blob: 39ea2a374659eac5ed9da9a07922afb76d66ce05 [file] [log] [blame]
/*
* Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/interrupt_props.h>
#include <drivers/arm/gic_common.h>
#include "../common/gic_common_private.h"
#include "gicv3_private.h"
/*
* Accessor to read the GIC Distributor IGRPMODR corresponding to the
* interrupt `id`, 32 interrupt IDs at a time.
*/
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int n = id >> IGRPMODR_SHIFT;
return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
}
/*
* Accessor to write the GIC Distributor IGRPMODR corresponding to the
* interrupt `id`, 32 interrupt IDs at a time.
*/
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
{
unsigned int n = id >> IGRPMODR_SHIFT;
mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
}
/*
* Accessor to get the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
gicd_write_igrpmodr(base, id, reg_val | (1U << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
gicd_write_igrpmodr(base, id, reg_val & ~(1U << bit_num));
}
/*
* Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
* interrupt `id`, 4 interrupts IDs at a time.
*/
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
{
unsigned int n = id >> IPRIORITYR_SHIFT;
return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
}
/*
* Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
* interrupt `id`, 4 interrupts IDs at a time.
*/
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
{
unsigned int n = id >> IPRIORITYR_SHIFT;
mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
}
/*
* Accessor to get the bit corresponding to interrupt ID
* from GIC Re-distributor IGROUPR0.
*/
unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igroupr0(base);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor IGROUPR0.
*/
void gicr_set_igroupr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igroupr0(base);
gicr_write_igroupr0(base, reg_val | (1U << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Re-distributor IGROUPR0.
*/
void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igroupr0(base);
gicr_write_igroupr0(base, reg_val & ~(1U << bit_num));
}
/*
* Accessor to get the bit corresponding to interrupt ID
* from GIC Re-distributor IGRPMODR0.
*/
unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igrpmodr0(base);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor IGRPMODR0.
*/
void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igrpmodr0(base);
gicr_write_igrpmodr0(base, reg_val | (1U << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Re-distributor IGRPMODR0.
*/
void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igrpmodr0(base);
gicr_write_igrpmodr0(base, reg_val & ~(1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor ISENABLER0.
*/
void gicr_set_isenabler0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ISENABLER_SHIFT) - 1U);
gicr_write_isenabler0(base, (1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
* ICENABLER0.
*/
void gicr_set_icenabler0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ICENABLER_SHIFT) - 1U);
gicr_write_icenabler0(base, (1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
* ISACTIVER0.
*/
unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ISACTIVER_SHIFT) - 1U);
unsigned int reg_val = gicr_read_isactiver0(base);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor
* ICPENDRR0.
*/
void gicr_set_icpendr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ICPENDR_SHIFT) - 1U);
gicr_write_icpendr0(base, (1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
* ISPENDR0.
*/
void gicr_set_ispendr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ISPENDR_SHIFT) - 1U);
gicr_write_ispendr0(base, (1U << bit_num));
}
/*
* Accessor to set the byte corresponding to interrupt ID
* in GIC Re-distributor IPRIORITYR.
*/
void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
{
uint8_t val = pri & GIC_PRI_MASK;
mmio_write_8(base + GICR_IPRIORITYR + id, val);
}
/*
* Accessor to set the bit fields corresponding to interrupt ID
* in GIC Re-distributor ICFGR0.
*/
void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg)
{
/* Interrupt configuration is a 2-bit field */
unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
unsigned int bit_shift = bit_num << 1U;
uint32_t reg_val = gicr_read_icfgr0(base);
/* Clear the field, and insert required configuration */
reg_val &= ~(GIC_CFG_MASK << bit_shift);
reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
gicr_write_icfgr0(base, reg_val);
}
/*
* Accessor to set the bit fields corresponding to interrupt ID
* in GIC Re-distributor ICFGR1.
*/
void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg)
{
/* Interrupt configuration is a 2-bit field */
unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
unsigned int bit_shift = bit_num << 1U;
uint32_t reg_val = gicr_read_icfgr1(base);
/* Clear the field, and insert required configuration */
reg_val &= ~(GIC_CFG_MASK << bit_shift);
reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
gicr_write_icfgr1(base, reg_val);
}
/******************************************************************************
* This function marks the core as awake in the re-distributor and
* ensures that the interface is active.
*****************************************************************************/
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
{
/*
* The WAKER_PS_BIT should be changed to 0
* only when WAKER_CA_BIT is 1.
*/
assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U);
/* Mark the connected core as awake */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 0 */
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U)
;
}
/******************************************************************************
* This function marks the core as asleep in the re-distributor and ensures
* that the interface is quiescent.
*****************************************************************************/
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
{
/* Mark the connected core as asleep */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 1 */
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U)
;
}
/*******************************************************************************
* This function probes the Redistributor frames when the driver is initialised
* and saves their base addresses. These base addresses are used later to
* initialise each Redistributor interface.
******************************************************************************/
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
unsigned int rdistif_num,
uintptr_t gicr_base,
mpidr_hash_fn mpidr_to_core_pos)
{
u_register_t mpidr;
unsigned int proc_num;
uint64_t typer_val;
uintptr_t rdistif_base = gicr_base;
assert(rdistif_base_addrs != NULL);
/*
* Iterate over the Redistributor frames. Store the base address of each
* frame in the platform provided array. Use the "Processor Number"
* field to index into the array if the platform has not provided a hash
* function to convert an MPIDR (obtained from the "Affinity Value"
* field into a linear index.
