blob: ee502de391ec9fae9c6453e9877b3c3337d49a3a [file] [log] [blame]
/*
* Copyright (c) 2022-2024, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include "gpt_rme_private.h"
#include <lib/gpt_rme/gpt_rme.h>
#include <lib/smccc.h>
#include <lib/spinlock.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#if !ENABLE_RME
#error "ENABLE_RME must be enabled to use the GPT library"
#endif
/*
* Lookup T from PPS
*
* PPS Size T
* 0b000 4GB 32
* 0b001 64GB 36
* 0b010 1TB 40
* 0b011 4TB 42
* 0b100 16TB 44
* 0b101 256TB 48
* 0b110 4PB 52
*
* See section 15.1.27 of the RME specification.
*/
static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
PPS_1TB_T, PPS_4TB_T,
PPS_16TB_T, PPS_256TB_T,
PPS_4PB_T};
/*
* Lookup P from PGS
*
* PGS Size P
* 0b00 4KB 12
* 0b10 16KB 14
* 0b01 64KB 16
*
* Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
*
* See section 15.1.27 of the RME specification.
*/
static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
static void shatter_2mb(uintptr_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc);
static void shatter_32mb(uintptr_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc);
static void shatter_512mb(uintptr_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc);
/*
* This structure contains GPT configuration data
*/
typedef struct {
uintptr_t plat_gpt_l0_base;
gpccr_pps_e pps;
gpt_t_val_e t;
gpccr_pgs_e pgs;
gpt_p_val_e p;
} gpt_config_t;
static gpt_config_t gpt_config;
/*
* Number of L1 entries in 2MB, depending on GPCCR_EL3.PGS:
* +-------+------------+
* | PGS | L1 entries |
* +-------+------------+
* | 4KB | 32 |
* +-------+------------+
* | 16KB | 8 |
* +-------+------------+
* | 64KB | 2 |
* +-------+------------+
*/
static unsigned int gpt_l1_cnt_2mb;
/*
* Mask for the L1 index field, depending on
* GPCCR_EL3.L0GPTSZ and GPCCR_EL3.PGS:
* +---------+-------------------------------+
* | | PGS |
* +---------+----------+----------+---------+
* | L0GPTSZ | 4KB | 16KB | 64KB |
* +---------+----------+----------+---------+
* | 1GB | 0x3FFF | 0xFFF | 0x3FF |
* +---------+----------+----------+---------+
* | 16GB | 0x3FFFF | 0xFFFF | 0x3FFF |
* +---------+----------+----------+---------+
* | 64GB | 0xFFFFF | 0x3FFFF | 0xFFFF |
* +---------+----------+----------+---------+
* | 512GB | 0x7FFFFF | 0x1FFFFF | 0x7FFFF |
* +---------+----------+----------+---------+
*/
static uint64_t gpt_l1_index_mask;
/* Number of 128-bit L1 entries in 2MB, 32MB and 512MB */
#define L1_QWORDS_2MB (gpt_l1_cnt_2mb / 2U)
#define L1_QWORDS_32MB (L1_QWORDS_2MB * 16U)
#define L1_QWORDS_512MB (L1_QWORDS_32MB * 16U)
/* Size in bytes of L1 entries in 2MB, 32MB */
#define L1_BYTES_2MB (gpt_l1_cnt_2mb * sizeof(uint64_t))
#define L1_BYTES_32MB (L1_BYTES_2MB * 16U)
/* Get the index into the L1 table from a physical address */
#define GPT_L1_INDEX(_pa) \
(((_pa) >> (unsigned int)GPT_L1_IDX_SHIFT(gpt_config.p)) & gpt_l1_index_mask)
/* These variables are used during initialization of the L1 tables */
static uintptr_t gpt_l1_tbl;
/* These variable is used during runtime */
#if (RME_GPT_BITLOCK_BLOCK == 0)
/*
* The GPTs are protected by a global spinlock to ensure
* that multiple CPUs do not attempt to change the descriptors at once.
*/
static spinlock_t gpt_lock;
#else
/* Bitlocks base address */
static bitlock_t *gpt_bitlock_base;
#endif
/* Lock/unlock macros for GPT entries */
#if (RME_GPT_BITLOCK_BLOCK == 0)
/*
* Access to GPT is controlled by a global lock to ensure
* that no more than one CPU is allowed to make changes at any
* given time.
