blob: cf6c6e72881e98ea0eb0f3e795cc66d342cce189 [file] [log] [blame]
/*
* Copyright (c) 2017-2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/st/regulator.h>
#include <drivers/st/stm32_gpio.h>
#include <drivers/st/stm32mp1_ddr.h>
#include <drivers/st/stm32mp1_ram.h>
#include <libfdt.h>
#include <platform_def.h>
#include <stm32mp_dt.h>
static void *fdt;
/*******************************************************************************
* This function checks device tree file with its header.
* Returns 0 on success and a negative FDT error code on failure.
******************************************************************************/
int dt_open_and_check(uintptr_t dt_addr)
{
int ret;
ret = fdt_check_header((void *)dt_addr);
if (ret == 0) {
fdt = (void *)dt_addr;
}
return ret;
}
/*******************************************************************************
* This function gets the address of the DT.
* If DT is OK, fdt_addr is filled with DT address.
* Returns 1 if success, 0 otherwise.
******************************************************************************/
int fdt_get_address(void **fdt_addr)
{
if (fdt == NULL) {
return 0;
}
*fdt_addr = fdt;
return 1;
}
/*******************************************************************************
* This function check the presence of a node (generic use of fdt library).
* Returns true if present, else return false.
******************************************************************************/
bool fdt_check_node(int node)
{
int len;
const char *cchar;
cchar = fdt_get_name(fdt, node, &len);
return (cchar != NULL) && (len >= 0);
}
/*******************************************************************************
* This function return global node status (generic use of fdt library).
******************************************************************************/
uint8_t fdt_get_status(int node)
{
uint8_t status = DT_DISABLED;
const char *cchar;
cchar = fdt_getprop(fdt, node, "status", NULL);
if ((cchar == NULL) ||
(strncmp(cchar, "okay", strlen("okay")) == 0)) {
status |= DT_NON_SECURE;
}
cchar = fdt_getprop(fdt, node, "secure-status", NULL);
if (cchar == NULL) {
if (status == DT_NON_SECURE) {
status |= DT_SECURE;
}
} else if (strncmp(cchar, "okay", strlen("okay")) == 0) {
status |= DT_SECURE;
}
return status;
}
#if ENABLE_ASSERTIONS
/*******************************************************************************
* This function returns the address cells from the node parent.
* Returns:
* - #address-cells value if success.
* - invalid value if error.
* - a default value if undefined #address-cells property as per libfdt
* implementation.
******************************************************************************/
static int fdt_get_node_parent_address_cells(int node)
{
int parent;
parent = fdt_parent_offset(fdt, node);
if (parent < 0) {
return -FDT_ERR_NOTFOUND;
}
return fdt_address_cells(fdt, parent);
}
#endif
/*******************************************************************************
* This function gets the stdout pin configuration information from the DT.
* And then calls the sub-function to treat it and set GPIO registers.
* Returns 0 on success and a negative FDT error code on failure.
******************************************************************************/
int dt_set_stdout_pinctrl(void)
{
int node;
node = fdt_get_stdout_node_offset(fdt);
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
return dt_set_pinctrl_config(node);
}
/*******************************************************************************
* This function fills the generic information from a given node.
******************************************************************************/
void dt_fill_device_info(struct dt_node_info *info, int node)
{
const fdt32_t *cuint;
assert(fdt_get_node_parent_address_cells(node) == 1);
cuint = fdt_getprop(fdt, node, "reg", NULL);
if (cuint != NULL) {
info->base = fdt32_to_cpu(*cuint);
} else {
info->base = 0;
}
cuint = fdt_getprop(fdt, node, "clocks", NULL);
if (cuint != NULL) {
cuint++;
info->clock = (int)fdt32_to_cpu(*cuint);
} else {
info->clock = -1;
}
cuint = fdt_getprop(fdt, node, "resets", NULL);
if (cuint != NULL) {
cuint++;
info->reset = (int)fdt32_to_cpu(*cuint);
} else {
info->reset = -1;
}
info->status = fdt_get_status(node);
}
/*******************************************************************************
* This function retrieve the generic information from DT.
* Returns node on success and a negative FDT error code on failure.
******************************************************************************/
int dt_get_node(struct dt_node_info *info, int offset, const char *compat)
{
int node;
node = fdt_node_offset_by_compatible(fdt, offset, compat);
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
dt_fill_device_info(info, node);
return node;
}
/*******************************************************************************
* This function gets the UART instance info of stdout from the DT.
* Returns node on success and a negative FDT error code on failure.
******************************************************************************/
int dt_get_stdout_uart_info(struct dt_node_info *info)
{
int node;
node = fdt_get_stdout_node_offset(fdt);
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
dt_fill_device_info(info, node);
return node;
}
/*******************************************************************************
* This function returns the node offset matching compatible string in the DT,
* and also matching the reg property with the given address.
* Returns value on success, and error value on failure.
******************************************************************************/
int dt_match_instance_by_compatible(const char *compatible, uintptr_t address)
{
int node;
fdt_for_each_compatible_node(fdt, node, compatible) {
const fdt32_t *cuint;
assert(fdt_get_node_parent_address_cells(node) == 1);
cuint = fdt_getprop(fdt, node, "reg", NULL);
if (cuint == NULL) {
continue;
}
if ((uintptr_t)fdt32_to_cpu(*cuint) == address) {
return node;
}
}
return -FDT_ERR_NOTFOUND;
}
/*******************************************************************************
* This function gets DDR size information from the DT.