*/
do {
typer_val = gicr_read_typer(rdistif_base);
if (mpidr_to_core_pos != NULL) {
mpidr = mpidr_from_gicr_typer(typer_val);
proc_num = mpidr_to_core_pos(mpidr);
} else {
proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
TYPER_PROC_NUM_MASK;
}
assert(proc_num < rdistif_num);
rdistif_base_addrs[proc_num] = rdistif_base;
rdistif_base += (1U << GICR_PCPUBASE_SHIFT);
} while ((typer_val & TYPER_LAST_BIT) == 0U);
}
/*******************************************************************************
* Helper function to configure the default attributes of SPIs.
******************************************************************************/
void gicv3_spis_config_defaults(uintptr_t gicd_base)
{
unsigned int index, num_ints;
num_ints = gicd_read_typer(gicd_base);
num_ints &= TYPER_IT_LINES_NO_MASK;
num_ints = (num_ints + 1U) << 5;
/*
* Treat all SPIs as G1NS by default. The number of interrupts is
* calculated as 32 * (IT_LINES + 1). We do 32 at a time.
*/
for (index = MIN_SPI_ID; index < num_ints; index += 32U)
gicd_write_igroupr(gicd_base, index, ~0U);
/* Setup the default SPI priorities doing four at a time */
for (index = MIN_SPI_ID; index < num_ints; index += 4U)
gicd_write_ipriorityr(gicd_base,
index,
GICD_IPRIORITYR_DEF_VAL);
/*
* Treat all SPIs as level triggered by default, write 16 at
* a time
*/
for (index = MIN_SPI_ID; index < num_ints; index += 16U)
gicd_write_icfgr(gicd_base, index, 0U);
}
/*******************************************************************************
* Helper function to configure properties of secure SPIs
******************************************************************************/
unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num)
{
unsigned int i;
const interrupt_prop_t *current_prop;
unsigned long long gic_affinity_val;
unsigned int ctlr_enable = 0U;
/* Make sure there's a valid property array */
if (interrupt_props_num > 0U)
assert(interrupt_props != NULL);
for (i = 0U; i < interrupt_props_num; i++) {
current_prop = &interrupt_props[i];
if (current_prop->intr_num < MIN_SPI_ID)
continue;
/* Configure this interrupt as a secure interrupt */
gicd_clr_igroupr(gicd_base, current_prop->intr_num);
/* Configure this interrupt as G0 or a G1S interrupt */
assert((current_prop->intr_grp == INTR_GROUP0) ||
(current_prop->intr_grp == INTR_GROUP1S));
if (current_prop->intr_grp == INTR_GROUP1S) {
gicd_set_igrpmodr(gicd_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
} else {
gicd_clr_igrpmodr(gicd_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G0_BIT;
}
/* Set interrupt configuration */
gicd_set_icfgr(gicd_base, current_prop->intr_num,
current_prop->intr_cfg);
/* Set the priority of this interrupt */
gicd_set_ipriorityr(gicd_base, current_prop->intr_num,
current_prop->intr_pri);
/* Target SPIs to the primary CPU */
gic_affinity_val =
gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
gicd_write_irouter(gicd_base, current_prop->intr_num,
gic_affinity_val);
/* Enable this interrupt */
gicd_set_isenabler(gicd_base, current_prop->intr_num);
}
return ctlr_enable;
}
/*******************************************************************************
* Helper function to configure the default attributes of SPIs.
******************************************************************************/
void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
{
unsigned int index;
/*
* Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
* more scalable approach as it avoids clearing the enable bits in the
* GICD_CTLR
*/
gicr_write_icenabler0(gicr_base, ~0U);
gicr_wait_for_pending_write(gicr_base);
/* Treat all SGIs/PPIs as G1NS by default. */
gicr_write_igroupr0(gicr_base, ~0U);
/* Setup the default PPI/SGI priorities doing four at a time */
for (index = 0U; index < MIN_SPI_ID; index += 4U)
gicr_write_ipriorityr(gicr_base,
index,
GICD_IPRIORITYR_DEF_VAL);
/* Configure all PPIs as level triggered by default */
gicr_write_icfgr1(gicr_base, 0U);
}
/*******************************************************************************
* Helper function to configure properties of secure G0 and G1S PPIs and SGIs.
******************************************************************************/
unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num)
{
unsigned int i;
const interrupt_prop_t *current_prop;
unsigned int ctlr_enable = 0U;
/* Make sure there's a valid property array */
if (interrupt_props_num > 0U)
assert(interrupt_props != NULL);
for (i = 0U; i < interrupt_props_num; i++) {
current_prop = &interrupt_props[i];
if (current_prop->intr_num >= MIN_SPI_ID)
continue;
/* Configure this interrupt as a secure interrupt */
gicr_clr_igroupr0(gicr_base, current_prop->intr_num);
/* Configure this interrupt as G0 or a G1S interrupt */
assert((current_prop->intr_grp == INTR_GROUP0) ||
(current_prop->intr_grp == INTR_GROUP1S));
if (current_prop->intr_grp == INTR_GROUP1S) {
gicr_set_igrpmodr0(gicr_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
} else {
gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G0_BIT;
}
/* Set the priority of this interrupt */
gicr_set_ipriorityr(gicr_base, current_prop->intr_num,
current_prop->intr_pri);
/*
* Set interrupt configuration for PPIs. Configuration for SGIs
* are ignored.
*/
if ((current_prop->intr_num >= MIN_PPI_ID) &&
(current_prop->intr_num < MIN_SPI_ID)) {
gicr_set_icfgr1(gicr_base, current_prop->intr_num,
current_prop->intr_cfg);
}
/* Enable this interrupt */
gicr_set_isenabler0(gicr_base, current_prop->intr_num);
}
return ctlr_enable;
}