constant()) { |
| case 1: |
| enable_mmu_el1(flags); |
| break; |
| case 2: |
| enable_mmu_el2(flags); |
| break; |
| case 3: |
| enable_mmu_el3(flags); |
| break; |
| default: |
| panic(); |
| } |
| } |
| |
| #else /* !__aarch64__ */ |
| |
| void enable_mmu_svc_mon(unsigned int flags) |
| { |
| setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, |
| tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); |
| enable_mmu_direct_svc_mon(flags); |
| } |
| |
| void enable_mmu_hyp(unsigned int flags) |
| { |
| setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, |
| tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address, EL2_REGIME); |
| enable_mmu_direct_hyp(flags); |
| } |
| |
| #endif /* __aarch64__ */ |