| /* |
| * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <debug.h> |
| #include <gicv3.h> |
| #include "gicv3_private.h" |
| |
| const gicv3_driver_data_t *gicv3_driver_data; |
| static unsigned int gicv2_compat; |
| |
| /* |
| * Redistributor power operations are weakly bound so that they can be |
| * overridden |
| */ |
| #pragma weak gicv3_rdistif_off |
| #pragma weak gicv3_rdistif_on |
| |
| |
| /* Helper macros to save and restore GICD registers to and from the context */ |
| #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG) \ |
| do { \ |
| for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \ |
| int_id += (1 << REG##_SHIFT)) { \ |
| gicd_write_##reg(base, int_id, \ |
| ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \ |
| } \ |
| } while (0) |
| |
| #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG) \ |
| do { \ |
| for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \ |
| int_id += (1 << REG##_SHIFT)) { \ |
| ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\ |
| gicd_read_##reg(base, int_id); \ |
| } \ |
| } while (0) |
| |
| |
| /******************************************************************************* |
| * This function initialises the ARM GICv3 driver in EL3 with provided platform |
| * inputs. |
| ******************************************************************************/ |
| void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data) |
| { |
| unsigned int gic_version; |
| |
| assert(plat_driver_data); |
| assert(plat_driver_data->gicd_base); |
| assert(plat_driver_data->gicr_base); |
| assert(plat_driver_data->rdistif_num); |
| assert(plat_driver_data->rdistif_base_addrs); |
| |
| assert(IS_IN_EL3()); |
| |
| /* |
| * The platform should provide a list of at least one type of |
| * interrupts |
| */ |
| assert(plat_driver_data->g0_interrupt_array || |
| plat_driver_data->g1s_interrupt_array); |
| |
| /* |
| * If there are no interrupts of a particular type, then the number of |
| * interrupts of that type should be 0 and vice-versa. |
| */ |
| assert(plat_driver_data->g0_interrupt_array ? |
| plat_driver_data->g0_interrupt_num : |
| plat_driver_data->g0_interrupt_num == 0); |
| assert(plat_driver_data->g1s_interrupt_array ? |
| plat_driver_data->g1s_interrupt_num : |
| plat_driver_data->g1s_interrupt_num == 0); |
| |
| /* Check for system register support */ |
| #ifdef AARCH32 |
| assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)); |
| #else |
| assert(read_id_aa64pfr0_el1() & |
| (ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)); |
| #endif /* AARCH32 */ |
| |
| /* The GIC version should be 3.0 */ |
| gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); |
| gic_version >>= PIDR2_ARCH_REV_SHIFT; |
| gic_version &= PIDR2_ARCH_REV_MASK; |
| assert(gic_version == ARCH_REV_GICV3); |
| |
| /* |
| * Find out whether the GIC supports the GICv2 compatibility mode. The |
| * ARE_S bit resets to 0 if supported |
| */ |
| gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base); |
| gicv2_compat >>= CTLR_ARE_S_SHIFT; |
| gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK); |
| |
| /* |
| * Find the base address of each implemented Redistributor interface. |
| * The number of interfaces should be equal to the number of CPUs in the |
| * system. The memory for saving these addresses has to be allocated by |
| * the platform port |
| */ |
| gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs, |
| plat_driver_data->rdistif_num, |
| plat_driver_data->gicr_base, |
| plat_driver_data->mpidr_to_core_pos); |
| |
| gicv3_driver_data = plat_driver_data; |
| |
| /* |
| * The GIC driver data is initialized by the primary CPU with caches |
| * enabled. When the secondary CPU boots up, it initializes the |
| * GICC/GICR interface with the caches disabled. Hence flush the |
| * driver data to ensure coherency. This is not required if the |
| * platform has HW_ASSISTED_COHERENCY enabled. |
| */ |
| #if !HW_ASSISTED_COHERENCY |
| flush_dcache_range((uintptr_t) &gicv3_driver_data, |
| sizeof(gicv3_driver_data)); |
| flush_dcache_range((uintptr_t) gicv3_driver_data, |
| sizeof(*gicv3_driver_data)); |
| #endif |
| |
| INFO("GICv3 %s legacy support detected." |
| " ARM GICV3 driver initialized in EL3\n", |
| gicv2_compat ? "with" : "without"); |
| } |
| |
| /******************************************************************************* |
| * This function initialises the GIC distributor interface based upon the data |
