blob: 1971516b861a0f16d1d62d4dfefc7c6057ed4e41 [file] [log] [blame]
/*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl31.h>
#include <context_mgmt.h>
#include <debug.h>
#include <errno.h>
#include <mm_svc.h>
#include <platform.h>
#include <runtime_svc.h>
#include <secure_partition.h>
#include <smccc.h>
#include <smccc_helpers.h>
#include <spinlock.h>
#include <spm_svc.h>
#include <utils.h>
#include <xlat_tables_v2.h>
#include "spm_private.h"
/*******************************************************************************
* Secure Partition context information.
******************************************************************************/
static sp_context_t sp_ctx;
/*******************************************************************************
* Set state of a Secure Partition context.
******************************************************************************/
void sp_state_set(sp_context_t *sp_ptr, sp_state_t state)
{
spin_lock(&(sp_ptr->state_lock));
sp_ptr->state = state;
spin_unlock(&(sp_ptr->state_lock));
}
/*******************************************************************************
* Wait until the state of a Secure Partition is the specified one and change it
* to the desired state.
******************************************************************************/
void sp_state_wait_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
{
int success = 0;
while (success == 0) {
spin_lock(&(sp_ptr->state_lock));
if (sp_ptr->state == from) {
sp_ptr->state = to;
success = 1;
}
spin_unlock(&(sp_ptr->state_lock));
}
}
/*******************************************************************************
* Check if the state of a Secure Partition is the specified one and, if so,
* change it to the desired state. Returns 0 on success, -1 on error.
******************************************************************************/
int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
{
int ret = -1;
spin_lock(&(sp_ptr->state_lock));
if (sp_ptr->state == from) {
sp_ptr->state = to;
ret = 0;
}
spin_unlock(&(sp_ptr->state_lock));
return ret;
}
/*******************************************************************************
* This function takes an SP context pointer and prepares the CPU to enter.
******************************************************************************/
static void spm_sp_prepare_enter(sp_context_t *sp_ctx)
{
assert(sp_ctx != NULL);
/* Assign the context of the SP to this CPU */
cm_set_context(&(sp_ctx->cpu_ctx), SECURE);
/* Restore the context assigned above */
cm_el1_sysregs_context_restore(SECURE);
cm_set_next_eret_context(SECURE);
/* Invalidate TLBs at EL1. */
tlbivmalle1();
dsbish();
}
/*******************************************************************************
* Enter SP after preparing it with spm_sp_prepare_enter().
******************************************************************************/
static uint64_t spm_sp_enter(sp_context_t *sp_ctx)
{
/* Enter Secure Partition */
return spm_secure_partition_enter(&sp_ctx->c_rt_ctx);
}
/*******************************************************************************
* Jump to each Secure Partition for the first time.
******************************************************************************/
static int32_t spm_init(void)
{
uint64_t rc = 0;
sp_context_t *ctx;
INFO("Secure Partition init...\n");
ctx = &sp_ctx;
ctx->state = SP_STATE_RESET;
spm_sp_prepare_enter(ctx);
rc |= spm_sp_enter(ctx);
assert(rc == 0);
ctx->state = SP_STATE_IDLE;
INFO("Secure Partition initialized.\n");
return rc;
}
/*******************************************************************************
* Initialize contexts of all Secure Partitions.
******************************************************************************/
int32_t spm_setup(void)
{
sp_context_t *ctx;
/* Disable MMU at EL1 (initialized by BL2) */
disable_mmu_icache_el1();
/* Initialize context of the SP */
INFO("Secure Partition context setup start...\n");
ctx = &sp_ctx;
/* Assign translation tables context. */
ctx->xlat_ctx_handle = spm_get_sp_xlat_context();
spm_sp_setup(ctx);
/* Register init function for deferred init. */
bl31_register_bl32_init(&spm_init);
INFO("Secure Partition setup done.\n");
return 0;
}
/*******************************************************************************
* Secure Partition Manager SMC handler.
******************************************************************************/
uint64_t spm_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
cpu_context_t *ns_cpu_context;
unsigned int ns;
/* Determine which security state this SMC originated from */
ns = is_caller_non_secure(flags);
if (ns == SMC_FROM_SECURE) {
/* Handle SMCs from Secure world. */
assert(handle == cm_get_context(SECURE));
/* Make next ERET jump to S-EL0 instead of S-EL1. */
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
switch (smc_fid) {
case SPM_VERSION_AARCH32:
SMC_RET1(handle, SPM_VERSION_COMPILED);
case SP_EVENT_COMPLETE_AARCH64:
/* Save secure state */
cm_el1_sysregs_context_save(SECURE);
if (sp_ctx.state == SP_STATE_RESET) {
/*
* SPM reports completion. The SPM must have
* initiated the original request through a
* synchronous entry into the secure
* partition. Jump back to the original C
* runtime context.
*/
spm_secure_partition_exit(sp_ctx.c_rt_ctx, x1);
/* spm_secure_partition_exit doesn't return */
}
/* Mark Secure Partition as idle */
assert(sp_ctx.state == SP_STATE_BUSY);
sp_state_set(&sp_ctx, SP_STATE_IDLE);
/*
* This is the result from the Secure partition of an
* earlier request. Copy the result into the non-secure
* context and return to the non-secure state.
*/
/* Get a reference to the non-secure context */
ns_cpu_context = cm_get_context(NON_SECURE);
assert(ns_cpu_context != NULL);
/* Restore non-secure state */
cm_el1_sysregs_context_restore(NON_SECURE);
cm_set_next_eret_context(NON_SECURE);
/* Return to normal world */
SMC_RET1(ns_cpu_context, x1);
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
if (sp_ctx.state != SP_STATE_RESET) {
WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
}
SMC_RET1(handle,
spm_memory_attributes_get_smc_handler(
&sp_ctx, x1));
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
if (sp_ctx.state != SP_STATE_RESET) {
WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
}
SMC_RET1(handle,
spm_memory_attributes_set_smc_handler(
&sp_ctx, x1, x2, x3));
default:
break;
}
} else {
/* Handle SMCs from Non-secure world. */
switch (smc_fid) {
case MM_VERSION_AARCH32:
SMC_RET1(handle, MM_VERSION_COMPILED);
case MM_COMMUNICATE_AARCH32:
case MM_COMMUNICATE_AARCH64:
{
uint64_t mm_cookie = x1;
uint64_t comm_buffer_address = x2;
uint64_t comm_size_address = x3;
/* Cookie. Reserved for future use. It must be zero. */
if (mm_cookie != 0U) {
ERROR("MM_COMMUNICATE: cookie is not zero\n");
SMC_RET1(handle, SPM_INVALID_PARAMETER);
}
if (comm_buffer_address == 0U) {
ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n");
SMC_RET1(handle, SPM_INVALID_PARAMETER);
}
if (comm_size_address != 0U) {
VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n");
}
/* Save the Normal world context */
cm_el1_sysregs_context_save(NON_SECURE);
/*
* Wait until the state of the Secure Partition is IDLE
* and set it to BUSY
*/
sp_state_wait_switch(&sp_ctx,
SP_STATE_IDLE, SP_STATE_BUSY);
/* Jump to the Secure Partition. */
spm_sp_prepare_enter(&sp_ctx);
SMC_RET4(&(sp_ctx.cpu_ctx), smc_fid,
comm_buffer_address, comm_size_address,
plat_my_core_pos());
}
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
/* SMC interfaces reserved for secure callers. */
SMC_RET1(handle, SPM_NOT_SUPPORTED);
default:
break;
}
}
SMC_RET1(handle, SMC_UNK);
}