blob: c8fc28ac4f95bbfaa19279bbcd9a2364f02dcdee [file] [log] [blame]
/*
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl31.h>
#include <bl_common.h>
#include <console.h>
#include <cortex_a57.h>
#include <cortex_a53.h>
#include <debug.h>
#include <denver.h>
#include <errno.h>
#include <memctrl.h>
#include <mmio.h>
#include <platform.h>
#include <platform_def.h>
#include <stddef.h>
#include <string.h>
#include <tegra_def.h>
#include <tegra_private.h>
extern void zeromem16(void *mem, unsigned int length);
/*******************************************************************************
* Declarations of linker defined symbols which will help us find the layout
* of trusted SRAM
******************************************************************************/
extern unsigned long __TEXT_START__;
extern unsigned long __TEXT_END__;
extern unsigned long __RW_START__;
extern unsigned long __RW_END__;
extern unsigned long __RODATA_START__;
extern unsigned long __RODATA_END__;
extern unsigned long __BL31_END__;
extern uint64_t tegra_bl31_phys_base;
extern uint64_t tegra_console_base;
/*
* The next 3 constants identify the extents of the code, RO data region and the
* limit of the BL3-1 image. These addresses are used by the MMU setup code and
* therefore they must be page-aligned. It is the responsibility of the linker
* script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols
* refer to page-aligned addresses.
*/
#define BL31_RW_START (unsigned long)(&__RW_START__)
#define BL31_RW_END (unsigned long)(&__RW_END__)
#define BL31_RODATA_BASE (unsigned long)(&__RODATA_START__)
#define BL31_RODATA_END (unsigned long)(&__RODATA_END__)
#define BL31_END (unsigned long)(&__BL31_END__)
static entry_point_info_t bl33_image_ep_info, bl32_image_ep_info;
static plat_params_from_bl2_t plat_bl31_params_from_bl2 = {
.tzdram_size = (uint64_t)TZDRAM_SIZE
};
/*******************************************************************************
* This variable holds the non-secure image entry address
******************************************************************************/
extern uint64_t ns_image_entrypoint;
/*******************************************************************************
* The following platform setup functions are weakly defined. They
* provide typical implementations that will be overridden by a SoC.
******************************************************************************/
#pragma weak plat_early_platform_setup
#pragma weak plat_get_bl31_params
#pragma weak plat_get_bl31_plat_params
void plat_early_platform_setup(void)
{
; /* do nothing */
}
bl31_params_t *plat_get_bl31_params(void)
{
return NULL;
}
plat_params_from_bl2_t *plat_get_bl31_plat_params(void)
{
return NULL;
}
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for
* security state specified. BL33 corresponds to the non-secure image type
* while BL32 corresponds to the secure image type.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
if (type == NON_SECURE)
return &bl33_image_ep_info;
/* return BL32 entry point info if it is valid */
if (type == SECURE && bl32_image_ep_info.pc)
return &bl32_image_ep_info;
return NULL;
}
/*******************************************************************************
* Return a pointer to the 'plat_params_from_bl2_t' structure. The BL2 image
* passes this platform specific information.
******************************************************************************/
plat_params_from_bl2_t *bl31_get_plat_params(void)
{
return &plat_bl31_params_from_bl2;
}
/*******************************************************************************
* Perform any BL31 specific platform actions. Populate the BL33 and BL32 image
* info.
******************************************************************************/
void bl31_early_platform_setup(bl31_params_t *from_bl2,
void *plat_params_from_bl2)
{
plat_params_from_bl2_t *plat_params =
(plat_params_from_bl2_t *)plat_params_from_bl2;
#if DEBUG
int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
#endif
image_info_t bl32_img_info = { {0} };
uint64_t tzdram_start, tzdram_end, bl32_start, bl32_end;
/*
* For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
* there's no argument to relay from a previous bootloader. Platforms
* might use custom ways to get arguments, so provide handlers which
* they can override.
*/
if (from_bl2 == NULL)
from_bl2 = plat_get_bl31_params();
if (plat_params == NULL)
plat_params = plat_get_bl31_plat_params();
/*
* Copy BL3-3, BL3-2 entry point information.
