| /* |
| * Copyright (C) 2018 Marvell International Ltd. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| * https://spdx.org/licenses |
| */ |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stddef.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <sys/stat.h> |
| #include <sys/time.h> |
| |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| #include <libconfig.h> /* for parsing config file */ |
| |
| #if !defined(MBEDTLS_CONFIG_FILE) |
| #include "mbedtls/config.h" |
| #else |
| #include MBEDTLS_CONFIG_FILE |
| #endif |
| |
| /* mbedTLS stuff */ |
| #if defined(MBEDTLS_BIGNUM_C) && defined(MBEDTLS_ENTROPY_C) && \ |
| defined(MBEDTLS_SHA256_C) && \ |
| defined(MBEDTLS_PK_PARSE_C) && defined(MBEDTLS_FS_IO) && \ |
| defined(MBEDTLS_CTR_DRBG_C) |
| #include <mbedtls/error.h> |
| #include <mbedtls/entropy.h> |
| #include <mbedtls/ctr_drbg.h> |
| #include <mbedtls/md.h> |
| #include <mbedtls/pk.h> |
| #include <mbedtls/sha256.h> |
| #include <mbedtls/x509.h> |
| #else |
| #error "Bad mbedTLS configuration!" |
| #endif |
| #endif /* CONFIG_MVEBU_SECURE_BOOT */ |
| |
| #define MAX_FILENAME 256 |
| #define CSK_ARR_SZ 16 |
| #define CSK_ARR_EMPTY_FILE "*" |
| #define AES_KEY_BIT_LEN 256 |
| #define AES_KEY_BYTE_LEN (AES_KEY_BIT_LEN >> 3) |
| #define AES_BLOCK_SZ 16 |
| #define RSA_SIGN_BYTE_LEN 256 |
| #define MAX_RSA_DER_BYTE_LEN 524 |
| /* Number of address pairs in control array */ |
| #define CP_CTRL_EL_ARRAY_SZ 32 |
| |
| #define VERSION_STRING "Marvell(C) doimage utility version 3.3" |
| |
| /* A8K definitions */ |
| |
| /* Extension header types */ |
| #define EXT_TYPE_SECURITY 0x1 |
| #define EXT_TYPE_BINARY 0x2 |
| |
| #define MAIN_HDR_MAGIC 0xB105B002 |
| |
| /* PROLOG alignment considerations: |
| * 128B: To allow supporting XMODEM protocol. |
| * 8KB: To align the boot image to the largest NAND page size, and simplify |
| * the read operations from NAND. |
| * We choose the largest page size, in order to use a single image for all |
| * NAND page sizes. |
| */ |
| #define PROLOG_ALIGNMENT (8 << 10) |
| |
| /* UART argument bitfield */ |
| #define UART_MODE_UNMODIFIED 0x0 |
| #define UART_MODE_DISABLE 0x1 |
| #define UART_MODE_UPDATE 0x2 |
| |
| typedef struct _main_header { |
| uint32_t magic; /* 0-3 */ |
| uint32_t prolog_size; /* 4-7 */ |
| uint32_t prolog_checksum; /* 8-11 */ |
| uint32_t boot_image_size; /* 12-15 */ |
| uint32_t boot_image_checksum; /* 16-19 */ |
| uint32_t rsrvd0; /* 20-23 */ |
| uint32_t load_addr; /* 24-27 */ |
| uint32_t exec_addr; /* 28-31 */ |
| uint8_t uart_cfg; /* 32 */ |
| uint8_t baudrate; /* 33 */ |
| uint8_t ext_count; /* 34 */ |
| uint8_t aux_flags; /* 35 */ |
| uint32_t io_arg_0; /* 36-39 */ |
| uint32_t io_arg_1; /* 40-43 */ |
| uint32_t io_arg_2; /* 43-47 */ |
| uint32_t io_arg_3; /* 48-51 */ |
| uint32_t rsrvd1; /* 52-55 */ |
| uint32_t rsrvd2; /* 56-59 */ |
| uint32_t rsrvd3; /* 60-63 */ |
| } header_t; |
| |
| typedef struct _ext_header { |
| uint8_t type; |
| uint8_t offset; |
| uint16_t reserved; |
| uint32_t size; |
| } ext_header_t; |
| |
| typedef struct _sec_entry { |
| uint8_t kak_key[MAX_RSA_DER_BYTE_LEN]; |
| uint32_t jtag_delay; |
| uint32_t box_id; |
| uint32_t flash_id; |
| uint32_t jtag_en; |
| uint32_t encrypt_en; |
| uint32_t efuse_dis; |
| uint8_t header_sign[RSA_SIGN_BYTE_LEN]; |
| uint8_t image_sign[RSA_SIGN_BYTE_LEN]; |
| uint8_t csk_keys[CSK_ARR_SZ][MAX_RSA_DER_BYTE_LEN]; |
| uint8_t csk_sign[RSA_SIGN_BYTE_LEN]; |
| uint32_t cp_ctrl_arr[CP_CTRL_EL_ARRAY_SZ]; |
| uint32_t cp_efuse_arr[CP_CTRL_EL_ARRAY_SZ]; |
| } sec_entry_t; |
| |
| /* A8K definitions end */ |
| |
| /* UART argument bitfield */ |
| #define UART_MODE_UNMODIFIED 0x0 |
| #define UART_MODE_DISABLE 0x1 |
| #define UART_MODE_UPDATE 0x2 |
| |
| #define uart_set_mode(arg, mode) (arg |= (mode & 0x3)) |
| |
| typedef struct _sec_options { |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| char aes_key_file[MAX_FILENAME+1]; |
| char kak_key_file[MAX_FILENAME+1]; |
| char csk_key_file[CSK_ARR_SZ][MAX_FILENAME+1]; |
| uint32_t box_id; |
| uint32_t flash_id; |
| uint32_t jtag_delay; |
| uint8_t csk_index; |
| uint8_t jtag_enable; |
| uint8_t efuse_disable; |
| uint32_t cp_ctrl_arr[CP_CTRL_EL_ARRAY_SZ]; |
| uint32_t cp_efuse_arr[CP_CTRL_EL_ARRAY_SZ]; |
| mbedtls_pk_context kak_pk; |
| mbedtls_pk_context csk_pk[CSK_ARR_SZ]; |
| uint8_t aes_key[AES_KEY_BYTE_LEN]; |
| uint8_t *encrypted_image; |
| uint32_t enc_image_sz; |
| #endif |
| } sec_options; |
| |
| typedef struct _options { |
| char bin_ext_file[MAX_FILENAME+1]; |
| char sec_cfg_file[MAX_FILENAME+1]; |
| sec_options *sec_opts; |
| uint32_t load_addr; |
| uint32_t exec_addr; |
| uint32_t baudrate; |
| uint8_t disable_print; |
| int8_t key_index; /* For header signatures verification only */ |
| uint32_t nfc_io_args; |
| } options_t; |
| |
| void usage_err(char *msg) |
| { |
| fprintf(stderr, "Error: %s\n", msg); |
| fprintf(stderr, "run 'doimage -h' to get usage information\n"); |
| exit(-1); |
| } |
| |
| void usage(void) |
| { |
| printf("\n\n%s\n\n", VERSION_STRING); |
| printf("Usage: doimage [options] <input_file> [output_file]\n"); |
| printf("create bootrom image from u-boot and boot extensions\n\n"); |
| |
| printf("Arguments\n"); |
| printf(" input_file name of boot image file.\n"); |
| printf(" if -p is used, name of the bootrom image file"); |
| printf(" to parse.\n"); |
| printf(" output_file name of output bootrom image file\n"); |
| |
| printf("\nOptions\n"); |
| printf(" -s target SOC name. supports a8020,a7020\n"); |
| printf(" different SOCs may have different boot image\n"); |
| printf(" format so it's mandatory to know the target SOC\n"); |
| printf(" -i boot I/F name. supports nand, spi, nor\n"); |
| printf(" This affects certain parameters coded in the\n"); |
| printf(" image header\n"); |
| printf(" -l boot image load address. default is 0x0\n"); |
| printf(" -e boot image entry address. default is 0x0\n"); |
| printf(" -b binary extension image file.\n"); |
| printf(" This image is executed before the boot image.\n"); |
| printf(" This is typically used to initialize the memory "); |
| printf(" controller.\n"); |
| printf(" Currently supports only a single file.\n"); |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| printf(" -c Make trusted boot image using parameters\n"); |
| printf(" from the configuration file.\n"); |
| #endif |
