| /* |
| * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <context.h> |
| #include <context_mgmt.h> |
| #include <debug.h> |
| #include <platform.h> |
| #include <string.h> |
| #include <utils.h> |
| #include "psci_private.h" |
| |
| /* |
| * SPD power management operations, expected to be supplied by the registered |
| * SPD on successful SP initialization |
| */ |
| const spd_pm_ops_t *psci_spd_pm; |
| |
| /* |
| * PSCI requested local power state map. This array is used to store the local |
| * power states requested by a CPU for power levels from level 1 to |
| * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power |
| * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a |
| * CPU are the same. |
| * |
| * During state coordination, the platform is passed an array containing the |
| * local states requested for a particular non cpu power domain by each cpu |
| * within the domain. |
| * |
| * TODO: Dense packing of the requested states will cause cache thrashing |
| * when multiple power domains write to it. If we allocate the requested |
| * states at each power level in a cache-line aligned per-domain memory, |
| * the cache thrashing can be avoided. |
| */ |
| static plat_local_state_t |
| psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; |
| |
| |
| /******************************************************************************* |
| * Arrays that hold the platform's power domain tree information for state |
| * management of power domains. |
| * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain |
| * which is an ancestor of a CPU power domain. |
| * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain |
| ******************************************************************************/ |
| non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] |
| #if USE_COHERENT_MEM |
| __section("tzfw_coherent_mem") |
| #endif |
| ; |
| |
| /* Lock for PSCI state coordination */ |
| DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); |
| |
| cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; |
| |
| /******************************************************************************* |
| * Pointer to functions exported by the platform to complete power mgmt. ops |
| ******************************************************************************/ |
| const plat_psci_ops_t *psci_plat_pm_ops; |
| |
| /****************************************************************************** |
| * Check that the maximum power level supported by the platform makes sense |
| *****************************************************************************/ |
| CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && |
| (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), |
| assert_platform_max_pwrlvl_check); |
| |
| /* |
| * The plat_local_state used by the platform is one of these types: RUN, |
| * RETENTION and OFF. The platform can define further sub-states for each type |
| * apart from RUN. This categorization is done to verify the sanity of the |
| * psci_power_state passed by the platform and to print debug information. The |
| * categorization is done on the basis of the following conditions: |
| * |
| * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. |
| * |
| * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is |
| * STATE_TYPE_RETN. |
| * |
| * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is |
| * STATE_TYPE_OFF. |
| */ |
| typedef enum plat_local_state_type { |
| STATE_TYPE_RUN = 0, |
| STATE_TYPE_RETN, |
| STATE_TYPE_OFF |
| } plat_local_state_type_t; |
| |
| /* Function used to categorize plat_local_state. */ |
| static plat_local_state_type_t find_local_state_type(plat_local_state_t state) |
| { |
| if (state != 0U) { |
| if (state > PLAT_MAX_RET_STATE) { |
| return STATE_TYPE_OFF; |
| } else { |
| return STATE_TYPE_RETN; |
| } |
| } else { |
| return STATE_TYPE_RUN; |
| } |
| } |
| |
| /****************************************************************************** |
| * Check that the maximum retention level supported by the platform is less |
| * than the maximum off level. |
| *****************************************************************************/ |
| CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, |
| assert_platform_max_off_and_retn_state_check); |
| |
| /****************************************************************************** |
| * This function ensures that the power state parameter in a CPU_SUSPEND request |
| * is valid. If so, it returns the requested states for each power level. |
| *****************************************************************************/ |
| int psci_validate_power_state(unsigned int power_state, |
| psci_power_state_t *state_info) |
| { |
| /* Check SBZ bits in power state are zero */ |
| if (psci_check_power_state(power_state) != 0U) |
| return PSCI_E_INVALID_PARAMS; |
| |
| assert(psci_plat_pm_ops->validate_power_state != NULL); |
| |
| /* Validate the power_state using platform pm_ops */ |
| return psci_plat_pm_ops->validate_power_state(power_state, state_info); |
| } |
| |
| /****************************************************************************** |
| * This function retrieves the `psci_power_state_t` for system suspend from |