* They are stored in Secure RAM, in BL2's address space.
*/
assert(from_bl2);
assert(from_bl2->bl33_ep_info);
bl33_image_ep_info = *from_bl2->bl33_ep_info;
if (from_bl2->bl32_ep_info)
bl32_image_ep_info = *from_bl2->bl32_ep_info;
/*
* Parse platform specific parameters - TZDRAM aperture base and size
*/
assert(plat_params);
plat_bl31_params_from_bl2.tzdram_base = plat_params->tzdram_base;
plat_bl31_params_from_bl2.tzdram_size = plat_params->tzdram_size;
plat_bl31_params_from_bl2.uart_id = plat_params->uart_id;
/*
* It is very important that we run either from TZDRAM or TZSRAM base.
* Add an explicit check here.
*/
if ((plat_bl31_params_from_bl2.tzdram_base != BL31_BASE) &&
(TEGRA_TZRAM_BASE != BL31_BASE))
panic();
/*
* Get the base address of the UART controller to be used for the
* console
*/
tegra_console_base = plat_get_console_from_id(plat_params->uart_id);
if (tegra_console_base != (uint64_t)0) {
/*
* Configure the UART port to be used as the console
*/
console_init(tegra_console_base, TEGRA_BOOT_UART_CLK_IN_HZ,
TEGRA_CONSOLE_BAUDRATE);
}
/*
* Initialize delay timer
*/
tegra_delay_timer_init();
/*
* Do initial security configuration to allow DRAM/device access.
*/
tegra_memctrl_tzdram_setup(plat_bl31_params_from_bl2.tzdram_base,
plat_bl31_params_from_bl2.tzdram_size);
/*
* The previous bootloader might not have placed the BL32 image
* inside the TZDRAM. We check the BL32 image info to find out
* the base/PC values and relocate the image if necessary.
*/
if (from_bl2->bl32_image_info) {
bl32_img_info = *from_bl2->bl32_image_info;
/* Relocate BL32 if it resides outside of the TZDRAM */
tzdram_start = plat_bl31_params_from_bl2.tzdram_base;
tzdram_end = plat_bl31_params_from_bl2.tzdram_base +
plat_bl31_params_from_bl2.tzdram_size;
bl32_start = bl32_img_info.image_base;
bl32_end = bl32_img_info.image_base + bl32_img_info.image_size;
assert(tzdram_end > tzdram_start);
assert(bl32_end > bl32_start);
assert(bl32_image_ep_info.pc > tzdram_start);
assert(bl32_image_ep_info.pc < tzdram_end);
/* relocate BL32 */
if (bl32_start >= tzdram_end || bl32_end <= tzdram_start) {
INFO("Relocate BL32 to TZDRAM\n");
memcpy16((void *)(uintptr_t)bl32_image_ep_info.pc,
(void *)(uintptr_t)bl32_start,
bl32_img_info.image_size);
/* clean up non-secure intermediate buffer */
zeromem16((void *)(uintptr_t)bl32_start,
bl32_img_info.image_size);
}
}
/* Early platform setup for Tegra SoCs */
plat_early_platform_setup();
INFO("BL3-1: Boot CPU: %s Processor [%lx]\n", (impl == DENVER_IMPL) ?
"Denver" : "ARM", read_mpidr());
}
/*******************************************************************************
* Initialize the gic, configure the SCR.
******************************************************************************/
void bl31_platform_setup(void)
{
uint32_t tmp_reg;
/* Initialize the gic cpu and distributor interfaces */
plat_gic_setup();
/*
* Setup secondary CPU POR infrastructure.
*/
plat_secondary_setup();
/*
* Initial Memory Controller configuration.