| * provided by the platform while initialising the driver. |
| ******************************************************************************/ |
| void gicv3_distif_init(void) |
| { |
| unsigned int bitmap = 0; |
| |
| assert(gicv3_driver_data); |
| assert(gicv3_driver_data->gicd_base); |
| assert(gicv3_driver_data->g1s_interrupt_array || |
| gicv3_driver_data->g0_interrupt_array); |
| |
| assert(IS_IN_EL3()); |
| |
| /* |
| * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring |
| * the ARE_S bit. The Distributor might generate a system error |
| * otherwise. |
| */ |
| gicd_clr_ctlr(gicv3_driver_data->gicd_base, |
| CTLR_ENABLE_G0_BIT | |
| CTLR_ENABLE_G1S_BIT | |
| CTLR_ENABLE_G1NS_BIT, |
| RWP_TRUE); |
| |
| /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ |
| gicd_set_ctlr(gicv3_driver_data->gicd_base, |
| CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); |
| |
| /* Set the default attribute of all SPIs */ |
| gicv3_spis_configure_defaults(gicv3_driver_data->gicd_base); |
| |
| /* Configure the G1S SPIs */ |
| if (gicv3_driver_data->g1s_interrupt_array) { |
| gicv3_secure_spis_configure(gicv3_driver_data->gicd_base, |
| gicv3_driver_data->g1s_interrupt_num, |
| gicv3_driver_data->g1s_interrupt_array, |
| INTR_GROUP1S); |
| bitmap |= CTLR_ENABLE_G1S_BIT; |
| } |
| |
| /* Configure the G0 SPIs */ |
| if (gicv3_driver_data->g0_interrupt_array) { |
| gicv3_secure_spis_configure(gicv3_driver_data->gicd_base, |
| gicv3_driver_data->g0_interrupt_num, |
| gicv3_driver_data->g0_interrupt_array, |
| INTR_GROUP0); |
| bitmap |= CTLR_ENABLE_G0_BIT; |
| } |
| |
| /* Enable the secure SPIs now that they have been configured */ |
| gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE); |
| } |
| |
| /******************************************************************************* |
| * This function initialises the GIC Redistributor interface of the calling CPU |
| * (identified by the 'proc_num' parameter) based upon the data provided by the |
| * platform while initialising the driver. |
| ******************************************************************************/ |
| void gicv3_rdistif_init(unsigned int proc_num) |
| { |
| uintptr_t gicr_base; |
| |
| assert(gicv3_driver_data); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs); |
| assert(gicv3_driver_data->gicd_base); |
| assert(gicd_read_ctlr(gicv3_driver_data->gicd_base) & CTLR_ARE_S_BIT); |
| assert(gicv3_driver_data->g1s_interrupt_array || |
| gicv3_driver_data->g0_interrupt_array); |
| |
| assert(IS_IN_EL3()); |
| |
| /* Power on redistributor */ |
| gicv3_rdistif_on(proc_num); |
| |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| |
| /* Set the default attribute of all SGIs and PPIs */ |
| gicv3_ppi_sgi_configure_defaults(gicr_base); |
| |
| /* Configure the G1S SGIs/PPIs */ |
| if (gicv3_driver_data->g1s_interrupt_array) { |
| gicv3_secure_ppi_sgi_configure(gicr_base, |
| gicv3_driver_data->g1s_interrupt_num, |
| gicv3_driver_data->g1s_interrupt_array, |
| INTR_GROUP1S); |
| } |
| |
| /* Configure the G0 SGIs/PPIs */ |
| if (gicv3_driver_data->g0_interrupt_array) { |
| gicv3_secure_ppi_sgi_configure(gicr_base, |
| gicv3_driver_data->g0_interrupt_num, |
| gicv3_driver_data->g0_interrupt_array, |
| INTR_GROUP0); |
| } |
| } |
| |
| /******************************************************************************* |
| * Functions to perform power operations on GIC Redistributor |
| ******************************************************************************/ |
| void gicv3_rdistif_off(unsigned int proc_num) |
| { |
| return; |
| } |
| |
| void gicv3_rdistif_on(unsigned int proc_num) |
| { |
| return; |
| } |
| |
| /******************************************************************************* |
| * This function enables the GIC CPU interface of the calling CPU using only |
| * system register accesses. |
| ******************************************************************************/ |
| void gicv3_cpuif_enable(unsigned int proc_num) |
| { |
| uintptr_t gicr_base; |
| unsigned int scr_el3; |
| unsigned int icc_sre_el3; |
| |
| assert(gicv3_driver_data); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs); |
| assert(IS_IN_EL3()); |
| |
| /* Mark the connected core as awake */ |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| gicv3_rdistif_mark_core_awake(gicr_base); |
| |
| /* Disable the legacy interrupt bypass */ |
| icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT; |
| |
| /* |
| * Enable system register access for EL3 and allow lower exception |