| * the platform. |
| *****************************************************************************/ |
| void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) |
| { |
| /* |
| * Assert that the required pm_ops hook is implemented to ensure that |
| * the capability detected during psci_setup() is valid. |
| */ |
| assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); |
| |
| /* |
| * Query the platform for the power_state required for system suspend |
| */ |
| psci_plat_pm_ops->get_sys_suspend_power_state(state_info); |
| } |
| |
| /******************************************************************************* |
| * This function verifies that the all the other cores in the system have been |
| * turned OFF and the current CPU is the last running CPU in the system. |
| * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) |
| * otherwise. |
| ******************************************************************************/ |
| unsigned int psci_is_last_on_cpu(void) |
| { |
| int cpu_idx, my_idx = (int) plat_my_core_pos(); |
| |
| for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) { |
| if (cpu_idx == my_idx) { |
| assert(psci_get_aff_info_state() == AFF_STATE_ON); |
| continue; |
| } |
| |
| if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /******************************************************************************* |
| * Routine to return the maximum power level to traverse to after a cpu has |
| * been physically powered up. It is expected to be called immediately after |
| * reset from assembler code. |
| ******************************************************************************/ |
| static unsigned int get_power_on_target_pwrlvl(void) |
| { |
| unsigned int pwrlvl; |
| |
| /* |
| * Assume that this cpu was suspended and retrieve its target power |
| * level. If it is invalid then it could only have been turned off |
| * earlier. PLAT_MAX_PWR_LVL will be the highest power level a |
| * cpu can be turned off to. |
| */ |
| pwrlvl = psci_get_suspend_pwrlvl(); |
| if (pwrlvl == PSCI_INVALID_PWR_LVL) |
| pwrlvl = PLAT_MAX_PWR_LVL; |
| return pwrlvl; |
| } |
| |
| /****************************************************************************** |
| * Helper function to update the requested local power state array. This array |
| * does not store the requested state for the CPU power level. Hence an |
| * assertion is added to prevent us from accessing the wrong index. |
| *****************************************************************************/ |
| static void psci_set_req_local_pwr_state(unsigned int pwrlvl, |
| unsigned int cpu_idx, |
| plat_local_state_t req_pwr_state) |
| { |
| /* |
| * This should never happen, we have this here to avoid |
| * "array subscript is above array bounds" errors in GCC. |
| */ |
| assert(pwrlvl > PSCI_CPU_PWR_LVL); |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Warray-bounds" |
| psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; |
| #pragma GCC diagnostic pop |
| } |
| |
| /****************************************************************************** |
| * This function initializes the psci_req_local_pwr_states. |
| *****************************************************************************/ |
| void __init psci_init_req_local_pwr_states(void) |
| { |
| /* Initialize the requested state of all non CPU power domains as OFF */ |
| unsigned int pwrlvl; |
| int core; |
| |
| for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { |
| for (core = 0; core < PLATFORM_CORE_COUNT; core++) { |
| psci_req_local_pwr_states[pwrlvl][core] = |
| PLAT_MAX_OFF_STATE; |
| } |
| } |
| } |
| |
| /****************************************************************************** |
| * Helper function to return a reference to an array containing the local power |
| * states requested by each cpu for a power domain at 'pwrlvl'. The size of the |
| * array will be the number of cpu power domains of which this power domain is |
| * an ancestor. These requested states will be used to determine a suitable |
| * target state for this power domain during psci state coordination. An |
| * assertion is added to prevent us from accessing the CPU power level. |
| *****************************************************************************/ |
| static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, |
| int cpu_idx) |
| { |
| assert(pwrlvl > PSCI_CPU_PWR_LVL); |
| |
| return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; |
| } |
| |
| /* |
| * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent |
| * memory. |
| * |
| * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, |
| * it's accessed by both cached and non-cached participants. To serve the common |
| * minimum, perform a cache flush before read and after write so that non-cached |
| * participants operate on latest data in main memory. |
| * |
| * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent |
| * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. |
| * In both cases, no cache operations are required. |
| */ |
| |
| /* |
| * Retrieve local state of non-CPU power domain node from a non-cached CPU, |
| * after any required cache maintenance operation. |
| */ |
| static plat_local_state_t get_non_cpu_pd_node_local_state( |