*/
#define GPT_LOCK spin_lock(&gpt_lock)
#define GPT_UNLOCK spin_unlock(&gpt_lock)
#else
/*
* Access to a block of memory is controlled by a bitlock.
* Size of block = RME_GPT_BITLOCK_BLOCK * 512MB.
*/
#define GPT_LOCK bit_lock(gpi_info.lock, gpi_info.mask)
#define GPT_UNLOCK bit_unlock(gpi_info.lock, gpi_info.mask)
#endif
static void tlbi_page_dsbosh(uintptr_t base)
{
/* Look-up table for invalidation TLBs for 4KB, 16KB and 64KB pages */
static const gpt_tlbi_lookup_t tlbi_page_lookup[] = {
{ tlbirpalos_4k, ~(SZ_4K - 1UL) },
{ tlbirpalos_64k, ~(SZ_64K - 1UL) },
{ tlbirpalos_16k, ~(SZ_16K - 1UL) }
};
tlbi_page_lookup[gpt_config.pgs].function(
base & tlbi_page_lookup[gpt_config.pgs].mask);
dsbosh();
}
/*
* Helper function to fill out GPI entries in a single L1 table
* with Granules or Contiguous descriptor.
*
* Parameters
* l1 Pointer to 2MB, 32MB or 512MB aligned L1 table entry to fill out
* l1_desc GPT Granules or Contiguous descriptor set this range to
* cnt Number of double 128-bit L1 entries to fill
*
*/
static void fill_desc(uint64_t *l1, uint64_t l1_desc, unsigned int cnt)
{
uint128_t *l1_quad = (uint128_t *)l1;
uint128_t l1_quad_desc = (uint128_t)l1_desc | ((uint128_t)l1_desc << 64);
VERBOSE("GPT: %s(%p 0x%"PRIx64" %u)\n", __func__, l1, l1_desc, cnt);
for (unsigned int i = 0U; i < cnt; i++) {
*l1_quad++ = l1_quad_desc;
}
}
static void shatter_2mb(uintptr_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
unsigned long idx = GPT_L1_INDEX(ALIGN_2MB(base));
VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
__func__, base, l1_desc);
/* Convert 2MB Contiguous block to Granules */
fill_desc(&gpi_info->gpt_l1_addr[idx], l1_desc, L1_QWORDS_2MB);
}
static void shatter_32mb(uintptr_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
unsigned long idx = GPT_L1_INDEX(ALIGN_2MB(base));
const uint64_t *l1_gran = &gpi_info->gpt_l1_addr[idx];
uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
uint64_t *l1;
VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
__func__, base, l1_desc);
/* Get index corresponding to 32MB aligned address */
idx = GPT_L1_INDEX(ALIGN_32MB(base));
l1 = &gpi_info->gpt_l1_addr[idx];
/* 16 x 2MB blocks in 32MB */
for (unsigned int i = 0U; i < 16U; i++) {
/* Fill with Granules or Contiguous descriptors */
fill_desc(l1, (l1 == l1_gran) ? l1_desc : l1_cont_desc,
L1_QWORDS_2MB);
l1 = (uint64_t *)((uintptr_t)l1 + L1_BYTES_2MB);
}
}
static void shatter_512mb(uintptr_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
unsigned long idx = GPT_L1_INDEX(ALIGN_32MB(base));
const uint64_t *l1_32mb = &gpi_info->gpt_l1_addr[idx];
uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
uint64_t *l1;
VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
__func__, base, l1_desc);
/* Get index corresponding to 512MB aligned address */
idx = GPT_L1_INDEX(ALIGN_512MB(base));
l1 = &gpi_info->gpt_l1_addr[idx];
/* 16 x 32MB blocks in 512MB */
for (unsigned int i = 0U; i < 16U; i++) {
if (l1 == l1_32mb) {
/* Shatter this 32MB block */
shatter_32mb(base, gpi_info, l1_desc);
} else {
/* Fill 32MB with Contiguous descriptors */
fill_desc(l1, l1_cont_desc, L1_QWORDS_32MB);
}
l1 = (uint64_t *)((uintptr_t)l1 + L1_BYTES_32MB);
}
}
/*
* This function checks to see if a GPI value is valid.