| * levels to configure the same for themselves. If the legacy mode is |
| * not supported, the SRE bit is RAO/WI |
| */ |
| icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT); |
| write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3); |
| |
| scr_el3 = read_scr_el3(); |
| |
| /* |
| * Switch to NS state to write Non secure ICC_SRE_EL1 and |
| * ICC_SRE_EL2 registers. |
| */ |
| write_scr_el3(scr_el3 | SCR_NS_BIT); |
| isb(); |
| |
| write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3); |
| write_icc_sre_el1(ICC_SRE_SRE_BIT); |
| isb(); |
| |
| /* Switch to secure state. */ |
| write_scr_el3(scr_el3 & (~SCR_NS_BIT)); |
| isb(); |
| |
| /* Program the idle priority in the PMR */ |
| write_icc_pmr_el1(GIC_PRI_MASK); |
| |
| /* Enable Group0 interrupts */ |
| write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT); |
| |
| /* Enable Group1 Secure interrupts */ |
| write_icc_igrpen1_el3(read_icc_igrpen1_el3() | |
| IGRPEN1_EL3_ENABLE_G1S_BIT); |
| |
| /* Write the secure ICC_SRE_EL1 register */ |
| write_icc_sre_el1(ICC_SRE_SRE_BIT); |
| isb(); |
| } |
| |
| /******************************************************************************* |
| * This function disables the GIC CPU interface of the calling CPU using |
| * only system register accesses. |
| ******************************************************************************/ |
| void gicv3_cpuif_disable(unsigned int proc_num) |
| { |
| uintptr_t gicr_base; |
| |
| assert(gicv3_driver_data); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs); |
| |
| assert(IS_IN_EL3()); |
| |
| /* Disable legacy interrupt bypass */ |
| write_icc_sre_el3(read_icc_sre_el3() | |
| (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT)); |
| |
| /* Disable Group0 interrupts */ |
| write_icc_igrpen0_el1(read_icc_igrpen0_el1() & |
| ~IGRPEN1_EL1_ENABLE_G0_BIT); |
| |
| /* Disable Group1 Secure and Non-Secure interrupts */ |
| write_icc_igrpen1_el3(read_icc_igrpen1_el3() & |
| ~(IGRPEN1_EL3_ENABLE_G1NS_BIT | |
| IGRPEN1_EL3_ENABLE_G1S_BIT)); |
| |
| /* Synchronise accesses to group enable registers */ |
| isb(); |
| |
| /* Mark the connected core as asleep */ |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| gicv3_rdistif_mark_core_asleep(gicr_base); |
| } |
| |
| /******************************************************************************* |
| * This function returns the id of the highest priority pending interrupt at |
| * the GIC cpu interface. |
| ******************************************************************************/ |
| unsigned int gicv3_get_pending_interrupt_id(void) |
| { |
| unsigned int id; |
| |
| assert(IS_IN_EL3()); |
| id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; |
| |
| /* |
| * If the ID is special identifier corresponding to G1S or G1NS |
| * interrupt, then read the highest pending group 1 interrupt. |
| */ |
| if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) |
| return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK; |
| |
| return id; |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the highest priority pending interrupt at |
| * the GIC cpu interface. The return values can be one of the following : |
| * PENDING_G1S_INTID : The interrupt type is secure Group 1. |
| * PENDING_G1NS_INTID : The interrupt type is non secure Group 1. |
| * 0 - 1019 : The interrupt type is secure Group 0. |
| * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with |
| * sufficient priority to be signaled |
| ******************************************************************************/ |
| unsigned int gicv3_get_pending_interrupt_type(void) |
| { |
| assert(IS_IN_EL3()); |
| return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the interrupt id depending upon the group |
| * this interrupt has been configured under by the interrupt controller i.e. |
| * group0 or group1 Secure / Non Secure. The return value can be one of the |
| * following : |
| * INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt |
| * INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt |
| * INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure |
| * interrupt. |
| ******************************************************************************/ |
| unsigned int gicv3_get_interrupt_type(unsigned int id, |
| unsigned int proc_num) |
| { |
| unsigned int igroup, grpmodr; |
| uintptr_t gicr_base; |
| |
| assert(IS_IN_EL3()); |
| assert(gicv3_driver_data); |
| |