*/
tegra_memctrl_setup();
/*
* Set up the TZRAM memory aperture to allow only secure world
* access
*/
tegra_memctrl_tzram_setup(TEGRA_TZRAM_BASE, TEGRA_TZRAM_SIZE);
/* Set the next EL to be AArch64 */
tmp_reg = SCR_RES1_BITS | SCR_RW_BIT;
write_scr(tmp_reg);
INFO("BL3-1: Tegra platform setup complete\n");
}
/*******************************************************************************
* Perform any BL3-1 platform runtime setup prior to BL3-1 cold boot exit
******************************************************************************/
void bl31_plat_runtime_setup(void)
{
/*
* During boot, USB3 and flash media (SDMMC/SATA) devices need
* access to IRAM. Because these clients connect to the MC and
* do not have a direct path to the IRAM, the MC implements AHB
* redirection during boot to allow path to IRAM. In this mode
* accesses to a programmed memory address aperture are directed
* to the AHB bus, allowing access to the IRAM. This mode must be
* disabled before we jump to the non-secure world.
*/
tegra_memctrl_disable_ahb_redirection();
}
/*******************************************************************************
* Perform the very early platform specific architectural setup here. At the
* moment this only intializes the mmu in a quick and dirty way.
******************************************************************************/
void bl31_plat_arch_setup(void)
{
unsigned long rw_start = BL31_RW_START;
unsigned long rw_size = BL31_RW_END - BL31_RW_START;
unsigned long rodata_start = BL31_RODATA_BASE;
unsigned long rodata_size = BL31_RODATA_END - BL31_RODATA_BASE;
unsigned long code_base = (unsigned long)(&__TEXT_START__);
unsigned long code_size = (unsigned long)(&__TEXT_END__) - code_base;
const mmap_region_t *plat_mmio_map = NULL;
#if USE_COHERENT_MEM
unsigned long coh_start, coh_size;
#endif
plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
/* add memory regions */
mmap_add_region(rw_start, rw_start,
rw_size,
MT_MEMORY | MT_RW | MT_SECURE);
mmap_add_region(rodata_start, rodata_start,
rodata_size,
MT_RO_DATA | MT_SECURE);
mmap_add_region(code_base, code_base,
code_size,
MT_CODE | MT_SECURE);
/* map TZDRAM used by BL31 as coherent memory */
if (TEGRA_TZRAM_BASE == tegra_bl31_phys_base) {
mmap_add_region(params_from_bl2->tzdram_base,
params_from_bl2->tzdram_base,
BL31_SIZE,
MT_DEVICE | MT_RW | MT_SECURE);
}
#if USE_COHERENT_MEM
coh_start = total_base + (BL_COHERENT_RAM_BASE - BL31_RO_BASE);
coh_size = BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE;
mmap_add_region(coh_start, coh_start,
coh_size,
MT_DEVICE | MT_RW | MT_SECURE);
#endif
/* map on-chip free running uS timer */
mmap_add_region(page_align((uint64_t)TEGRA_TMRUS_BASE, 0),
page_align((uint64_t)TEGRA_TMRUS_BASE, 0),
(uint64_t)TEGRA_TMRUS_SIZE,
MT_DEVICE | MT_RO | MT_SECURE);
/* add MMIO space */
plat_mmio_map = plat_get_mmio_map();
if (plat_mmio_map)
mmap_add(plat_mmio_map);
else
WARN("MMIO map not available\n");
/* set up translation tables */
init_xlat_tables();
/* enable the MMU */
enable_mmu_el3(0);
INFO("BL3-1: Tegra: MMU enabled\n");
}
/*******************************************************************************
* Check if the given NS DRAM range is valid
******************************************************************************/
int bl31_check_ns_address(uint64_t base, uint64_t size_in_bytes)
{
uint64_t end = base + size_in_bytes;
/*
* Check if the NS DRAM address is valid
*/
if ((base < TEGRA_DRAM_BASE) || (end > TEGRA_DRAM_END)) {
ERROR("NS address is out-of-bounds!\n");
return -EFAULT;
}
/*
* TZDRAM aperture contains the BL31 and BL32 images, so we need
* to check if the NS DRAM range overlaps the TZDRAM aperture.
*/
if ((base < TZDRAM_END) && (end > tegra_bl31_phys_base)) {
ERROR("NS address overlaps TZDRAM!\n");
return -ENOTSUP;
}
/* valid NS address */
return 0;
}