* Returns value in bytes on success, and 0 on failure.
******************************************************************************/
uint32_t dt_get_ddr_size(void)
{
static uint32_t size;
int node;
if (size != 0U) {
return size;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_DDR_COMPAT);
if (node < 0) {
INFO("%s: Cannot read DDR node in DT\n", __func__);
return 0;
}
size = fdt_read_uint32_default(fdt, node, "st,mem-size", 0U);
flush_dcache_range((uintptr_t)&size, sizeof(uint32_t));
return size;
}
/*******************************************************************************
* This function gets PWR VDD regulator voltage information from the DT.
* Returns value in microvolts on success, and 0 on failure.
******************************************************************************/
uint32_t dt_get_pwr_vdd_voltage(void)
{
struct rdev *regul = dt_get_vdd_regulator();
uint16_t min;
if (regul == NULL) {
return 0;
}
regulator_get_range(regul, &min, NULL);
return (uint32_t)min * 1000U;
}
/*******************************************************************************
* This function retrieves VDD supply regulator from DT.
* Returns an rdev taken from supply node, NULL otherwise.
******************************************************************************/
struct rdev *dt_get_vdd_regulator(void)
{
int node = fdt_node_offset_by_compatible(fdt, -1, DT_PWR_COMPAT);
if (node < 0) {
return NULL;
}
return regulator_get_by_supply_name(fdt, node, "vdd");
}
/*******************************************************************************
* This function retrieves CPU supply regulator from DT.
* Returns an rdev taken from supply node, NULL otherwise.
******************************************************************************/
struct rdev *dt_get_cpu_regulator(void)
{
int node = fdt_path_offset(fdt, "/cpus/cpu@0");
if (node < 0) {
return NULL;
}
return regulator_get_by_supply_name(fdt, node, "cpu");
}
/*******************************************************************************
* This function retrieves board model from DT
* Returns string taken from model node, NULL otherwise
******************************************************************************/
const char *dt_get_board_model(void)
{
int node = fdt_path_offset(fdt, "/");
if (node < 0) {
return NULL;
}
return (const char *)fdt_getprop(fdt, node, "model", NULL);
}
/*******************************************************************************
* dt_find_otp_name: get OTP ID and length in DT.
* name: sub-node name to look up.
* otp: pointer to read OTP number or NULL.
* otp_len: pointer to read OTP length in bits or NULL.
* return value: 0 if no error, an FDT error value otherwise.
******************************************************************************/
int dt_find_otp_name(const char *name, uint32_t *otp, uint32_t *otp_len)
{
int node;
int index, len;
const fdt32_t *cuint;
if ((name == NULL) || (otp == NULL)) {
return -FDT_ERR_BADVALUE;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_NVMEM_LAYOUT_COMPAT);
if (node < 0) {
return node;
}
index = fdt_stringlist_search(fdt, node, "nvmem-cell-names", name);
if (index < 0) {
return index;
}
cuint = fdt_getprop(fdt, node, "nvmem-cells", &len);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
if ((index * (int)sizeof(uint32_t)) > len) {
return -FDT_ERR_BADVALUE;
}
cuint += index;
node = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (node < 0) {
ERROR("Malformed nvmem_layout node: ignored\n");
return node;
}
cuint = fdt_getprop(fdt, node, "reg", &len);
if ((cuint == NULL) || (len != (2 * (int)sizeof(uint32_t)))) {
ERROR("Malformed nvmem_layout node: ignored\n");
return -FDT_ERR_BADVALUE;
}
if (fdt32_to_cpu(*cuint) % sizeof(uint32_t)) {
ERROR("Misaligned nvmem_layout element: ignored\n");
return -FDT_ERR_BADVALUE;
}
if (otp != NULL) {
*otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t);
}
if (otp_len != NULL) {
cuint++;
*otp_len = fdt32_to_cpu(*cuint) * CHAR_BIT;
}
return 0;
}
/*******************************************************************************
* This function gets the pin count for a GPIO bank based from the FDT.
* It also checks node consistency.
******************************************************************************/
int fdt_get_gpio_bank_pin_count(unsigned int bank)
{
int pinctrl_node;
int node;
uint32_t bank_offset;
pinctrl_node = stm32_get_gpio_bank_pinctrl_node(fdt, bank);
if (pinctrl_node < 0) {
return -FDT_ERR_NOTFOUND;
}
bank_offset = stm32_get_gpio_bank_offset(bank);
fdt_for_each_subnode(node, fdt, pinctrl_node) {
const fdt32_t *cuint;
if (fdt_getprop(fdt, node, "gpio-controller", NULL) == NULL) {
continue;
}
cuint = fdt_getprop(fdt, node, "reg", NULL);
if (cuint == NULL) {
continue;
}
if (fdt32_to_cpu(*cuint) != bank_offset) {
continue;
}
if (fdt_get_status(node) == DT_DISABLED) {
return 0;
}
cuint = fdt_getprop(fdt, node, "ngpios", NULL);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
return (int)fdt32_to_cpu(*cuint);
}
return 0;
}