| /* Ensure the parameters are valid */ |
| assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| |
| /* All LPI interrupts are Group 1 non secure */ |
| if (id >= MIN_LPI_ID) |
| return INTR_GROUP1NS; |
| |
| if (id < MIN_SPI_ID) { |
| assert(gicv3_driver_data->rdistif_base_addrs); |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| igroup = gicr_get_igroupr0(gicr_base, id); |
| grpmodr = gicr_get_igrpmodr0(gicr_base, id); |
| } else { |
| assert(gicv3_driver_data->gicd_base); |
| igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id); |
| grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id); |
| } |
| |
| /* |
| * If the IGROUP bit is set, then it is a Group 1 Non secure |
| * interrupt |
| */ |
| if (igroup) |
| return INTR_GROUP1NS; |
| |
| /* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */ |
| if (grpmodr) |
| return INTR_GROUP1S; |
| |
| /* Else it is a Group 0 Secure interrupt */ |
| return INTR_GROUP0; |
| } |
| |
| /***************************************************************************** |
| * Function to save and disable the GIC ITS register context. The power |
| * management of GIC ITS is implementation-defined and this function doesn't |
| * save any memory structures required to support ITS. As the sequence to save |
| * this state is implementation defined, it should be executed in platform |
| * specific code. Calling this function alone and then powering down the GIC and |
| * ITS without implementing the aforementioned platform specific code will |
| * corrupt the ITS state. |
| * |
| * This function must be invoked after the GIC CPU interface is disabled. |
| *****************************************************************************/ |
| void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx) |
| { |
| int i; |
| |
| assert(gicv3_driver_data); |
| assert(IS_IN_EL3()); |
| assert(its_ctx); |
| assert(gits_base); |
| |
| its_ctx->gits_ctlr = gits_read_ctlr(gits_base); |
| |
| /* Disable the ITS */ |
| gits_write_ctlr(gits_base, its_ctx->gits_ctlr & |
| (~GITS_CTLR_ENABLED_BIT)); |
| |
| /* Wait for quiescent state */ |
| gits_wait_for_quiescent_bit(gits_base); |
| |
| its_ctx->gits_cbaser = gits_read_cbaser(gits_base); |
| its_ctx->gits_cwriter = gits_read_cwriter(gits_base); |
| |
| for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++) |
| its_ctx->gits_baser[i] = gits_read_baser(gits_base, i); |
| } |
| |
| /***************************************************************************** |
| * Function to restore the GIC ITS register context. The power |
| * management of GIC ITS is implementation defined and this function doesn't |
| * restore any memory structures required to support ITS. The assumption is |
| * that these structures are in memory and are retained during system suspend. |
| * |
| * This must be invoked before the GIC CPU interface is enabled. |
| *****************************************************************************/ |
| void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx) |
| { |
| int i; |
| |
| assert(gicv3_driver_data); |
| assert(IS_IN_EL3()); |
| assert(its_ctx); |
| assert(gits_base); |
| |
| /* Assert that the GITS is disabled and quiescent */ |
| assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0); |
| assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0); |
| |
| gits_write_cbaser(gits_base, its_ctx->gits_cbaser); |
| gits_write_cwriter(gits_base, its_ctx->gits_cwriter); |
| |
| for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++) |
| gits_write_baser(gits_base, i, its_ctx->gits_baser[i]); |
| |
| /* Restore the ITS CTLR but leave the ITS disabled */ |
| gits_write_ctlr(gits_base, its_ctx->gits_ctlr & |
| (~GITS_CTLR_ENABLED_BIT)); |
| } |
| |
| /***************************************************************************** |
| * Function to save the GIC Redistributor register context. This function |
| * must be invoked after CPU interface disable and prior to Distributor save. |
| *****************************************************************************/ |
| void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx) |
| { |
| uintptr_t gicr_base; |
| unsigned int int_id; |
| |
| assert(gicv3_driver_data); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs); |
| assert(IS_IN_EL3()); |
| assert(rdist_ctx); |
| |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| |
| /* |
| * Wait for any write to GICR_CTLR to complete before trying to save any |
| * state. |
| */ |
| gicr_wait_for_pending_write(gicr_base); |