| unsigned int parent_idx) |
| { |
| #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY) |
| flush_dcache_range( |
| (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], |
| sizeof(psci_non_cpu_pd_nodes[parent_idx])); |
| #endif |
| return psci_non_cpu_pd_nodes[parent_idx].local_state; |
| } |
| |
| /* |
| * Update local state of non-CPU power domain node from a cached CPU; perform |
| * any required cache maintenance operation afterwards. |
| */ |
| static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, |
| plat_local_state_t state) |
| { |
| psci_non_cpu_pd_nodes[parent_idx].local_state = state; |
| #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY) |
| flush_dcache_range( |
| (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], |
| sizeof(psci_non_cpu_pd_nodes[parent_idx])); |
| #endif |
| } |
| |
| /****************************************************************************** |
| * Helper function to return the current local power state of each power domain |
| * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This |
| * function will be called after a cpu is powered on to find the local state |
| * each power domain has emerged from. |
| *****************************************************************************/ |
| void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, |
| psci_power_state_t *target_state) |
| { |
| unsigned int parent_idx, lvl; |
| plat_local_state_t *pd_state = target_state->pwr_domain_state; |
| |
| pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); |
| parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; |
| |
| /* Copy the local power state from node to state_info */ |
| for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { |
| pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| |
| /* Set the the higher levels to RUN */ |
| for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) |
| target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; |
| } |
| |
| /****************************************************************************** |
| * Helper function to set the target local power state that each power domain |
| * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will |
| * enter. This function will be called after coordination of requested power |
| * states has been done for each power level. |
| *****************************************************************************/ |
| static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, |
| const psci_power_state_t *target_state) |
| { |
| unsigned int parent_idx, lvl; |
| const plat_local_state_t *pd_state = target_state->pwr_domain_state; |
| |
| psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); |
| |
| /* |
| * Need to flush as local_state might be accessed with Data Cache |
| * disabled during power on |
| */ |
| psci_flush_cpu_data(psci_svc_cpu_data.local_state); |
| |
| parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; |
| |
| /* Copy the local_state from state_info */ |
| for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { |
| set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| } |
| |
| |
| /******************************************************************************* |
| * PSCI helper function to get the parent nodes corresponding to a cpu_index. |
| ******************************************************************************/ |
| void psci_get_parent_pwr_domain_nodes(int cpu_idx, |
| unsigned int end_lvl, |
| unsigned int *node_index) |
| { |
| unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| unsigned int i; |
| unsigned int *node = node_index; |
| |
| for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { |
| *node = parent_node; |
| node++; |
| parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; |
| } |
| } |
| |
| /****************************************************************************** |
| * This function is invoked post CPU power up and initialization. It sets the |
| * affinity info state, target power state and requested power state for the |
| * current CPU and all its ancestor power domains to RUN. |
| *****************************************************************************/ |
| void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) |
| { |
| unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; |
| parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| |
| /* Reset the local_state to RUN for the non cpu power domains. */ |
| for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { |
| set_non_cpu_pd_node_local_state(parent_idx, |
| PSCI_LOCAL_STATE_RUN); |
| psci_set_req_local_pwr_state(lvl, |
| cpu_idx, |
| PSCI_LOCAL_STATE_RUN); |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| |
| /* Set the affinity info state to ON */ |
| psci_set_aff_info_state(AFF_STATE_ON); |
| |
| psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); |
| psci_flush_cpu_data(psci_svc_cpu_data); |
| } |
| |
| /****************************************************************************** |
| * This function is passed the local power states requested for each power |
| * domain (state_info) between the current CPU domain and its ancestors until |
| * the target power level (end_pwrlvl). It updates the array of requested power |