| printf(" -p Parse and display a pre-built boot image\n"); |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| printf(" -k Key index for RSA signatures verification\n"); |
| printf(" when parsing the boot image\n"); |
| #endif |
| printf(" -m Disable prints of bootrom and binary extension\n"); |
| printf(" -u UART baudrate used for bootrom prints.\n"); |
| printf(" Must be multiple of 1200\n"); |
| printf(" -h Show this help message\n"); |
| printf(" IO-ROM NFC-NAND boot parameters:\n"); |
| printf(" -n NAND device block size in KB [Default is 64KB].\n"); |
| printf(" -t NAND cell technology (SLC [Default] or MLC)\n"); |
| |
| exit(-1); |
| } |
| |
| /* globals */ |
| static options_t opts = { |
| .bin_ext_file = "NA", |
| .sec_cfg_file = "NA", |
| .sec_opts = 0, |
| .load_addr = 0x0, |
| .exec_addr = 0x0, |
| .disable_print = 0, |
| .baudrate = 0, |
| .key_index = -1, |
| }; |
| |
| int get_file_size(char *filename) |
| { |
| struct stat st; |
| |
| if (stat(filename, &st) == 0) |
| return st.st_size; |
| |
| return -1; |
| } |
| |
| uint32_t checksum32(uint32_t *start, int len) |
| { |
| uint32_t sum = 0; |
| uint32_t *startp = start; |
| |
| do { |
| sum += *startp; |
| startp++; |
| len -= 4; |
| } while (len > 0); |
| |
| return sum; |
| } |
| |
| /******************************************************************************* |
| * create_rsa_signature (memory buffer content) |
| * Create RSASSA-PSS/SHA-256 signature for memory buffer |
| * using RSA Private Key |
| * INPUT: |
| * pk_ctx Private Key context |
| * input memory buffer |
| * ilen buffer length |
| * pers personalization string for seeding the RNG. |
| * For instance a private key file name. |
| * OUTPUT: |
| * signature RSA-2048 signature |
| * RETURN: |
| * 0 on success |
| */ |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| int create_rsa_signature(mbedtls_pk_context *pk_ctx, |
| const unsigned char *input, |
| size_t ilen, |
| const char *pers, |
| uint8_t *signature) |
| { |
| mbedtls_entropy_context entropy; |
| mbedtls_ctr_drbg_context ctr_drbg; |
| unsigned char hash[32]; |
| unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
| int rval; |
| |
| /* Not sure this is required, |
| * but it's safer to start with empty buffers |
| */ |
| memset(hash, 0, sizeof(hash)); |
| memset(buf, 0, sizeof(buf)); |
| |
| mbedtls_ctr_drbg_init(&ctr_drbg); |
| mbedtls_entropy_init(&entropy); |
| |
| /* Seed the random number generator */ |
| rval = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, |
| (const unsigned char *)pers, strlen(pers)); |
| if (rval != 0) { |
| fprintf(stderr, " Failed in ctr_drbg_init call (%d)!\n", rval); |
| goto sign_exit; |
| } |
| |
| /* The PK context should be already initialized. |
| * Set the padding type for this PK context |
| */ |
| mbedtls_rsa_set_padding(mbedtls_pk_rsa(*pk_ctx), |
| MBEDTLS_RSA_PKCS_V21, MBEDTLS_MD_SHA256); |
| |
| /* First compute the SHA256 hash for the input blob */ |
| mbedtls_sha256_ret(input, ilen, hash, 0); |
| |
| /* Then calculate the hash signature */ |
| rval = mbedtls_rsa_rsassa_pss_sign(mbedtls_pk_rsa(*pk_ctx), |
| mbedtls_ctr_drbg_random, |
| &ctr_drbg, |
| MBEDTLS_RSA_PRIVATE, |
| MBEDTLS_MD_SHA256, 0, hash, buf); |
| if (rval != 0) { |
| fprintf(stderr, |
| "Failed to create RSA signature for %s. Error %d\n", |
| pers, rval); |
| goto sign_exit; |
| } |
| memcpy(signature, buf, 256); |
| |
| sign_exit: |
| mbedtls_ctr_drbg_free(&ctr_drbg); |
| mbedtls_entropy_free(&entropy); |
| |
| return rval; |
| } /* end of create_rsa_signature */ |
| |
| /******************************************************************************* |
| * verify_rsa_signature (memory buffer content) |
| * Verify RSASSA-PSS/SHA-256 signature for memory buffer |
| * using RSA Public Key |
| * INPUT: |
| * pub_key Public Key buffer |
| * ilen Public Key buffer length |
| * input memory buffer |
| * ilen buffer length |
| * pers personalization string for seeding the RNG. |
| * signature RSA-2048 signature |
| * OUTPUT: |
| * none |
| * RETURN: |
| * 0 on success |
| */ |
| int verify_rsa_signature(const unsigned char *pub_key, |
| size_t klen, |
| const unsigned char *input, |
| size_t ilen, |
| const char *pers, |
| uint8_t *signature) |
| { |
| mbedtls_entropy_context entropy; |
| mbedtls_ctr_drbg_context ctr_drbg; |
| mbedtls_pk_context pk_ctx; |
| unsigned char hash[32]; |
| int rval; |
| unsigned char *pkey = (unsigned char *)pub_key; |
| |
| /* Not sure this is required, |
| * but it's safer to start with empty buffer |
| */ |
| memset(hash, 0, sizeof(hash)); |
| |
| mbedtls_pk_init(&pk_ctx); |
| mbedtls_ctr_drbg_init(&ctr_drbg); |
| mbedtls_entropy_init(&entropy); |
| |
| /* Seed the random number generator */ |
| rval = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, |
| (const unsigned char *)pers, strlen(pers)); |
| if (rval != 0) { |
| fprintf(stderr, " Failed in ctr_drbg_init call (%d)!\n", rval); |
| goto verify_exit; |
| } |
| |
| /* Check ability to read the public key */ |
| rval = mbedtls_pk_parse_subpubkey(&pkey, pub_key + klen, &pk_ctx); |
| if (rval != 0) { |
| fprintf(stderr, " Failed in pk_parse_public_key (%#x)!\n", |
| rval); |
| goto verify_exit; |
| } |
| |
| /* Set the padding type for the new PK context */ |
| mbedtls_rsa_set_padding(mbedtls_pk_rsa(pk_ctx), |
| MBEDTLS_RSA_PKCS_V21, |
| MBEDTLS_MD_SHA256); |
| |
| /* Compute the SHA256 hash for the input buffer */ |
| mbedtls_sha256_ret(input, ilen, hash, 0); |
| |
| rval = mbedtls_rsa_rsassa_pss_verify(mbedtls_pk_rsa(pk_ctx), |
| mbedtls_ctr_drbg_random, |
| &ctr_drbg, |
| MBEDTLS_RSA_PUBLIC, |
| MBEDTLS_MD_SHA256, 0, |
| hash, signature); |
| if (rval != 0) |
| fprintf(stderr, "Failed to verify signature (%d)!\n", rval); |
| |
| verify_exit: |
| |
| mbedtls_pk_free(&pk_ctx); |
| mbedtls_ctr_drbg_free(&ctr_drbg); |
| mbedtls_entropy_free(&entropy); |
| return rval; |
| } /* end of verify_rsa_signature */ |
| |
| /******************************************************************************* |
| * image_encrypt |
| * Encrypt image buffer using AES-256-CBC scheme. |
| * The resulting image is saved into opts.sec_opts->encrypted_image |
| * and the adjusted image size into opts.sec_opts->enc_image_sz |
| * First AES_BLOCK_SZ bytes of the output image contain IV |
| * INPUT: |
| * buf Source buffer to encrypt |
| * blen Source buffer length |
| * OUTPUT: |
| * none |
| * RETURN: |
| * 0 on success |
| */ |
| int image_encrypt(uint8_t *buf, uint32_t blen) |
| { |