*
* These are valid GPI values.
* GPT_GPI_NO_ACCESS U(0x0)
* GPT_GPI_SECURE U(0x8)
* GPT_GPI_NS U(0x9)
* GPT_GPI_ROOT U(0xA)
* GPT_GPI_REALM U(0xB)
* GPT_GPI_ANY U(0xF)
*
* Parameters
* gpi GPI to check for validity.
*
* Return
* true for a valid GPI, false for an invalid one.
*/
static bool is_gpi_valid(unsigned int gpi)
{
if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
return true;
}
return false;
}
/*
* This function checks to see if two PAS regions overlap.
*
* Parameters
* base_1: base address of first PAS
* size_1: size of first PAS
* base_2: base address of second PAS
* size_2: size of second PAS
*
* Return
* True if PAS regions overlap, false if they do not.
*/
static bool check_pas_overlap(uintptr_t base_1, size_t size_1,
uintptr_t base_2, size_t size_2)
{
if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
return true;
}
return false;
}
/*
* This helper function checks to see if a PAS region from index 0 to
* (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
*
* Parameters
* l0_idx: Index of the L0 entry to check
* pas_regions: PAS region array
* pas_idx: Upper bound of the PAS array index.
*
* Return
* True if a PAS region occupies the L0 region in question, false if not.
*/
static bool does_previous_pas_exist_here(unsigned int l0_idx,
pas_region_t *pas_regions,
unsigned int pas_idx)
{
/* Iterate over PAS regions up to pas_idx */
for (unsigned int i = 0U; i < pas_idx; i++) {
if (check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
GPT_L0GPTSZ_ACTUAL_SIZE,
pas_regions[i].base_pa, pas_regions[i].size)) {
return true;
}
}
return false;
}
/*
* This function iterates over all of the PAS regions and checks them to ensure
* proper alignment of base and size, that the GPI is valid, and that no regions
* overlap. As a part of the overlap checks, this function checks existing L0
* mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
* is called multiple times to place L1 tables in different areas of memory. It
* also counts the number of L1 tables needed and returns it on success.
*
* Parameters
* *pas_regions Pointer to array of PAS region structures.
* pas_region_cnt Total number of PAS regions in the array.
*
* Return
* Negative Linux error code in the event of a failure, number of L1 regions
* required when successful.
*/
static int validate_pas_mappings(pas_region_t *pas_regions,
unsigned int pas_region_cnt)
{
unsigned int idx;
unsigned int l1_cnt = 0U;
unsigned int pas_l1_cnt;
uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
assert(pas_regions != NULL);
assert(pas_region_cnt != 0U);
for (idx = 0U; idx < pas_region_cnt; idx++) {
/* Check for arithmetic overflow in region */
if ((ULONG_MAX - pas_regions[idx].base_pa) <
pas_regions[idx].size) {
ERROR("GPT: Address overflow in PAS[%u]!\n", idx);
return -EOVERFLOW;
}
/* Initial checks for PAS validity */
if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
!is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
ERROR("GPT: PAS[%u] is invalid!\n", idx);
return -EFAULT;
}
/*
* Make sure this PAS does not overlap with another one. We
* start from idx + 1 instead of 0 since prior PAS mappings will
* have already checked themselves against this one.
*/
for (unsigned int i = idx + 1U; i < pas_region_cnt; i++) {
if (check_pas_overlap(pas_regions[idx].base_pa,
pas_regions[idx].size,
pas_regions[i].base_pa,
pas_regions[i].size)) {
ERROR("GPT: PAS[%u] overlaps with PAS[%u]\n",
i, idx);
return -EFAULT;
}
}
/*
* Since this function can be called multiple times with
* separate L1 tables we need to check the existing L0 mapping
* to see if this PAS would fall into one that has already been
* initialized.
*/
for (unsigned int i =
(unsigned int)GPT_L0_IDX(pas_regions[idx].base_pa);
i <= GPT_L0_IDX(pas_regions[idx].base_pa +
pas_regions[idx].size - 1UL);
i++) {
if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
(GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
/* This descriptor is unused so continue */
continue;
}
/*
* This descriptor has been initialized in a previous
* call to this function so cannot be initialized again.