| * states with this information. |
| * |
| * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it |
| * retrieves the states requested by all the cpus of which the power domain at |
| * that level is an ancestor. It passes this information to the platform to |
| * coordinate and return the target power state. If the target state for a level |
| * is RUN then subsequent levels are not considered. At the CPU level, state |
| * coordination is not required. Hence, the requested and the target states are |
| * the same. |
| * |
| * The 'state_info' is updated with the target state for each level between the |
| * CPU and the 'end_pwrlvl' and returned to the caller. |
| * |
| * This function will only be invoked with data cache enabled and while |
| * powering down a core. |
| *****************************************************************************/ |
| void psci_do_state_coordination(unsigned int end_pwrlvl, |
| psci_power_state_t *state_info) |
| { |
| unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); |
| int start_idx; |
| unsigned int ncpus; |
| plat_local_state_t target_state, *req_states; |
| |
| assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); |
| parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| |
| /* For level 0, the requested state will be equivalent |
| to target state */ |
| for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { |
| |
| /* First update the requested power state */ |
| psci_set_req_local_pwr_state(lvl, cpu_idx, |
| state_info->pwr_domain_state[lvl]); |
| |
| /* Get the requested power states for this power level */ |
| start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; |
| req_states = psci_get_req_local_pwr_states(lvl, start_idx); |
| |
| /* |
| * Let the platform coordinate amongst the requested states at |
| * this power level and return the target local power state. |
| */ |
| ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; |
| target_state = plat_get_target_pwr_state(lvl, |
| req_states, |
| ncpus); |
| |
| state_info->pwr_domain_state[lvl] = target_state; |
| |
| /* Break early if the negotiated target power state is RUN */ |
| if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) |
| break; |
| |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| |
| /* |
| * This is for cases when we break out of the above loop early because |
| * the target power state is RUN at a power level < end_pwlvl. |
| * We update the requested power state from state_info and then |
| * set the target state as RUN. |
| */ |
| for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { |
| psci_set_req_local_pwr_state(lvl, cpu_idx, |
| state_info->pwr_domain_state[lvl]); |
| state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; |
| |
| } |
| |
| /* Update the target state in the power domain nodes */ |
| psci_set_target_local_pwr_states(end_pwrlvl, state_info); |
| } |
| |
| /****************************************************************************** |
| * This function validates a suspend request by making sure that if a standby |
| * state is requested then no power level is turned off and the highest power |
| * level is placed in a standby/retention state. |
| * |
| * It also ensures that the state level X will enter is not shallower than the |
| * state level X + 1 will enter. |
| * |
| * This validation will be enabled only for DEBUG builds as the platform is |
| * expected to perform these validations as well. |
| *****************************************************************************/ |
| int psci_validate_suspend_req(const psci_power_state_t *state_info, |
| unsigned int is_power_down_state) |
| { |
| unsigned int max_off_lvl, target_lvl, max_retn_lvl; |
| plat_local_state_t state; |
| plat_local_state_type_t req_state_type, deepest_state_type; |
| int i; |
| |
| /* Find the target suspend power level */ |
| target_lvl = psci_find_target_suspend_lvl(state_info); |
| if (target_lvl == PSCI_INVALID_PWR_LVL) |
| return PSCI_E_INVALID_PARAMS; |
| |
| /* All power domain levels are in a RUN state to begin with */ |
| deepest_state_type = STATE_TYPE_RUN; |
| |
| for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { |
| state = state_info->pwr_domain_state[i]; |
| req_state_type = find_local_state_type(state); |
| |
| /* |
| * While traversing from the highest power level to the lowest, |
| * the state requested for lower levels has to be the same or |
| * deeper i.e. equal to or greater than the state at the higher |
| * levels. If this condition is true, then the requested state |
| * becomes the deepest state encountered so far. |
| */ |
| if (req_state_type < deepest_state_type) |
| return PSCI_E_INVALID_PARAMS; |
| deepest_state_type = req_state_type; |
| } |
| |
| /* Find the highest off power level */ |
| max_off_lvl = psci_find_max_off_lvl(state_info); |
| |
| /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ |
| max_retn_lvl = PSCI_INVALID_PWR_LVL; |
| if (target_lvl != max_off_lvl) |
| max_retn_lvl = target_lvl; |
| |
| /* |
| * If this is not a request for a power down state then max off level |
| * has to be invalid and max retention level has to be a valid power |
| * level. |
| */ |