| struct timeval tv; |
| char *ptmp = (char *)&tv; |
| unsigned char digest[32]; |
| unsigned char IV[AES_BLOCK_SZ]; |
| int i, k; |
| mbedtls_aes_context aes_ctx; |
| int rval = -1; |
| uint8_t *test_img = 0; |
| |
| if (AES_BLOCK_SZ > 32) { |
| fprintf(stderr, "Unsupported AES block size %d\n", |
| AES_BLOCK_SZ); |
| return rval; |
| } |
| |
| mbedtls_aes_init(&aes_ctx); |
| memset(IV, 0, AES_BLOCK_SZ); |
| memset(digest, 0, 32); |
| |
| /* Generate initialization vector and init the AES engine |
| * Use file name XOR current time and finally SHA-256 |
| * [0...AES_BLOCK_SZ-1] |
| */ |
| k = strlen(opts.sec_opts->aes_key_file); |
| if (k > AES_BLOCK_SZ) |
| k = AES_BLOCK_SZ; |
| memcpy(IV, opts.sec_opts->aes_key_file, k); |
| gettimeofday(&tv, 0); |
| |
| for (i = 0, k = 0; i < AES_BLOCK_SZ; i++, |
| k = (k+1) % sizeof(struct timeval)) |
| IV[i] ^= ptmp[k]; |
| |
| /* compute SHA-256 digest of the results |
| * and use it as the init vector (IV) |
| */ |
| mbedtls_sha256_ret(IV, AES_BLOCK_SZ, digest, 0); |
| memcpy(IV, digest, AES_BLOCK_SZ); |
| mbedtls_aes_setkey_enc(&aes_ctx, opts.sec_opts->aes_key, |
| AES_KEY_BIT_LEN); |
| |
| /* The output image has to include extra space for IV |
| * and to be aligned to the AES block size. |
| * The input image buffer has to be already aligned to AES_BLOCK_SZ |
| * and padded with zeroes |
| */ |
| opts.sec_opts->enc_image_sz = (blen + 2 * AES_BLOCK_SZ - 1) & |
| ~(AES_BLOCK_SZ - 1); |
| opts.sec_opts->encrypted_image = calloc(opts.sec_opts->enc_image_sz, 1); |
| if (opts.sec_opts->encrypted_image == 0) { |
| fprintf(stderr, "Failed to allocate encrypted image!\n"); |
| goto encrypt_exit; |
| } |
| |
| /* Put IV into the output buffer next to the encrypted image |
| * Since the IV is modified by the encryption function, |
| * this should be done now |
| */ |
| memcpy(opts.sec_opts->encrypted_image + |
| opts.sec_opts->enc_image_sz - AES_BLOCK_SZ, |
| IV, AES_BLOCK_SZ); |
| rval = mbedtls_aes_crypt_cbc(&aes_ctx, MBEDTLS_AES_ENCRYPT, |
| opts.sec_opts->enc_image_sz - AES_BLOCK_SZ, |
| IV, buf, opts.sec_opts->encrypted_image); |
| if (rval != 0) { |
| fprintf(stderr, "Failed to encrypt the image! Error %d\n", |
| rval); |
| goto encrypt_exit; |
| } |
| |
| mbedtls_aes_free(&aes_ctx); |
| |
| /* Try to decrypt the image and compare it with the original data */ |
| mbedtls_aes_init(&aes_ctx); |
| mbedtls_aes_setkey_dec(&aes_ctx, opts.sec_opts->aes_key, |
| AES_KEY_BIT_LEN); |
| |
| test_img = calloc(opts.sec_opts->enc_image_sz - AES_BLOCK_SZ, 1); |
| if (test_img == 0) { |
| fprintf(stderr, "Failed to allocate test image!d\n"); |
| rval = -1; |
| goto encrypt_exit; |
| } |
| |
| memcpy(IV, opts.sec_opts->encrypted_image + |
| opts.sec_opts->enc_image_sz - AES_BLOCK_SZ, |
| AES_BLOCK_SZ); |
| rval = mbedtls_aes_crypt_cbc(&aes_ctx, MBEDTLS_AES_DECRYPT, |
| opts.sec_opts->enc_image_sz - AES_BLOCK_SZ, |
| IV, opts.sec_opts->encrypted_image, test_img); |
| if (rval != 0) { |
| fprintf(stderr, "Failed to decrypt the image! Error %d\n", |
| rval); |
| goto encrypt_exit; |
| } |
| |
| for (i = 0; i < blen; i++) { |
| if (buf[i] != test_img[i]) { |
| fprintf(stderr, "Failed to compare the image after"); |
| fprintf(stderr, " decryption! Byte count is %d\n", i); |
| rval = -1; |
| goto encrypt_exit; |
| } |
| } |
| |
| encrypt_exit: |
| |
| mbedtls_aes_free(&aes_ctx); |
| if (test_img) |
| free(test_img); |
| |
| return rval; |
| } /* end of image_encrypt */ |
| |
| /******************************************************************************* |
| * verify_secure_header_signatures |
| * Verify CSK array, header and image signatures and print results |
| * INPUT: |
| * main_hdr Main header |
| * sec_ext Secure extension |
| * OUTPUT: |
| * none |
| * RETURN: |
| * 0 on success |
| */ |
| int verify_secure_header_signatures(header_t *main_hdr, sec_entry_t *sec_ext) |
| { |
| uint8_t *image = (uint8_t *)main_hdr + main_hdr->prolog_size; |
| uint8_t signature[RSA_SIGN_BYTE_LEN]; |
| int rval = -1; |
| |
| /* Save headers signature and reset it in the secure header */ |
| memcpy(signature, sec_ext->header_sign, RSA_SIGN_BYTE_LEN); |
| memset(sec_ext->header_sign, 0, RSA_SIGN_BYTE_LEN); |
| |
| fprintf(stdout, "\nCheck RSA Signatures\n"); |
| fprintf(stdout, "#########################\n"); |
| fprintf(stdout, "CSK Block Signature: "); |
| if (verify_rsa_signature(sec_ext->kak_key, |
| MAX_RSA_DER_BYTE_LEN, |
| &sec_ext->csk_keys[0][0], |
| sizeof(sec_ext->csk_keys), |
| "CSK Block Signature: ", |
| sec_ext->csk_sign) != 0) { |
| fprintf(stdout, "ERROR\n"); |
| goto ver_error; |
| } |
| fprintf(stdout, "OK\n"); |
| |
| if (opts.key_index != -1) { |
| fprintf(stdout, "Image Signature: "); |
| if (verify_rsa_signature(sec_ext->csk_keys[opts.key_index], |
| MAX_RSA_DER_BYTE_LEN, |
| image, main_hdr->boot_image_size, |
| "Image Signature: ", |
| sec_ext->image_sign) != 0) { |
| fprintf(stdout, "ERROR\n"); |
| goto ver_error; |
| } |
| fprintf(stdout, "OK\n"); |
| |
| fprintf(stdout, "Header Signature: "); |
| if (verify_rsa_signature(sec_ext->csk_keys[opts.key_index], |
| MAX_RSA_DER_BYTE_LEN, |
| (uint8_t *)main_hdr, |
| main_hdr->prolog_size, |
| "Header Signature: ", |
| signature) != 0) { |
| fprintf(stdout, "ERROR\n"); |
| goto ver_error; |
| } |
| fprintf(stdout, "OK\n"); |
| } else { |
| fprintf(stdout, "SKIP Image and Header Signatures"); |
| fprintf(stdout, " check (undefined key index)\n"); |
| } |
| |
| rval = 0; |
| |
| ver_error: |
| memcpy(sec_ext->header_sign, signature, RSA_SIGN_BYTE_LEN); |
| return rval; |
| } |
| |
| /******************************************************************************* |
| * verify_and_copy_file_name_entry |
| * INPUT: |
| * element_name |
| * element |
| * OUTPUT: |
| * copy_to |
| * RETURN: |
| * 0 on success |
| */ |
| int verify_and_copy_file_name_entry(const char *element_name, |
| const char *element, char *copy_to) |
| { |
| int element_length = strlen(element); |
| |
| if (element_length >= MAX_FILENAME) { |
| fprintf(stderr, "The file name %s for %s is too long (%d). ", |
| element, element_name, element_length); |
| fprintf(stderr, "Maximum allowed %d characters!\n", |
| MAX_FILENAME); |
| return -1; |
| } else if (element_length == 0) { |
| fprintf(stderr, "The file name for %s is empty!\n", |
| element_name); |
| return -1; |
| } |
| memcpy(copy_to, element, element_length); |
| |
| return 0; |
| } |
| |
