blob: 29e936aff8d71cb1f39dbcc0e976e2a0f65d544b [file] [log] [blame]
/*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <libfdt.h>
#include <platform_def.h>
#include <common/debug.h>
#include <drivers/st/stm32_gpio.h>
#include <drivers/st/stm32mp1_clk.h>
#include <drivers/st/stm32mp1_clkfunc.h>
#include <drivers/st/stm32mp1_ddr.h>
#include <drivers/st/stm32mp1_ram.h>
#include <stm32mp1_dt.h>
#define DT_GPIO_BANK_SHIFT 12
#define DT_GPIO_BANK_MASK 0x1F000U
#define DT_GPIO_PIN_SHIFT 8
#define DT_GPIO_PIN_MASK 0xF00U
#define DT_GPIO_MODE_MASK 0xFFU
static int fdt_checked;
static void *fdt = (void *)(uintptr_t)STM32MP1_DTB_BASE;
/*******************************************************************************
* This function gets the pin settings from DT information.
* When analyze and parsing is done, set the GPIO registers.
* Return 0 on success, else return a negative FDT_ERR_xxx error code.
******************************************************************************/
static int dt_set_gpio_config(int node)
{
const fdt32_t *cuint, *slewrate;
int len, pinctrl_node, pinctrl_subnode;
uint32_t i;
uint32_t speed = GPIO_SPEED_LOW;
uint32_t pull = GPIO_NO_PULL;
cuint = fdt_getprop(fdt, node, "pinmux", &len);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
pinctrl_node = fdt_parent_offset(fdt, fdt_parent_offset(fdt, node));
if (pinctrl_node < 0) {
return -FDT_ERR_NOTFOUND;
}
slewrate = fdt_getprop(fdt, node, "slew-rate", NULL);
if (slewrate != NULL) {
speed = fdt32_to_cpu(*slewrate);
}
if (fdt_getprop(fdt, node, "bias-pull-up", NULL) != NULL) {
pull = GPIO_PULL_UP;
} else if (fdt_getprop(fdt, node, "bias-pull-down", NULL) != NULL) {
pull = GPIO_PULL_DOWN;
} else {
VERBOSE("No bias configured in node %d\n", node);
}
for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
uint32_t pincfg;
uint32_t bank;
uint32_t pin;
uint32_t mode;
uint32_t alternate = GPIO_ALTERNATE_0;
pincfg = fdt32_to_cpu(*cuint);
cuint++;
bank = (pincfg & DT_GPIO_BANK_MASK) >> DT_GPIO_BANK_SHIFT;
pin = (pincfg & DT_GPIO_PIN_MASK) >> DT_GPIO_PIN_SHIFT;
mode = pincfg & DT_GPIO_MODE_MASK;
switch (mode) {
case 0:
mode = GPIO_MODE_INPUT;
break;
case 1 ... 16:
alternate = mode - 1U;
mode = GPIO_MODE_ALTERNATE;
break;
case 17:
mode = GPIO_MODE_ANALOG;
break;
default:
mode = GPIO_MODE_OUTPUT;
break;
}
if (fdt_getprop(fdt, node, "drive-open-drain", NULL) != NULL) {
mode |= GPIO_OPEN_DRAIN;
}
fdt_for_each_subnode(pinctrl_subnode, fdt, pinctrl_node) {
uint32_t bank_offset;
const fdt32_t *cuint2;
if (fdt_getprop(fdt, pinctrl_subnode,
"gpio-controller", NULL) == NULL) {
continue;
}
cuint2 = fdt_getprop(fdt, pinctrl_subnode, "reg", NULL);
if (cuint2 == NULL) {
continue;
}
if (bank == GPIO_BANK_Z) {
bank_offset = 0;
} else {
bank_offset = bank * STM32_GPIO_BANK_OFFSET;
}
if (fdt32_to_cpu(*cuint2) == bank_offset) {
int clk_id = fdt_get_clock_id(pinctrl_subnode);
if (clk_id < 0) {
return -FDT_ERR_NOTFOUND;
}
if (stm32mp1_clk_enable((unsigned long)clk_id) <
0) {
return -FDT_ERR_BADVALUE;
}
break;
}
}
set_gpio(bank, pin, mode, speed, pull, alternate);
}
return 0;
}
/*******************************************************************************
* This function checks device tree file with its header.