*/
ERROR("GPT: PAS[%u] overlaps with previous L0[%u]!\n",
idx, i);
return -EFAULT;
}
/* Check for block mapping (L0) type */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
/* Make sure base and size are block-aligned */
if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
!GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
ERROR("GPT: PAS[%u] is not block-aligned!\n",
idx);
return -EFAULT;
}
continue;
}
/* Check for granule mapping (L1) type */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
/* Make sure base and size are granule-aligned */
if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
ERROR("GPT: PAS[%u] is not granule-aligned!\n",
idx);
return -EFAULT;
}
/* Find how many L1 tables this PAS occupies */
pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
pas_regions[idx].size - 1UL) -
GPT_L0_IDX(pas_regions[idx].base_pa) + 1U);
/*
* This creates a situation where, if multiple PAS
* regions occupy the same table descriptor, we can get
* an artificially high total L1 table count. The way we
* handle this is by checking each PAS against those
* before it in the array, and if they both occupy the
* same PAS we subtract from pas_l1_cnt and only the
* first PAS in the array gets to count it.
*/
/*
* If L1 count is greater than 1 we know the start and
* end PAs are in different L0 regions so we must check
* both for overlap against other PAS.
*/
if (pas_l1_cnt > 1) {
if (does_previous_pas_exist_here(
GPT_L0_IDX(pas_regions[idx].base_pa +
pas_regions[idx].size - 1UL),
pas_regions, idx)) {
pas_l1_cnt--;
}
}
if (does_previous_pas_exist_here(
GPT_L0_IDX(pas_regions[idx].base_pa),
pas_regions, idx)) {
pas_l1_cnt--;
}
l1_cnt += pas_l1_cnt;
continue;
}
/* If execution reaches this point, mapping type is invalid */
ERROR("GPT: PAS[%u] has invalid mapping type 0x%x.\n", idx,
GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
return -EINVAL;
}
return l1_cnt;
}
/*
* This function validates L0 initialization parameters.
*
* Parameters
* l0_mem_base Base address of memory used for L0 tables.
* l1_mem_size Size of memory available for L0 tables.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
static int validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
size_t l0_mem_size)
{
size_t l0_alignment, locks_size = 0;
/*
* Make sure PPS is valid and then store it since macros need this value
* to work.
*/
if (pps > GPT_PPS_MAX) {
ERROR("GPT: Invalid PPS: 0x%x\n", pps);
return -EINVAL;
}
gpt_config.pps = pps;
gpt_config.t = gpt_t_lookup[pps];
/* Alignment must be the greater of 4KB or l0 table size */
l0_alignment = PAGE_SIZE_4KB;
if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
}
/* Check base address */
if ((l0_mem_base == 0UL) ||
((l0_mem_base & (l0_alignment - 1UL)) != 0UL)) {
ERROR("GPT: Invalid L0 base address: 0x%lx\n", l0_mem_base);
return -EFAULT;
}
#if (RME_GPT_BITLOCK_BLOCK != 0)
/*
* Size of bitlocks in bytes for the protected address space
* with RME_GPT_BITLOCK_BLOCK * 512MB per bitlock.
*/
locks_size = GPT_PPS_ACTUAL_SIZE(gpt_config.t) /
(RME_GPT_BITLOCK_BLOCK * SZ_512M * 8U);
/*
* If protected space size is less than the size covered
* by 'bitlock' structure, check for a single bitlock.
*/
if (locks_size < LOCK_SIZE) {
locks_size = LOCK_SIZE;
}
#endif
/* Check size for L0 tables and bitlocks */
if (l0_mem_size < (GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size)) {
ERROR("GPT: Inadequate L0 memory\n");
ERROR(" Expected 0x%lx bytes, got 0x%lx bytes\n",
GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size,
l0_mem_size);
return -ENOMEM;
}
return 0;
}
/*
* In the event that L1 tables are needed, this function validates
* the L1 table generation parameters.
*
* Parameters
* l1_mem_base Base address of memory used for L1 table allocation.
* l1_mem_size Total size of memory available for L1 tables.