| /******************************************************************************* |
| * parse_sec_config_file |
| * Read the secure boot configuration from a file |
| * into internal structures |
| * INPUT: |
| * filename File name |
| * OUTPUT: |
| * none |
| * RETURN: |
| * 0 on success |
| */ |
| int parse_sec_config_file(char *filename) |
| { |
| config_t sec_cfg; |
| int array_sz, element, rval = -1; |
| const char *cfg_string; |
| int32_t cfg_int32; |
| const config_setting_t *csk_array, *control_array; |
| sec_options *sec_opt = 0; |
| |
| config_init(&sec_cfg); |
| |
| if (config_read_file(&sec_cfg, filename) != CONFIG_TRUE) { |
| fprintf(stderr, "Failed to read data from config file "); |
| fprintf(stderr, "%s\n\t%s at line %d\n", |
| filename, config_error_text(&sec_cfg), |
| config_error_line(&sec_cfg)); |
| goto exit_parse; |
| } |
| |
| sec_opt = (sec_options *)calloc(sizeof(sec_options), 1); |
| if (sec_opt == 0) { |
| fprintf(stderr, |
| "Cannot allocate memory for secure boot options!\n"); |
| goto exit_parse; |
| } |
| |
| /* KAK file name */ |
| if (config_lookup_string(&sec_cfg, "kak_key_file", |
| &cfg_string) != CONFIG_TRUE) { |
| fprintf(stderr, "The \"kak_key_file\" undefined!\n"); |
| goto exit_parse; |
| } |
| if (verify_and_copy_file_name_entry("kak_key_file", |
| cfg_string, sec_opt->kak_key_file)) |
| goto exit_parse; |
| |
| |
| /* AES file name - can be empty/undefined */ |
| if (config_lookup_string(&sec_cfg, "aes_key_file", |
| &cfg_string) == CONFIG_TRUE) { |
| if (verify_and_copy_file_name_entry("aes_key_file", |
| cfg_string, |
| sec_opt->aes_key_file)) |
| goto exit_parse; |
| } |
| |
| /* CSK file names array */ |
| csk_array = config_lookup(&sec_cfg, "csk_key_file"); |
| if (csk_array == NULL) { |
| fprintf(stderr, "The \"csk_key_file\" undefined!\n"); |
| goto exit_parse; |
| } |
| array_sz = config_setting_length(csk_array); |
| if (array_sz > CSK_ARR_SZ) { |
| fprintf(stderr, "The \"csk_key_file\" array is too big! "); |
| fprintf(stderr, "Only first %d elements will be used\n", |
| CSK_ARR_SZ); |
| array_sz = CSK_ARR_SZ; |
| } else if (array_sz == 0) { |
| fprintf(stderr, "The \"csk_key_file\" array is empty!\n"); |
| goto exit_parse; |
| } |
| |
| for (element = 0; element < array_sz; element++) { |
| cfg_string = config_setting_get_string_elem(csk_array, element); |
| if (verify_and_copy_file_name_entry( |
| "csk_key_file", cfg_string, |
| sec_opt->csk_key_file[element])) { |
| fprintf(stderr, "Bad csk_key_file[%d] entry!\n", |
| element); |
| goto exit_parse; |
| } |
| } |
| |
| /* JTAG options */ |
| if (config_lookup_bool(&sec_cfg, "jtag.enable", |
| &cfg_int32) != CONFIG_TRUE) { |
| fprintf(stderr, "Error obtaining \"jtag.enable\" element. "); |
| fprintf(stderr, "Using default - FALSE\n"); |
| cfg_int32 = 0; |
| } |
| sec_opt->jtag_enable = cfg_int32; |
| |
| if (config_lookup_int(&sec_cfg, "jtag.delay", |
| &cfg_int32) != CONFIG_TRUE) { |
| fprintf(stderr, "Error obtaining \"jtag.delay\" element. "); |
| fprintf(stderr, "Using default - 0us\n"); |
| cfg_int32 = 0; |
| } |
| sec_opt->jtag_delay = cfg_int32; |
| |
| /* eFUSE option */ |
| if (config_lookup_bool(&sec_cfg, "efuse_disable", |
| &cfg_int32) != CONFIG_TRUE) { |
| fprintf(stderr, "Error obtaining \"efuse_disable\" element. "); |
| fprintf(stderr, "Using default - TRUE\n"); |
| cfg_int32 = 1; |
| } |
| sec_opt->efuse_disable = cfg_int32; |
| |
| /* Box ID option */ |
| if (config_lookup_int(&sec_cfg, "box_id", &cfg_int32) != CONFIG_TRUE) { |
| fprintf(stderr, "Error obtaining \"box_id\" element. "); |
| fprintf(stderr, "Using default - 0x0\n"); |
| cfg_int32 = 0; |
| } |
| sec_opt->box_id = cfg_int32; |
| |
| /* Flash ID option */ |
| if (config_lookup_int(&sec_cfg, "flash_id", |
| &cfg_int32) != CONFIG_TRUE) { |
| fprintf(stderr, "Error obtaining \"flash_id\" element. "); |
| fprintf(stderr, "Using default - 0x0\n"); |
| cfg_int32 = 0; |
| } |
| sec_opt->flash_id = cfg_int32; |
| |
| /* CSK index option */ |
| if (config_lookup_int(&sec_cfg, "csk_key_index", |
| &cfg_int32) != CONFIG_TRUE) { |
| fprintf(stderr, "Error obtaining \"flash_id\" element. "); |
| fprintf(stderr, "Using default - 0x0\n"); |
| cfg_int32 = 0; |
| } |
| sec_opt->csk_index = cfg_int32; |
| |
| /* Secure boot control array */ |
| control_array = config_lookup(&sec_cfg, "control"); |
| if (control_array != NULL) { |
| array_sz = config_setting_length(control_array); |
| if (array_sz == 0) |
| fprintf(stderr, "The \"control\" array is empty!\n"); |
| } else { |
| fprintf(stderr, "The \"control\" is undefined!\n"); |
| array_sz = 0; |
| } |
| |
| for (element = 0; element < CP_CTRL_EL_ARRAY_SZ; element++) { |
| sec_opt->cp_ctrl_arr[element] = |
| config_setting_get_int_elem(control_array, element * 2); |
| sec_opt->cp_efuse_arr[element] = |
| config_setting_get_int_elem(control_array, |
| element * 2 + 1); |
| } |
| |
| opts.sec_opts = sec_opt; |
| rval = 0; |
| |
| exit_parse: |
| config_destroy(&sec_cfg); |
| if (sec_opt && (rval != 0)) |
| free(sec_opt); |
| return rval; |
| } /* end of parse_sec_config_file */ |
| |
| int format_sec_ext(char *filename, FILE *out_fd) |
| { |
| ext_header_t header; |
| sec_entry_t sec_ext; |
| int index; |
| int written; |
| |
| #define DER_BUF_SZ 1600 |
| |
| /* First, parse the configuration file */ |
| if (parse_sec_config_file(filename)) { |
| fprintf(stderr, |
| "failed parsing configuration file %s\n", filename); |
| return 1; |
| } |
| |
| /* Everything except signatures can be created at this stage */ |
| header.type = EXT_TYPE_SECURITY; |
| header.offset = 0; |
| header.size = sizeof(sec_entry_t); |
| header.reserved = 0; |
| |
| /* Bring up RSA context and read private keys from their files */ |
| for (index = 0; index < (CSK_ARR_SZ + 1); index++) { |
| /* for every private key file */ |
| mbedtls_pk_context *pk_ctx = (index == CSK_ARR_SZ) ? |
| &opts.sec_opts->kak_pk : |
| &opts.sec_opts->csk_pk[index]; |
| char *fname = (index == CSK_ARR_SZ) ? |
| opts.sec_opts->kak_key_file : |
| opts.sec_opts->csk_key_file[index]; |
| uint8_t *out_der_key = (index == CSK_ARR_SZ) ? |
| sec_ext.kak_key : |
| sec_ext.csk_keys[index]; |
| size_t output_len; |
| unsigned char output_buf[DER_BUF_SZ]; |
| unsigned char *der_buf_start; |
| |
| /* Handle invalid/reserved file names */ |
| if (strncmp(CSK_ARR_EMPTY_FILE, fname, |
| strlen(CSK_ARR_EMPTY_FILE)) == 0) { |
| if (opts.sec_opts->csk_index == index) { |
| fprintf(stderr, |