| |
| rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base); |
| |
| rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base); |
| rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base); |
| |
| rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base); |
| rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base); |
| rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base); |
| rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base); |
| rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base); |
| rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base); |
| rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base); |
| rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base); |
| for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM; |
| int_id += (1 << IPRIORITYR_SHIFT)) { |
| rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] = |
| gicr_read_ipriorityr(gicr_base, int_id); |
| } |
| |
| |
| /* |
| * Call the pre-save hook that implements the IMP DEF sequence that may |
| * be required on some GIC implementations. As this may need to access |
| * the Redistributor registers, we pass it proc_num. |
| */ |
| gicv3_distif_pre_save(proc_num); |
| } |
| |
| /***************************************************************************** |
| * Function to restore the GIC Redistributor register context. We disable |
| * LPI and per-cpu interrupts before we start restore of the Redistributor. |
| * This function must be invoked after Distributor restore but prior to |
| * CPU interface enable. The pending and active interrupts are restored |
| * after the interrupts are fully configured and enabled. |
| *****************************************************************************/ |
| void gicv3_rdistif_init_restore(unsigned int proc_num, |
| const gicv3_redist_ctx_t * const rdist_ctx) |
| { |
| uintptr_t gicr_base; |
| unsigned int int_id; |
| |
| assert(gicv3_driver_data); |
| assert(proc_num < gicv3_driver_data->rdistif_num); |
| assert(gicv3_driver_data->rdistif_base_addrs); |
| assert(IS_IN_EL3()); |
| assert(rdist_ctx); |
| |
| gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; |
| |
| /* Power on redistributor */ |
| gicv3_rdistif_on(proc_num); |
| |
| /* |
| * Call the post-restore hook that implements the IMP DEF sequence that |
| * may be required on some GIC implementations. As this may need to |
| * access the Redistributor registers, we pass it proc_num. |
| */ |
| gicv3_distif_post_restore(proc_num); |
| |
| /* |
| * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a |
| * more scalable approach as it avoids clearing the enable bits in the |
| * GICD_CTLR |
| */ |
| gicr_write_icenabler0(gicr_base, ~0); |
| /* Wait for pending writes to GICR_ICENABLER */ |
| gicr_wait_for_pending_write(gicr_base); |
| |
| /* |
| * Disable the LPIs to avoid unpredictable behavior when writing to |
| * GICR_PROPBASER and GICR_PENDBASER. |
| */ |
| gicr_write_ctlr(gicr_base, |
| rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT)); |
| |
| /* Restore registers' content */ |
| gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser); |
| gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser); |
| |
| gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0); |
| |
| for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM; |
| int_id += (1 << IPRIORITYR_SHIFT)) { |
| gicr_write_ipriorityr(gicr_base, int_id, |
| rdist_ctx->gicr_ipriorityr[ |
| (int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]); |
| } |
| |
| gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0); |
| gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1); |
| gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0); |
| gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr); |
| |
| /* Restore after group and priorities are set */ |
| gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0); |
| gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0); |
| |
| /* |
| * Wait for all writes to the Distributor to complete before enabling |
| * the SGI and PPIs. |
| */ |
| gicr_wait_for_upstream_pending_write(gicr_base); |
| gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0); |
| |
| /* |
| * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case |
| * the first write to GICR_CTLR was still in flight (this write only |
| * restores GICR_CTLR.Enable_LPIs and no waiting is required for this |
| * bit). |
| */ |
| gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr); |