* l1_gpt_cnt Number of L1 tables needed.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
static int validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
unsigned int l1_gpt_cnt)
{
size_t l1_gpt_mem_sz;
/* Check if the granularity is supported */
if (!xlat_arch_is_granule_size_supported(
GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
return -EPERM;
}
/* Make sure L1 tables are aligned to their size */
if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1UL)) != 0UL) {
ERROR("GPT: Unaligned L1 GPT base address: 0x%"PRIxPTR"\n",
l1_mem_base);
return -EFAULT;
}
/* Get total memory needed for L1 tables */
l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
/* Check for overflow */
if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
ERROR("GPT: Overflow calculating L1 memory size\n");
return -ENOMEM;
}
/* Make sure enough space was supplied */
if (l1_mem_size < l1_gpt_mem_sz) {
ERROR("%sL1 GPTs%s", (const char *)"GPT: Inadequate ",
(const char *)" memory\n");
ERROR(" Expected 0x%lx bytes, got 0x%lx bytes\n",
l1_gpt_mem_sz, l1_mem_size);
return -ENOMEM;
}
VERBOSE("GPT: Requested 0x%lx bytes for L1 GPTs\n", l1_gpt_mem_sz);
return 0;
}
/*
* This function initializes L0 block descriptors (regions that cannot be
* transitioned at the granule level) according to the provided PAS.
*
* Parameters
* *pas Pointer to the structure defining the PAS region to
* initialize.
*/
static void generate_l0_blk_desc(pas_region_t *pas)
{
uint64_t gpt_desc;
unsigned long idx, end_idx;
uint64_t *l0_gpt_arr;
assert(gpt_config.plat_gpt_l0_base != 0U);
assert(pas != NULL);
/*
* Checking of PAS parameters has already been done in
* validate_pas_mappings so no need to check the same things again.
*/
l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
/* Create the GPT Block descriptor for this PAS region */
gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
/* Start index of this region in L0 GPTs */
idx = GPT_L0_IDX(pas->base_pa);
/*
* Determine number of L0 GPT descriptors covered by
* this PAS region and use the count to populate these
* descriptors.
*/
end_idx = GPT_L0_IDX(pas->base_pa + pas->size);
/* Generate the needed block descriptors */
for (; idx < end_idx; idx++) {
l0_gpt_arr[idx] = gpt_desc;
VERBOSE("GPT: L0 entry (BLOCK) index %lu [%p]: GPI = 0x%"PRIx64" (0x%"PRIx64")\n",
idx, &l0_gpt_arr[idx],
(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
}
}
/*
* Helper function to determine if the end physical address lies in the same L0
* region as the current physical address. If true, the end physical address is
* returned else, the start address of the next region is returned.
*
* Parameters
* cur_pa Physical address of the current PA in the loop through
* the range.
* end_pa Physical address of the end PA in a PAS range.
*
* Return
* The PA of the end of the current range.
*/
static uintptr_t get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
{
uintptr_t cur_idx;
uintptr_t end_idx;
cur_idx = GPT_L0_IDX(cur_pa);
end_idx = GPT_L0_IDX(end_pa);
assert(cur_idx <= end_idx);
if (cur_idx == end_idx) {
return end_pa;
}
return (cur_idx + 1UL) << GPT_L0_IDX_SHIFT;
}
/*
* Helper function to fill out GPI entries from 'first' granule address of
* the specified 'length' in a single L1 table with 'l1_desc' Contiguous
* descriptor.
*
* Parameters
* l1 Pointer to L1 table to fill out
* first Address of first granule in range
* length Length of the range in bytes
* gpi GPI set this range to
*
* Return
* Address of next granule in range.
*/
__unused static uintptr_t fill_l1_cont_desc(uint64_t *l1, uintptr_t first,
size_t length, unsigned int gpi)
{
/*
* Look up table for contiguous blocks and descriptors.
* Entries should be defined in descending block sizes:
* 512MB, 32MB and 2MB.
*/
static const gpt_fill_lookup_t gpt_fill_lookup[] = {
#if (RME_GPT_MAX_BLOCK == 512)
{ SZ_512M, GPT_L1_CONT_DESC_512MB },
#endif
#if (RME_GPT_MAX_BLOCK >= 32)
{ SZ_32M, GPT_L1_CONT_DESC_32MB },
#endif
#if (RME_GPT_MAX_BLOCK != 0)
{ SZ_2M, GPT_L1_CONT_DESC_2MB }
#endif
};
/*
* Iterate through all block sizes (512MB, 32MB and 2MB)
* starting with maximum supported.