| "CSK file with index %d cannot be %s\n", |
| index, CSK_ARR_EMPTY_FILE); |
| return 1; |
| } else if (index == CSK_ARR_SZ) { |
| fprintf(stderr, "KAK file name cannot be %s\n", |
| CSK_ARR_EMPTY_FILE); |
| return 1; |
| } |
| /* this key will be empty in CSK array */ |
| continue; |
| } |
| |
| mbedtls_pk_init(pk_ctx); |
| /* Read the private RSA key into the context |
| * and verify it (no password) |
| */ |
| if (mbedtls_pk_parse_keyfile(pk_ctx, fname, "") != 0) { |
| fprintf(stderr, |
| "Cannot read RSA private key file %s\n", fname); |
| return 1; |
| } |
| |
| /* Create a public key out of private one |
| * and store it in DER format |
| */ |
| output_len = mbedtls_pk_write_pubkey_der(pk_ctx, |
| output_buf, |
| DER_BUF_SZ); |
| if (output_len < 0) { |
| fprintf(stderr, |
| "Failed to create DER coded PUB key (%s)\n", |
| fname); |
| return 1; |
| } |
| |
| /* Data in the output buffer is aligned to the buffer end */ |
| der_buf_start = output_buf + sizeof(output_buf) - output_len; |
| /* In the header DER data is aligned |
| * to the start of appropriate field |
| */ |
| bzero(out_der_key, MAX_RSA_DER_BYTE_LEN); |
| memcpy(out_der_key, der_buf_start, output_len); |
| |
| } /* for every private key file */ |
| |
| /* The CSK block signature can be created here */ |
| if (create_rsa_signature(&opts.sec_opts->kak_pk, |
| &sec_ext.csk_keys[0][0], |
| sizeof(sec_ext.csk_keys), |
| opts.sec_opts->csk_key_file[ |
| opts.sec_opts->csk_index], |
| sec_ext.csk_sign) != 0) { |
| fprintf(stderr, "Failed to sign CSK keys block!\n"); |
| return 1; |
| } |
| |
| /* Check that everything is correct */ |
| if (verify_rsa_signature(sec_ext.kak_key, |
| MAX_RSA_DER_BYTE_LEN, |
| &sec_ext.csk_keys[0][0], |
| sizeof(sec_ext.csk_keys), |
| opts.sec_opts->kak_key_file, |
| sec_ext.csk_sign) != 0) { |
| fprintf(stderr, "Failed to verify CSK keys block signature!\n"); |
| return 1; |
| } |
| |
| /* AES encryption stuff */ |
| if (strlen(opts.sec_opts->aes_key_file) != 0) { |
| FILE *in_fd; |
| |
| in_fd = fopen(opts.sec_opts->aes_key_file, "rb"); |
| if (in_fd == NULL) { |
| fprintf(stderr, "Failed to open AES key file %s\n", |
| opts.sec_opts->aes_key_file); |
| return 1; |
| } |
| |
| /* Read the AES key in ASCII format byte by byte */ |
| for (index = 0; index < AES_KEY_BYTE_LEN; index++) { |
| if (fscanf(in_fd, "%02hhx", |
| opts.sec_opts->aes_key + index) != 1) { |
| fprintf(stderr, |
| "Failed to read AES key byte %d ", |
| index); |
| fprintf(stderr, |
| "from file %s\n", |
| opts.sec_opts->aes_key_file); |
| fclose(in_fd); |
| return 1; |
| } |
| } |
| fclose(in_fd); |
| sec_ext.encrypt_en = 1; |
| } else { |
| sec_ext.encrypt_en = 0; |
| } |
| |
| /* Fill the rest of the trusted boot extension fields */ |
| sec_ext.box_id = opts.sec_opts->box_id; |
| sec_ext.flash_id = opts.sec_opts->flash_id; |
| sec_ext.efuse_dis = opts.sec_opts->efuse_disable; |
| sec_ext.jtag_delay = opts.sec_opts->jtag_delay; |
| sec_ext.jtag_en = opts.sec_opts->jtag_enable; |
| |
| memcpy(sec_ext.cp_ctrl_arr, |
| opts.sec_opts->cp_ctrl_arr, |
| sizeof(uint32_t) * CP_CTRL_EL_ARRAY_SZ); |
| memcpy(sec_ext.cp_efuse_arr, |
| opts.sec_opts->cp_efuse_arr, |
| sizeof(uint32_t) * CP_CTRL_EL_ARRAY_SZ); |
| |
| /* Write the resulting extension to file |
| * (image and header signature fields are still empty) |
| */ |
| |
| /* Write extension header */ |
| written = fwrite(&header, sizeof(ext_header_t), 1, out_fd); |
| if (written != 1) { |
| fprintf(stderr, |
| "Failed to write SEC extension header to the file\n"); |
| return 1; |
| } |
| /* Write extension body */ |
| written = fwrite(&sec_ext, sizeof(sec_entry_t), 1, out_fd); |
| if (written != 1) { |
| fprintf(stderr, |
| "Failed to write SEC extension body to the file\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /******************************************************************************* |
| * finalize_secure_ext |
| * Make final changes to secure extension - calculate image and header |
| * signatures and encrypt the image if needed. |
| * The main header checksum and image size fields updated accordingly |
| * INPUT: |
| * header Main header |
| * prolog_buf the entire prolog buffer |
| * prolog_size prolog buffer length |
| * image_buf buffer containing the input binary image |
| * image_size image buffer size. |
| * OUTPUT: |
| * none |
| * RETURN: |
| * 0 on success |
| */ |
| int finalize_secure_ext(header_t *header, |
| uint8_t *prolog_buf, uint32_t prolog_size, |
| uint8_t *image_buf, int image_size) |
| { |
| int cur_ext, offset; |
| uint8_t *final_image = image_buf; |
| uint32_t final_image_sz = image_size; |
| uint8_t hdr_sign[RSA_SIGN_BYTE_LEN]; |
| sec_entry_t *sec_ext = 0; |
| |
| /* Find the Trusted Boot Header between available extensions */ |
| for (cur_ext = 0, offset = sizeof(header_t); |
| cur_ext < header->ext_count; cur_ext++) { |
| ext_header_t *ext_hdr = (ext_header_t *)(prolog_buf + offset); |
| |
| if (ext_hdr->type == EXT_TYPE_SECURITY) { |
| sec_ext = (sec_entry_t *)(prolog_buf + offset + |
| sizeof(ext_header_t) + ext_hdr->offset); |
| break; |
| } |
| |
| offset += sizeof(ext_header_t); |
| /* If offset is Zero, the extension follows its header */ |
| if (ext_hdr->offset == 0) |
| offset += ext_hdr->size; |
| } |
| |
| if (sec_ext == 0) { |
| fprintf(stderr, "Error: No Trusted Boot extension found!\n"); |
| return -1; |
| } |
| |
| if (sec_ext->encrypt_en) { |
| /* Encrypt the image if needed */ |
| fprintf(stdout, "Encrypting the image...\n"); |
| |
| if (image_encrypt(image_buf, image_size) != 0) { |
| fprintf(stderr, "Failed to encrypt the image!\n"); |
| return -1; |
| } |
| |
| /* Image size and checksum should be updated after encryption. |
| * This way the image could be verified by the BootROM |
| * before decryption. |
| */ |
| final_image = opts.sec_opts->encrypted_image; |
| final_image_sz = opts.sec_opts->enc_image_sz; |
| |
| header->boot_image_size = final_image_sz; |
| header->boot_image_checksum = |
| checksum32((uint32_t *)final_image, final_image_sz); |
| } /* AES encryption */ |
| |
| /* Create the image signature first, since it will be later |
| * signed along with the header signature |
| */ |
| if (create_rsa_signature(&opts.sec_opts->csk_pk[ |
| opts.sec_opts->csk_index], |
| final_image, final_image_sz, |
| opts.sec_opts->csk_key_file[ |
| opts.sec_opts->csk_index], |
| sec_ext->image_sign) != 0) { |
| fprintf(stderr, "Failed to sign image!\n"); |