| gicr_wait_for_pending_write(gicr_base); |
| } |
| |
| /***************************************************************************** |
| * Function to save the GIC Distributor register context. This function |
| * must be invoked after CPU interface disable and Redistributor save. |
| *****************************************************************************/ |
| void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx) |
| { |
| unsigned int num_ints; |
| |
| assert(gicv3_driver_data); |
| assert(gicv3_driver_data->gicd_base); |
| assert(IS_IN_EL3()); |
| assert(dist_ctx); |
| |
| uintptr_t gicd_base = gicv3_driver_data->gicd_base; |
| |
| num_ints = gicd_read_typer(gicd_base); |
| num_ints &= TYPER_IT_LINES_NO_MASK; |
| num_ints = (num_ints + 1) << 5; |
| |
| assert(num_ints <= MAX_SPI_ID + 1); |
| |
| /* Wait for pending write to complete */ |
| gicd_wait_for_pending_write(gicd_base); |
| |
| /* Save the GICD_CTLR */ |
| dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base); |
| |
| /* Save GICD_IGROUPR for INTIDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR); |
| |
| /* Save GICD_ISENABLER for INT_IDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER); |
| |
| /* Save GICD_ISPENDR for INTIDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR); |
| |
| /* Save GICD_ISACTIVER for INTIDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER); |
| |
| /* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR); |
| |
| /* Save GICD_ICFGR for INTIDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR); |
| |
| /* Save GICD_IGRPMODR for INTIDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR); |
| |
| /* Save GICD_NSACR for INTIDs 32 - 1020 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR); |
| |
| /* Save GICD_IROUTER for INTIDs 32 - 1024 */ |
| SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER); |
| |
| /* |
| * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when |
| * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3 |
| * driver. |
| */ |
| } |
| |
| /***************************************************************************** |
| * Function to restore the GIC Distributor register context. We disable G0, G1S |
| * and G1NS interrupt groups before we start restore of the Distributor. This |
| * function must be invoked prior to Redistributor restore and CPU interface |
| * enable. The pending and active interrupts are restored after the interrupts |
| * are fully configured and enabled. |
| *****************************************************************************/ |
| void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx) |
| { |
| unsigned int num_ints = 0; |
| |
| assert(gicv3_driver_data); |
| assert(gicv3_driver_data->gicd_base); |
| assert(IS_IN_EL3()); |
| assert(dist_ctx); |
| |
| uintptr_t gicd_base = gicv3_driver_data->gicd_base; |
| |
| /* |
| * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring |
| * the ARE_S bit. The Distributor might generate a system error |
| * otherwise. |
| */ |
| gicd_clr_ctlr(gicd_base, |
| CTLR_ENABLE_G0_BIT | |
| CTLR_ENABLE_G1S_BIT | |
| CTLR_ENABLE_G1NS_BIT, |
| RWP_TRUE); |
| |
| /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ |
| gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); |
| |
| num_ints = gicd_read_typer(gicd_base); |
| num_ints &= TYPER_IT_LINES_NO_MASK; |
| num_ints = (num_ints + 1) << 5; |
| |
| assert(num_ints <= MAX_SPI_ID + 1); |
| |
| /* Restore GICD_IGROUPR for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR); |
| |
| /* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR); |
| |
| /* Restore GICD_ICFGR for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR); |
| |
| /* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR); |
| |
| /* Restore GICD_NSACR for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR); |
| |
| /* Restore GICD_IROUTER for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER); |
| |
| /* |
| * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are |
| * configured. |
| */ |
| |
| /* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER); |
| |
| /* Restore GICD_ISPENDR for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR); |
| |
| /* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */ |
| RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER); |
| |
| /* Restore the GICD_CTLR */ |
| gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr); |
| gicd_wait_for_pending_write(gicd_base); |
| |
| } |