| if ((is_power_down_state == 0U) && |
| ((max_off_lvl != PSCI_INVALID_PWR_LVL) || |
| (max_retn_lvl == PSCI_INVALID_PWR_LVL))) |
| return PSCI_E_INVALID_PARAMS; |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * This function finds the highest power level which will be powered down |
| * amongst all the power levels specified in the 'state_info' structure |
| *****************************************************************************/ |
| unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) |
| { |
| int i; |
| |
| for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { |
| if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) |
| return (unsigned int) i; |
| } |
| |
| return PSCI_INVALID_PWR_LVL; |
| } |
| |
| /****************************************************************************** |
| * This functions finds the level of the highest power domain which will be |
| * placed in a low power state during a suspend operation. |
| *****************************************************************************/ |
| unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) |
| { |
| int i; |
| |
| for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { |
| if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) |
| return (unsigned int) i; |
| } |
| |
| return PSCI_INVALID_PWR_LVL; |
| } |
| |
| /******************************************************************************* |
| * This function is passed a cpu_index and the highest level in the topology |
| * tree that the operation should be applied to. It picks up locks in order of |
| * increasing power domain level in the range specified. |
| ******************************************************************************/ |
| void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx) |
| { |
| unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| unsigned int level; |
| |
| /* No locking required for level 0. Hence start locking from level 1 */ |
| for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { |
| psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| } |
| |
| /******************************************************************************* |
| * This function is passed a cpu_index and the highest level in the topology |
| * tree that the operation should be applied to. It releases the locks in order |
| * of decreasing power domain level in the range specified. |
| ******************************************************************************/ |
| void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx) |
| { |
| unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0}; |
| unsigned int level; |
| |
| /* Get the parent nodes */ |
| psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); |
| |
| /* Unlock top down. No unlocking required for level 0. */ |
| for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) { |
| parent_idx = parent_nodes[level - 1U]; |
| psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); |
| } |
| } |
| |
| /******************************************************************************* |
| * Simple routine to determine whether a mpidr is valid or not. |
| ******************************************************************************/ |
| int psci_validate_mpidr(u_register_t mpidr) |
| { |
| if (plat_core_pos_by_mpidr(mpidr) < 0) |
| return PSCI_E_INVALID_PARAMS; |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| /******************************************************************************* |
| * This function determines the full entrypoint information for the requested |
| * PSCI entrypoint on power on/resume and returns it. |
| ******************************************************************************/ |
| #ifdef AARCH32 |
| static int psci_get_ns_ep_info(entry_point_info_t *ep, |
| uintptr_t entrypoint, |
| u_register_t context_id) |
| { |
| u_register_t ep_attr; |
| unsigned int aif, ee, mode; |
| u_register_t scr = read_scr(); |
| u_register_t ns_sctlr, sctlr; |
| |
| /* Switch to non secure state */ |
| write_scr(scr | SCR_NS_BIT); |
| isb(); |
| ns_sctlr = read_sctlr(); |
| |
| sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; |
| |
| /* Return to original state */ |
| write_scr(scr); |
| isb(); |
| ee = 0; |
| |
| ep_attr = NON_SECURE | EP_ST_DISABLE; |
| if (sctlr & SCTLR_EE_BIT) { |
| ep_attr |= EP_EE_BIG; |
| ee = 1; |
| } |
| SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); |
| |
| ep->pc = entrypoint; |
| zeromem(&ep->args, sizeof(ep->args)); |
| ep->args.arg0 = context_id; |
| |
| mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; |
| |
| /* |
| * TODO: Choose async. exception bits if HYP mode is not |
| * implemented according to the values of SCR.{AW, FW} bits |
| */ |
| aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; |
| |
| ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| #else |
| static int psci_get_ns_ep_info(entry_point_info_t *ep, |
| uintptr_t entrypoint, |
| u_register_t context_id) |
| { |
| u_register_t ep_attr, sctlr; |
| unsigned int daif, ee, mode; |
| u_register_t ns_scr_el3 = read_scr_el3(); |
| u_register_t ns_sctlr_el1 = read_sctlr_el1(); |
| |
| sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? |
| read_sctlr_el2() : ns_sctlr_el1; |