| return -1; |
| } |
| /* Check that the image signature is correct */ |
| if (verify_rsa_signature(sec_ext->csk_keys[opts.sec_opts->csk_index], |
| MAX_RSA_DER_BYTE_LEN, |
| final_image, final_image_sz, |
| opts.sec_opts->csk_key_file[ |
| opts.sec_opts->csk_index], |
| sec_ext->image_sign) != 0) { |
| fprintf(stderr, "Failed to verify image signature!\n"); |
| return -1; |
| } |
| |
| /* Sign the headers and all the extensions block |
| * when the header signature field is empty |
| */ |
| if (create_rsa_signature(&opts.sec_opts->csk_pk[ |
| opts.sec_opts->csk_index], |
| prolog_buf, prolog_size, |
| opts.sec_opts->csk_key_file[ |
| opts.sec_opts->csk_index], |
| hdr_sign) != 0) { |
| fprintf(stderr, "Failed to sign header!\n"); |
| return -1; |
| } |
| /* Check that the header signature is correct */ |
| if (verify_rsa_signature(sec_ext->csk_keys[opts.sec_opts->csk_index], |
| MAX_RSA_DER_BYTE_LEN, |
| prolog_buf, prolog_size, |
| opts.sec_opts->csk_key_file[ |
| opts.sec_opts->csk_index], |
| hdr_sign) != 0) { |
| fprintf(stderr, "Failed to verify header signature!\n"); |
| return -1; |
| } |
| |
| /* Finally, copy the header signature into the trusted boot extension */ |
| memcpy(sec_ext->header_sign, hdr_sign, RSA_SIGN_BYTE_LEN); |
| |
| return 0; |
| } |
| |
| #endif /* CONFIG_MVEBU_SECURE_BOOT */ |
| |
| |
| #define FMT_HEX 0 |
| #define FMT_DEC 1 |
| #define FMT_BIN 2 |
| #define FMT_NONE 3 |
| |
| void do_print_field(unsigned int value, char *name, |
| int start, int size, int format) |
| { |
| fprintf(stdout, "[0x%05x : 0x%05x] %-26s", |
| start, start + size - 1, name); |
| |
| switch (format) { |
| case FMT_HEX: |
| printf("0x%x\n", value); |
| break; |
| case FMT_DEC: |
| printf("%d\n", value); |
| break; |
| default: |
| printf("\n"); |
| break; |
| } |
| } |
| |
| #define print_field(st, type, field, hex, base) \ |
| do_print_field((int)st->field, #field, \ |
| base + offsetof(type, field), sizeof(st->field), hex) |
| |
| int print_header(uint8_t *buf, int base) |
| { |
| header_t *main_hdr; |
| |
| main_hdr = (header_t *)buf; |
| |
| fprintf(stdout, "########### Header ##############\n"); |
| print_field(main_hdr, header_t, magic, FMT_HEX, base); |
| print_field(main_hdr, header_t, prolog_size, FMT_DEC, base); |
| print_field(main_hdr, header_t, prolog_checksum, FMT_HEX, base); |
| print_field(main_hdr, header_t, boot_image_size, FMT_DEC, base); |
| print_field(main_hdr, header_t, boot_image_checksum, FMT_HEX, base); |
| print_field(main_hdr, header_t, rsrvd0, FMT_HEX, base); |
| print_field(main_hdr, header_t, load_addr, FMT_HEX, base); |
| print_field(main_hdr, header_t, exec_addr, FMT_HEX, base); |
| print_field(main_hdr, header_t, uart_cfg, FMT_HEX, base); |
| print_field(main_hdr, header_t, baudrate, FMT_HEX, base); |
| print_field(main_hdr, header_t, ext_count, FMT_DEC, base); |
| print_field(main_hdr, header_t, aux_flags, FMT_HEX, base); |
| print_field(main_hdr, header_t, io_arg_0, FMT_HEX, base); |
| print_field(main_hdr, header_t, io_arg_1, FMT_HEX, base); |
| print_field(main_hdr, header_t, io_arg_2, FMT_HEX, base); |
| print_field(main_hdr, header_t, io_arg_3, FMT_HEX, base); |
| print_field(main_hdr, header_t, rsrvd1, FMT_HEX, base); |
| print_field(main_hdr, header_t, rsrvd2, FMT_HEX, base); |
| print_field(main_hdr, header_t, rsrvd3, FMT_HEX, base); |
| |
| return sizeof(header_t); |
| } |
| |
| int print_ext_hdr(ext_header_t *ext_hdr, int base) |
| { |
| print_field(ext_hdr, ext_header_t, type, FMT_HEX, base); |
| print_field(ext_hdr, ext_header_t, offset, FMT_HEX, base); |
| print_field(ext_hdr, ext_header_t, reserved, FMT_HEX, base); |
| print_field(ext_hdr, ext_header_t, size, FMT_DEC, base); |
| |
| return base + sizeof(ext_header_t); |
| } |
| |
| void print_sec_ext(ext_header_t *ext_hdr, int base) |
| { |
| sec_entry_t *sec_entry; |
| uint32_t new_base; |
| |
| fprintf(stdout, "\n########### Secure extension ###########\n"); |
| |
| new_base = print_ext_hdr(ext_hdr, base); |
| |
| sec_entry = (sec_entry_t *)(ext_hdr + 1); |
| |
| do_print_field(0, "KAK key", new_base, MAX_RSA_DER_BYTE_LEN, FMT_NONE); |
| new_base += MAX_RSA_DER_BYTE_LEN; |
| print_field(sec_entry, sec_entry_t, jtag_delay, FMT_DEC, base); |
| print_field(sec_entry, sec_entry_t, box_id, FMT_HEX, base); |
| print_field(sec_entry, sec_entry_t, flash_id, FMT_HEX, base); |
| print_field(sec_entry, sec_entry_t, encrypt_en, FMT_DEC, base); |
| print_field(sec_entry, sec_entry_t, efuse_dis, FMT_DEC, base); |
| new_base += 6 * sizeof(uint32_t); |
| do_print_field(0, "header signature", |
| new_base, RSA_SIGN_BYTE_LEN, FMT_NONE); |
| new_base += RSA_SIGN_BYTE_LEN; |
| do_print_field(0, "image signature", |
| new_base, RSA_SIGN_BYTE_LEN, FMT_NONE); |
| new_base += RSA_SIGN_BYTE_LEN; |
| do_print_field(0, "CSK keys", new_base, |
| CSK_ARR_SZ * MAX_RSA_DER_BYTE_LEN, FMT_NONE); |
| new_base += CSK_ARR_SZ * MAX_RSA_DER_BYTE_LEN; |
| do_print_field(0, "CSK block signature", |
| new_base, RSA_SIGN_BYTE_LEN, FMT_NONE); |
| new_base += RSA_SIGN_BYTE_LEN; |
| do_print_field(0, "control", new_base, |
| CP_CTRL_EL_ARRAY_SZ * 2, FMT_NONE); |
| |
| } |
| |
| void print_bin_ext(ext_header_t *ext_hdr, int base) |
| { |
| fprintf(stdout, "\n########### Binary extension ###########\n"); |
| base = print_ext_hdr(ext_hdr, base); |
| do_print_field(0, "binary image", base, ext_hdr->size, FMT_NONE); |
| } |
| |
| int print_extension(void *buf, int base, int count, int ext_size) |
| { |
| ext_header_t *ext_hdr = buf; |
| int pad = ext_size; |
| int curr_size; |
| |
| while (count--) { |
| if (ext_hdr->type == EXT_TYPE_BINARY) |
| print_bin_ext(ext_hdr, base); |
| else if (ext_hdr->type == EXT_TYPE_SECURITY) |
| print_sec_ext(ext_hdr, base); |
| |
| curr_size = sizeof(ext_header_t) + ext_hdr->size; |
| base += curr_size; |
| pad -= curr_size; |
| ext_hdr = (ext_header_t *)((uintptr_t)ext_hdr + curr_size); |
| } |
| |
| if (pad) |
| do_print_field(0, "padding", base, pad, FMT_NONE); |
| |
| return ext_size; |
| } |
| |
| int parse_image(uint8_t *buf, int size) |
| { |
| int base = 0; |
| int ret = 1; |
| header_t *main_hdr; |
| uint32_t checksum, prolog_checksum; |
| |
| |
| fprintf(stdout, |
| "################### Prolog Start ######################\n\n"); |
| main_hdr = (header_t *)buf; |
| base += print_header(buf, base); |
| |
| if (main_hdr->ext_count) |
| base += print_extension(buf + base, base, |
| main_hdr->ext_count, |