* Returns 0 if success, and a negative value else.
******************************************************************************/
int dt_open_and_check(void)
{
int ret = fdt_check_header(fdt);
if (ret == 0) {
fdt_checked = 1;
}
return ret;
}
/*******************************************************************************
* This function gets the address of the DT.
* If DT is OK, fdt_addr is filled with DT address.
* Returns 1 if success, 0 otherwise.
******************************************************************************/
int fdt_get_address(void **fdt_addr)
{
if (fdt_checked == 1) {
*fdt_addr = fdt;
}
return fdt_checked;
}
/*******************************************************************************
* This function check the presence of a node (generic use of fdt library).
* Returns true if present, false else.
******************************************************************************/
bool fdt_check_node(int node)
{
int len;
const char *cchar;
cchar = fdt_get_name(fdt, node, &len);
return (cchar != NULL) && (len >= 0);
}
/*******************************************************************************
* This function check the status of a node (generic use of fdt library).
* Returns true if "okay" or missing, false else.
******************************************************************************/
bool fdt_check_status(int node)
{
int len;
const char *cchar;
cchar = fdt_getprop(fdt, node, "status", &len);
if (cchar == NULL) {
return true;
}
return strncmp(cchar, "okay", (size_t)len) == 0;
}
/*******************************************************************************
* This function check the secure-status of a node (generic use of fdt library).
* Returns true if "okay" or missing, false else.
******************************************************************************/
bool fdt_check_secure_status(int node)
{
int len;
const char *cchar;
cchar = fdt_getprop(fdt, node, "secure-status", &len);
if (cchar == NULL) {
return true;
}
return strncmp(cchar, "okay", (size_t)len) == 0;
}
/*******************************************************************************
* This function reads a value of a node property (generic use of fdt
* library).
* Returns value if success, and a default value if property not found.
* Default value is passed as parameter.
******************************************************************************/
uint32_t fdt_read_uint32_default(int node, const char *prop_name,
uint32_t dflt_value)
{
const fdt32_t *cuint;
int lenp;
cuint = fdt_getprop(fdt, node, prop_name, &lenp);
if (cuint == NULL) {
return dflt_value;
}
return fdt32_to_cpu(*cuint);
}
/*******************************************************************************
* This function reads a series of parameters in a node property
* (generic use of fdt library).
* It reads the values inside the device tree, from property name and node.
* The number of parameters is also indicated as entry parameter.
* Returns 0 if success, and a negative value else.
* If success, values are stored at the third parameter address.
******************************************************************************/
int fdt_read_uint32_array(int node, const char *prop_name, uint32_t *array,
uint32_t count)
{
const fdt32_t *cuint;
int len;
uint32_t i;
cuint = fdt_getprop(fdt, node, prop_name, &len);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
if ((uint32_t)len != (count * sizeof(uint32_t))) {
return -FDT_ERR_BADLAYOUT;
}
for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
*array = fdt32_to_cpu(*cuint);
array++;
cuint++;
}
return 0;
}
/*******************************************************************************
* This function gets the pin settings from DT information.
* When analyze and parsing is done, set the GPIO registers.
* Returns 0 if success, and a negative value else.
******************************************************************************/
int dt_set_pinctrl_config(int node)
{
const fdt32_t *cuint;
int lenp = 0;
uint32_t i;
if (!fdt_check_status(node)) {
return -FDT_ERR_NOTFOUND;
}
cuint = fdt_getprop(fdt, node, "pinctrl-0", &lenp);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
for (i = 0; i < ((uint32_t)lenp / 4U); i++) {
int phandle_node, phandle_subnode;
phandle_node =
fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (phandle_node < 0) {
return -FDT_ERR_NOTFOUND;
}
fdt_for_each_subnode(phandle_subnode, fdt, phandle_node) {
int ret = dt_set_gpio_config(phandle_subnode);
if (ret < 0) {
return ret;
}
}
cuint++;
}
return 0;
}
/*******************************************************************************
* This function gets the stdout pin configuration information from the DT.