| ee = 0; |
| |
| ep_attr = NON_SECURE | EP_ST_DISABLE; |
| if ((sctlr & SCTLR_EE_BIT) != 0U) { |
| ep_attr |= EP_EE_BIG; |
| ee = 1; |
| } |
| SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); |
| |
| ep->pc = entrypoint; |
| zeromem(&ep->args, sizeof(ep->args)); |
| ep->args.arg0 = context_id; |
| |
| /* |
| * Figure out whether the cpu enters the non-secure address space |
| * in aarch32 or aarch64 |
| */ |
| if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { |
| |
| /* |
| * Check whether a Thumb entry point has been provided for an |
| * aarch64 EL |
| */ |
| if ((entrypoint & 0x1UL) != 0UL) |
| return PSCI_E_INVALID_ADDRESS; |
| |
| mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; |
| |
| ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); |
| } else { |
| |
| mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? |
| MODE32_hyp : MODE32_svc; |
| |
| /* |
| * TODO: Choose async. exception bits if HYP mode is not |
| * implemented according to the values of SCR.{AW, FW} bits |
| */ |
| daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; |
| |
| ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| #endif |
| |
| /******************************************************************************* |
| * This function validates the entrypoint with the platform layer if the |
| * appropriate pm_ops hook is exported by the platform and returns the |
| * 'entry_point_info'. |
| ******************************************************************************/ |
| int psci_validate_entry_point(entry_point_info_t *ep, |
| uintptr_t entrypoint, |
| u_register_t context_id) |
| { |
| int rc; |
| |
| /* Validate the entrypoint using platform psci_ops */ |
| if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { |
| rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); |
| if (rc != PSCI_E_SUCCESS) |
| return PSCI_E_INVALID_ADDRESS; |
| } |
| |
| /* |
| * Verify and derive the re-entry information for |
| * the non-secure world from the non-secure state from |
| * where this call originated. |
| */ |
| rc = psci_get_ns_ep_info(ep, entrypoint, context_id); |
| return rc; |
| } |
| |
| /******************************************************************************* |
| * Generic handler which is called when a cpu is physically powered on. It |
| * traverses the node information and finds the highest power level powered |
| * off and performs generic, architectural, platform setup and state management |
| * to power on that power level and power levels below it. |
| * e.g. For a cpu that's been powered on, it will call the platform specific |
| * code to enable the gic cpu interface and for a cluster it will enable |
| * coherency at the interconnect level in addition to gic cpu interface. |
| ******************************************************************************/ |
| void psci_warmboot_entrypoint(void) |
| { |
| unsigned int end_pwrlvl; |
| int cpu_idx = (int) plat_my_core_pos(); |
| psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; |
| |
| /* |
| * Verify that we have been explicitly turned ON or resumed from |
| * suspend. |
| */ |
| if (psci_get_aff_info_state() == AFF_STATE_OFF) { |
| ERROR("Unexpected affinity info state"); |
| panic(); |
| } |
| |
| /* |
| * Get the maximum power domain level to traverse to after this cpu |
| * has been physically powered up. |
| */ |
| end_pwrlvl = get_power_on_target_pwrlvl(); |
| |
| /* |
| * This function acquires the lock corresponding to each power level so |
| * that by the time all locks are taken, the system topology is snapshot |
| * and state management can be done safely. |
| */ |
| psci_acquire_pwr_domain_locks(end_pwrlvl, cpu_idx); |
| |
| psci_get_target_local_pwr_states(end_pwrlvl, &state_info); |
| |
| #if ENABLE_PSCI_STAT |
| plat_psci_stat_accounting_stop(&state_info); |
| #endif |
| |
| /* |
| * This CPU could be resuming from suspend or it could have just been |
| * turned on. To distinguish between these 2 cases, we examine the |
| * affinity state of the CPU: |
| * - If the affinity state is ON_PENDING then it has just been |
| * turned on. |
| * - Else it is resuming from suspend. |
| * |
| * Depending on the type of warm reset identified, choose the right set |
| * of power management handler and perform the generic, architecture |
| * and platform specific handling. |
| */ |
| if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) |
| psci_cpu_on_finish(cpu_idx, &state_info); |
| else |
| psci_cpu_suspend_finish(cpu_idx, &state_info); |
| |
| /* |
| * Set the requested and target state of this CPU and all the higher |
| * power domains which are ancestors of this CPU to run. |
| */ |
| psci_set_pwr_domains_to_run(end_pwrlvl); |
| |
| #if ENABLE_PSCI_STAT |
| /* |
| * Update PSCI stats. |
| * Caches are off when writing stats data on the power down path. |
| * Since caches are now enabled, it's necessary to do cache |
| * maintenance before reading that same data. |
| */ |
| psci_stats_update_pwr_up(end_pwrlvl, &state_info); |
| #endif |
| |
| /* |
| * This loop releases the lock corresponding to each power level |
| * in the reverse order to which they were acquired. |
| */ |
| psci_release_pwr_domain_locks(end_pwrlvl, cpu_idx); |