| main_hdr->prolog_size - |
| sizeof(header_t)); |
| |
| if (base < main_hdr->prolog_size) { |
| fprintf(stdout, "\n########### Padding ##############\n"); |
| do_print_field(0, "prolog padding", |
| base, main_hdr->prolog_size - base, FMT_HEX); |
| base = main_hdr->prolog_size; |
| } |
| fprintf(stdout, |
| "\n################### Prolog End ######################\n"); |
| |
| fprintf(stdout, |
| "\n################### Boot image ######################\n"); |
| |
| do_print_field(0, "boot image", base, size - base - 4, FMT_NONE); |
| |
| fprintf(stdout, |
| "################### Image end ########################\n"); |
| |
| /* Check sanity for certain values */ |
| printf("\nChecking values:\n"); |
| |
| if (main_hdr->magic == MAIN_HDR_MAGIC) { |
| fprintf(stdout, "Headers magic: OK!\n"); |
| } else { |
| fprintf(stderr, |
| "\n****** ERROR: HEADER MAGIC 0x%08x != 0x%08x\n", |
| main_hdr->magic, MAIN_HDR_MAGIC); |
| goto error; |
| } |
| |
| /* headers checksum */ |
| /* clear the checksum field in header to calculate checksum */ |
| prolog_checksum = main_hdr->prolog_checksum; |
| main_hdr->prolog_checksum = 0; |
| checksum = checksum32((uint32_t *)buf, main_hdr->prolog_size); |
| |
| if (checksum == prolog_checksum) { |
| fprintf(stdout, "Headers checksum: OK!\n"); |
| } else { |
| fprintf(stderr, |
| "\n***** ERROR: BAD HEADER CHECKSUM 0x%08x != 0x%08x\n", |
| checksum, prolog_checksum); |
| goto error; |
| } |
| |
| /* boot image checksum */ |
| checksum = checksum32((uint32_t *)(buf + main_hdr->prolog_size), |
| main_hdr->boot_image_size); |
| if (checksum == main_hdr->boot_image_checksum) { |
| fprintf(stdout, "Image checksum: OK!\n"); |
| } else { |
| fprintf(stderr, |
| "\n****** ERROR: BAD IMAGE CHECKSUM 0x%08x != 0x%08x\n", |
| checksum, main_hdr->boot_image_checksum); |
| goto error; |
| } |
| |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| /* RSA signatures */ |
| if (main_hdr->ext_count) { |
| uint8_t ext_num = main_hdr->ext_count; |
| ext_header_t *ext_hdr = (ext_header_t *)(main_hdr + 1); |
| unsigned char hash[32]; |
| int i; |
| |
| while (ext_num--) { |
| if (ext_hdr->type == EXT_TYPE_SECURITY) { |
| sec_entry_t *sec_entry = |
| (sec_entry_t *)(ext_hdr + 1); |
| |
| ret = verify_secure_header_signatures( |
| main_hdr, sec_entry); |
| if (ret != 0) { |
| fprintf(stderr, |
| "\n****** FAILED TO VERIFY "); |
| fprintf(stderr, |
| "RSA SIGNATURES ********\n"); |
| goto error; |
| } |
| |
| mbedtls_sha256_ret(sec_entry->kak_key, |
| MAX_RSA_DER_BYTE_LEN, hash, 0); |
| fprintf(stdout, |
| ">>>>>>>>>> KAK KEY HASH >>>>>>>>>>\n"); |
| fprintf(stdout, "SHA256: "); |
| for (i = 0; i < 32; i++) |
| fprintf(stdout, "%02X", hash[i]); |
| |
| fprintf(stdout, |
| "\n<<<<<<<<< KAK KEY HASH <<<<<<<<<\n"); |
| |
| break; |
| } |
| ext_hdr = |
| (ext_header_t *)((uint8_t *)(ext_hdr + 1) + |
| ext_hdr->size); |
| } |
| } |
| #endif |
| |
| ret = 0; |
| error: |
| return ret; |
| } |
| |
| int format_bin_ext(char *filename, FILE *out_fd) |
| { |
| ext_header_t header; |
| FILE *in_fd; |
| int size, written; |
| int aligned_size, pad_bytes; |
| char c; |
| |
| in_fd = fopen(filename, "rb"); |
| if (in_fd == NULL) { |
| fprintf(stderr, "failed to open bin extension file %s\n", |
| filename); |
| return 1; |
| } |
| |
| size = get_file_size(filename); |
| if (size <= 0) { |
| fprintf(stderr, "bin extension file size is bad\n"); |
| return 1; |
| } |
| |
| /* Align extension size to 8 bytes */ |
| aligned_size = (size + 7) & (~7); |
| pad_bytes = aligned_size - size; |
| |
| header.type = EXT_TYPE_BINARY; |
| header.offset = 0; |
| header.size = aligned_size; |
| header.reserved = 0; |
| |
| /* Write header */ |
| written = fwrite(&header, sizeof(ext_header_t), 1, out_fd); |
| if (written != 1) { |
| fprintf(stderr, "failed writing header to extension file\n"); |
| return 1; |
| } |
| |
| /* Write image */ |
| while (size--) { |
| c = getc(in_fd); |
| fputc(c, out_fd); |
| } |
| |
| while (pad_bytes--) |
| fputc(0, out_fd); |
| |
| fclose(in_fd); |
| |
| return 0; |
| } |
| |
| /* **************************************** |
| * |
| * Write all extensions (binary, secure |
| * extensions) to file |
| * |
| * ****************************************/ |
| |
| int format_extensions(char *ext_filename) |
| { |
| FILE *out_fd; |
| int ret = 0; |
| |
| out_fd = fopen(ext_filename, "wb"); |
| if (out_fd == NULL) { |
| fprintf(stderr, "failed to open extension output file %s", |
| ext_filename); |
| return 1; |
| } |
| |
| if (strncmp(opts.bin_ext_file, "NA", MAX_FILENAME)) { |
| if (format_bin_ext(opts.bin_ext_file, out_fd)) { |
| ret = 1; |
| goto error; |
| } |
| } |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| if (strncmp(opts.sec_cfg_file, "NA", MAX_FILENAME)) { |
| if (format_sec_ext(opts.sec_cfg_file, out_fd)) { |
| ret = 1; |
| goto error; |
| } |
| } |
| #endif |
| |
| error: |
| fflush(out_fd); |
| fclose(out_fd); |
| return ret; |
| } |
| |
| void update_uart(header_t *header) |
| { |
| header->uart_cfg = 0; |
| header->baudrate = 0; |
| |
| if (opts.disable_print) |
| uart_set_mode(header->uart_cfg, UART_MODE_DISABLE); |
| |
| if (opts.baudrate) |
| header->baudrate = (opts.baudrate / 1200); |
| } |
| |
| /* **************************************** |
| * |
| * Write the image prolog, i.e. |
| * main header and extensions, to file |
| * |
| * ****************************************/ |
| |
| int write_prolog(int ext_cnt, char *ext_filename, |
| uint8_t *image_buf, int image_size, FILE *out_fd) |
| { |
| header_t *header; |
| int main_hdr_size = sizeof(header_t); |
| int prolog_size = main_hdr_size; |
| FILE *ext_fd; |
| char *buf; |
| int written, read; |
| int ret = 1; |
| |
| |
| if (ext_cnt) |
| prolog_size += get_file_size(ext_filename); |
| |
| prolog_size = ((prolog_size + PROLOG_ALIGNMENT) & |
| (~(PROLOG_ALIGNMENT-1))); |
| |
| /* Allocate a zeroed buffer to zero the padding bytes */ |
| buf = calloc(prolog_size, 1); |
| if (buf == NULL) { |
| fprintf(stderr, "Error: failed allocating checksum buffer\n"); |
| return 1; |
| } |
| |
| header = (header_t *)buf; |
| header->magic = MAIN_HDR_MAGIC; |
| header->prolog_size = prolog_size; |
| header->load_addr = opts.load_addr; |
| header->exec_addr = opts.exec_addr; |
| header->io_arg_0 = opts.nfc_io_args; |
| header->ext_count = ext_cnt; |
| header->aux_flags = 0; |
| header->boot_image_size = (image_size + 3) & (~0x3); |