* And then calls the sub-function to treat it and set GPIO registers.
* Returns 0 if success, and a negative value else.
******************************************************************************/
int dt_set_stdout_pinctrl(void)
{
int node;
node = dt_get_stdout_node_offset();
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
return dt_set_pinctrl_config(node);
}
/*******************************************************************************
* This function fills the generic information from a given node.
******************************************************************************/
void dt_fill_device_info(struct dt_node_info *info, int node)
{
const fdt32_t *cuint;
cuint = fdt_getprop(fdt, node, "reg", NULL);
if (cuint != NULL) {
info->base = fdt32_to_cpu(*cuint);
} else {
info->base = 0;
}
cuint = fdt_getprop(fdt, node, "clocks", NULL);
if (cuint != NULL) {
cuint++;
info->clock = (int)fdt32_to_cpu(*cuint);
} else {
info->clock = -1;
}
cuint = fdt_getprop(fdt, node, "resets", NULL);
if (cuint != NULL) {
cuint++;
info->reset = (int)fdt32_to_cpu(*cuint);
} else {
info->reset = -1;
}
info->status = fdt_check_status(node);
info->sec_status = fdt_check_secure_status(node);
}
/*******************************************************************************
* This function retrieve the generic information from DT.
* Returns node if success, and a negative value else.
******************************************************************************/
int dt_get_node(struct dt_node_info *info, int offset, const char *compat)
{
int node;
node = fdt_node_offset_by_compatible(fdt, offset, compat);
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
dt_fill_device_info(info, node);
return node;
}
/*******************************************************************************
* This function gets the UART instance info of stdout from the DT.
* Returns node if success, and a negative value else.
******************************************************************************/
int dt_get_stdout_uart_info(struct dt_node_info *info)
{
int node;
node = dt_get_stdout_node_offset();
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
dt_fill_device_info(info, node);
return node;
}
/*******************************************************************************
* This function gets the stdout path node.
* It reads the value indicated inside the device tree.
* Returns node if success, and a negative value else.
******************************************************************************/
int dt_get_stdout_node_offset(void)
{
int node;
const char *cchar;
node = fdt_path_offset(fdt, "/chosen");
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
cchar = fdt_getprop(fdt, node, "stdout-path", NULL);
if (cchar == NULL) {
return -FDT_ERR_NOTFOUND;
}
node = -FDT_ERR_NOTFOUND;
if (strchr(cchar, (int)':') != NULL) {
const char *name;
char *str = (char *)cchar;
int len = 0;
while (strncmp(":", str, 1)) {
len++;
str++;
}
name = fdt_get_alias_namelen(fdt, cchar, len);
if (name != NULL) {
node = fdt_path_offset(fdt, name);
}
} else {
node = fdt_path_offset(fdt, cchar);
}
return node;
}
/*******************************************************************************
* This function gets DDR size information from the DT.
* Returns value in bytes if success, and STM32MP1_DDR_SIZE_DFLT else.
******************************************************************************/
uint32_t dt_get_ddr_size(void)
{
int node;
node = fdt_node_offset_by_compatible(fdt, -1, DT_DDR_COMPAT);
if (node < 0) {
INFO("%s: Cannot read DDR node in DT\n", __func__);
return STM32MP1_DDR_SIZE_DFLT;
}
return fdt_read_uint32_default(node, "st,mem-size",
STM32MP1_DDR_SIZE_DFLT);
}
/*******************************************************************************
* This function retrieves board model from DT
* Returns string taken from model node, NULL otherwise
******************************************************************************/
const char *dt_get_board_model(void)
{
int node = fdt_path_offset(fdt, "/");
if (node < 0) {
return NULL;
}
return (const char *)fdt_getprop(fdt, node, "model", NULL);
}