| } |
| |
| /******************************************************************************* |
| * This function initializes the set of hooks that PSCI invokes as part of power |
| * management operation. The power management hooks are expected to be provided |
| * by the SPD, after it finishes all its initialization |
| ******************************************************************************/ |
| void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) |
| { |
| assert(pm != NULL); |
| psci_spd_pm = pm; |
| |
| if (pm->svc_migrate != NULL) |
| psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); |
| |
| if (pm->svc_migrate_info != NULL) |
| psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) |
| | define_psci_cap(PSCI_MIG_INFO_TYPE); |
| } |
| |
| /******************************************************************************* |
| * This function invokes the migrate info hook in the spd_pm_ops. It performs |
| * the necessary return value validation. If the Secure Payload is UP and |
| * migrate capable, it returns the mpidr of the CPU on which the Secure payload |
| * is resident through the mpidr parameter. Else the value of the parameter on |
| * return is undefined. |
| ******************************************************************************/ |
| int psci_spd_migrate_info(u_register_t *mpidr) |
| { |
| int rc; |
| |
| if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) |
| return PSCI_E_NOT_SUPPORTED; |
| |
| rc = psci_spd_pm->svc_migrate_info(mpidr); |
| |
| assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || |
| (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); |
| |
| return rc; |
| } |
| |
| |
| /******************************************************************************* |
| * This function prints the state of all power domains present in the |
| * system |
| ******************************************************************************/ |
| void psci_print_power_domain_map(void) |
| { |
| #if LOG_LEVEL >= LOG_LEVEL_INFO |
| int idx; |
| plat_local_state_t state; |
| plat_local_state_type_t state_type; |
| |
| /* This array maps to the PSCI_STATE_X definitions in psci.h */ |
| static const char * const psci_state_type_str[] = { |
| "ON", |
| "RETENTION", |
| "OFF", |
| }; |
| |
| INFO("PSCI Power Domain Map:\n"); |
| for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); |
| idx++) { |
| state_type = find_local_state_type( |
| psci_non_cpu_pd_nodes[idx].local_state); |
| INFO(" Domain Node : Level %u, parent_node %d," |
| " State %s (0x%x)\n", |
| psci_non_cpu_pd_nodes[idx].level, |
| psci_non_cpu_pd_nodes[idx].parent_node, |
| psci_state_type_str[state_type], |
| psci_non_cpu_pd_nodes[idx].local_state); |
| } |
| |
| for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) { |
| state = psci_get_cpu_local_state_by_idx(idx); |
| state_type = find_local_state_type(state); |
| INFO(" CPU Node : MPID 0x%llx, parent_node %d," |
| " State %s (0x%x)\n", |
| (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, |
| psci_cpu_pd_nodes[idx].parent_node, |
| psci_state_type_str[state_type], |
| psci_get_cpu_local_state_by_idx(idx)); |
| } |
| #endif |
| } |
| |
| /****************************************************************************** |
| * Return whether any secondaries were powered up with CPU_ON call. A CPU that |
| * have ever been powered up would have set its MPDIR value to something other |
| * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to |
| * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is |
| * meaningful only when called on the primary CPU during early boot. |
| *****************************************************************************/ |
| int psci_secondaries_brought_up(void) |
| { |
| unsigned int idx, n_valid = 0U; |
| |
| for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { |
| if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) |
| n_valid++; |
| } |
| |
| assert(n_valid > 0U); |
| |
| return (n_valid > 1U) ? 1 : 0; |
| } |
| |
| /******************************************************************************* |
| * Initiate power down sequence, by calling power down operations registered for |
| * this CPU. |
| ******************************************************************************/ |
| void psci_do_pwrdown_sequence(unsigned int power_level) |
| { |
| #if HW_ASSISTED_COHERENCY |
| /* |
| * With hardware-assisted coherency, the CPU drivers only initiate the |
| * power down sequence, without performing cache-maintenance operations |
| * in software. Data caches and MMU remain enabled both before and after |
| * this call. |
| */ |
| prepare_cpu_pwr_dwn(power_level); |
| #else |
| /* |
| * Without hardware-assisted coherency, the CPU drivers disable data |
| * caches and MMU, then perform cache-maintenance operations in |
| * software. |
| * |
| * We ought to call prepare_cpu_pwr_dwn() to initiate power down |
| * sequence. We currently have data caches and MMU enabled, but the |
| * function will return with data caches and MMU disabled. We must |
| * ensure that the stack memory is flushed out to memory before we start |
| * popping from it again. |
| */ |
| psci_do_pwrdown_cache_maintenance(power_level); |
| #endif |
| } |