| header->boot_image_checksum = checksum32((uint32_t *)image_buf, |
| image_size); |
| |
| update_uart(header); |
| |
| /* Populate buffer with main header and extensions */ |
| if (ext_cnt) { |
| ext_fd = fopen(ext_filename, "rb"); |
| if (ext_fd == NULL) { |
| fprintf(stderr, |
| "Error: failed to open extensions file\n"); |
| goto error; |
| } |
| |
| read = fread(&buf[main_hdr_size], |
| get_file_size(ext_filename), 1, ext_fd); |
| if (read != 1) { |
| fprintf(stderr, |
| "Error: failed to open extensions file\n"); |
| goto error; |
| } |
| |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| /* Secure boot mode? */ |
| if (opts.sec_opts != 0) { |
| ret = finalize_secure_ext(header, (uint8_t *)buf, |
| prolog_size, image_buf, |
| image_size); |
| if (ret != 0) { |
| fprintf(stderr, "Error: failed to handle "); |
| fprintf(stderr, "secure extension!\n"); |
| goto error; |
| } |
| } /* secure boot mode */ |
| #endif |
| } |
| |
| /* Update the total prolog checksum */ |
| header->prolog_checksum = checksum32((uint32_t *)buf, prolog_size); |
| |
| /* Now spill everything to output file */ |
| written = fwrite(buf, prolog_size, 1, out_fd); |
| if (written != 1) { |
| fprintf(stderr, |
| "Error: failed to write prolog to output file\n"); |
| goto error; |
| } |
| |
| ret = 0; |
| |
| error: |
| free(buf); |
| return ret; |
| } |
| |
| int write_boot_image(uint8_t *buf, uint32_t image_size, FILE *out_fd) |
| { |
| int written; |
| |
| written = fwrite(buf, image_size, 1, out_fd); |
| if (written != 1) { |
| fprintf(stderr, "Error: Failed to write boot image\n"); |
| goto error; |
| } |
| |
| return 0; |
| error: |
| return 1; |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| char in_file[MAX_FILENAME+1] = { 0 }; |
| char out_file[MAX_FILENAME+1] = { 0 }; |
| char ext_file[MAX_FILENAME+1] = { 0 }; |
| FILE *in_fd = NULL; |
| FILE *out_fd = NULL; |
| int parse = 0; |
| int ext_cnt = 0; |
| int opt; |
| int ret = 0; |
| int image_size, file_size; |
| uint8_t *image_buf = NULL; |
| int read; |
| size_t len; |
| uint32_t nand_block_size_kb, mlc_nand; |
| |
| /* Create temporary file for building extensions |
| * Use process ID for allowing multiple parallel runs |
| */ |
| snprintf(ext_file, MAX_FILENAME, "/tmp/ext_file-%x", getpid()); |
| |
| while ((opt = getopt(argc, argv, "hpms:i:l:e:a:b:u:n:t:c:k:")) != -1) { |
| switch (opt) { |
| case 'h': |
| usage(); |
| break; |
| case 'l': |
| opts.load_addr = strtoul(optarg, NULL, 0); |
| break; |
| case 'e': |
| opts.exec_addr = strtoul(optarg, NULL, 0); |
| break; |
| case 'm': |
| opts.disable_print = 1; |
| break; |
| case 'u': |
| opts.baudrate = strtoul(optarg, NULL, 0); |
| break; |
| case 'b': |
| strncpy(opts.bin_ext_file, optarg, MAX_FILENAME); |
| ext_cnt++; |
| break; |
| case 'p': |
| parse = 1; |
| break; |
| case 'n': |
| nand_block_size_kb = strtoul(optarg, NULL, 0); |
| opts.nfc_io_args |= (nand_block_size_kb / 64); |
| break; |
| case 't': |
| mlc_nand = 0; |
| if (!strncmp("MLC", optarg, 3)) |
| mlc_nand = 1; |
| opts.nfc_io_args |= (mlc_nand << 8); |
| break; |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| case 'c': /* SEC extension */ |
| strncpy(opts.sec_cfg_file, optarg, MAX_FILENAME); |
| ext_cnt++; |
| break; |
| case 'k': |
| opts.key_index = strtoul(optarg, NULL, 0); |
| break; |
| #endif |
| default: /* '?' */ |
| usage_err("Unknown argument"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| /* Check validity of inputes */ |
| if (opts.load_addr % 8) |
| usage_err("Load address must be 8 bytes aligned"); |
| |
| if (opts.baudrate % 1200) |
| usage_err("Baudrate must be a multiple of 1200"); |
| |
| /* The remaining arguments are the input |
| * and potentially output file |
| */ |
| /* Input file must exist so exit if not */ |
| if (optind >= argc) |
| usage_err("missing input file name"); |
| |
| len = strlen(argv[optind]); |
| if (len > MAX_FILENAME) |
| usage_err("file name too long"); |
| memcpy(in_file, argv[optind], len); |
| optind++; |
| |
| /* Output file must exist in non parse mode */ |
| if (optind < argc) { |
| len = strlen(argv[optind]); |
| if (len > MAX_FILENAME) |
| usage_err("file name too long"); |
| memcpy(out_file, argv[optind], len); |
| } else if (!parse) |
| usage_err("missing output file name"); |
| |
| /* open the input file */ |
| in_fd = fopen(in_file, "rb"); |
| if (in_fd == NULL) { |
| printf("Error: Failed to open input file %s\n", in_file); |
| goto main_exit; |
| } |
| |
| /* Read the input file to buffer |
| * Always align the image to 16 byte boundary |
| */ |
| file_size = get_file_size(in_file); |
| image_size = (file_size + AES_BLOCK_SZ - 1) & ~(AES_BLOCK_SZ - 1); |
| image_buf = calloc(image_size, 1); |
| if (image_buf == NULL) { |
| fprintf(stderr, "Error: failed allocating input buffer\n"); |
| return 1; |
| } |
| |
| read = fread(image_buf, file_size, 1, in_fd); |
| if (read != 1) { |
| fprintf(stderr, "Error: failed to read input file\n"); |
| goto main_exit; |
| } |
| |
| /* Parse the input image and leave */ |
| if (parse) { |
| if (opts.key_index >= CSK_ARR_SZ) { |
| fprintf(stderr, |
| "Wrong key IDX value. Valid values 0 - %d\n", |
| CSK_ARR_SZ - 1); |
| goto main_exit; |
| } |
| ret = parse_image(image_buf, image_size); |
| goto main_exit; |
| } |
| |
| /* Create a blob file from all extensions */ |
| if (ext_cnt) { |
| ret = format_extensions(ext_file); |
| if (ret) |
| goto main_exit; |
| } |
| |
| out_fd = fopen(out_file, "wb"); |
| if (out_fd == NULL) { |
| fprintf(stderr, |
| "Error: Failed to open output file %s\n", out_file); |
| goto main_exit; |
| } |
| |
| ret = write_prolog(ext_cnt, ext_file, image_buf, image_size, out_fd); |
| if (ret) |
| goto main_exit; |
| |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| if (opts.sec_opts && (opts.sec_opts->encrypted_image != 0) && |
| (opts.sec_opts->enc_image_sz != 0)) { |
| ret = write_boot_image(opts.sec_opts->encrypted_image, |
| opts.sec_opts->enc_image_sz, out_fd); |
| } else |
| #endif |
| ret = write_boot_image(image_buf, image_size, out_fd); |
| if (ret) |
| goto main_exit; |
| |
| main_exit: |
| if (in_fd) |
| fclose(in_fd); |
| |
| if (out_fd) |
| fclose(out_fd); |
| |
| if (image_buf) |
| free(image_buf); |
| |
| unlink(ext_file); |
| |
| #ifdef CONFIG_MVEBU_SECURE_BOOT |
| if (opts.sec_opts) { |
| if (opts.sec_opts->encrypted_image) |
| free(opts.sec_opts->encrypted_image); |
| free(opts.sec_opts); |
| } |
| #endif |
| exit(ret); |
| } |