*/
for (unsigned long i = 0UL; i < ARRAY_SIZE(gpt_fill_lookup); i++) {
/* Calculate index */
unsigned long idx = GPT_L1_INDEX(first);
/* Contiguous block size */
size_t cont_size = gpt_fill_lookup[i].size;
if (GPT_REGION_IS_CONT(length, first, cont_size)) {
/* Generate Contiguous descriptor */
uint64_t l1_desc = GPT_L1_GPI_CONT_DESC(gpi,
gpt_fill_lookup[i].desc);
/* Number of 128-bit L1 entries in block */
unsigned int cnt;
switch (cont_size) {
case SZ_512M:
cnt = L1_QWORDS_512MB;
break;
case SZ_32M:
cnt = L1_QWORDS_32MB;
break;
default: /* SZ_2MB */
cnt = L1_QWORDS_2MB;
}
VERBOSE("GPT: Contiguous descriptor 0x%"PRIxPTR" %luMB\n",
first, cont_size / SZ_1M);
/* Fill Contiguous descriptors */
fill_desc(&l1[idx], l1_desc, cnt);
first += cont_size;
length -= cont_size;
if (length == 0UL) {
break;
}
}
}
return first;
}
/* Build Granules descriptor with the same 'gpi' for every GPI entry */
static uint64_t build_l1_desc(unsigned int gpi)
{
uint64_t l1_desc = (uint64_t)gpi | ((uint64_t)gpi << 4);
l1_desc |= (l1_desc << 8);
l1_desc |= (l1_desc << 16);
return (l1_desc | (l1_desc << 32));
}
/*
* Helper function to fill out GPI entries from 'first' to 'last' granule
* address in a single L1 table with 'l1_desc' Granules descriptor.
*
* Parameters
* l1 Pointer to L1 table to fill out
* first Address of first granule in range
* last Address of last granule in range (inclusive)
* gpi GPI set this range to
*
* Return
* Address of next granule in range.
*/
static uintptr_t fill_l1_gran_desc(uint64_t *l1, uintptr_t first,
uintptr_t last, unsigned int gpi)
{
uint64_t gpi_mask;
unsigned long i;
/* Generate Granules descriptor */
uint64_t l1_desc = build_l1_desc(gpi);
/* Shift the mask if we're starting in the middle of an L1 entry */
gpi_mask = ULONG_MAX << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
/* Fill out each L1 entry for this region */
for (i = GPT_L1_INDEX(first); i <= GPT_L1_INDEX(last); i++) {
/* Account for stopping in the middle of an L1 entry */
if (i == GPT_L1_INDEX(last)) {
gpi_mask &= (gpi_mask >> ((15U -
GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
}
assert((l1[i] & gpi_mask) == (GPT_L1_ANY_DESC & gpi_mask));
/* Write GPI values */
l1[i] = (l1[i] & ~gpi_mask) | (l1_desc & gpi_mask);
/* Reset mask */
gpi_mask = ULONG_MAX;
}
return last + GPT_PGS_ACTUAL_SIZE(gpt_config.p);
}
/*
* Helper function to fill out GPI entries in a single L1 table.
* This function fills out an entire L1 table with either Granules or Contiguous
* (RME_GPT_MAX_BLOCK != 0) descriptors depending on region length and alignment.
* Note. If RME_GPT_MAX_BLOCK == 0, then the L1 tables are filled with regular
* Granules descriptors.
*
* Parameters
* l1 Pointer to L1 table to fill out
* first Address of first granule in range
* last Address of last granule in range (inclusive)
* gpi GPI set this range to
*/
static void fill_l1_tbl(uint64_t *l1, uintptr_t first, uintptr_t last,
unsigned int gpi)
{
assert(l1 != NULL);
assert(first <= last);
assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) == 0UL);
assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) == 0UL);
assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
#if (RME_GPT_MAX_BLOCK != 0)
while (first < last) {
/* Region length */
size_t length = last - first + GPT_PGS_ACTUAL_SIZE(gpt_config.p);
if (length < SZ_2M) {
/*
* Fill with Granule descriptors in case of
* region length < 2MB.
*/
first = fill_l1_gran_desc(l1, first, last, gpi);
} else if ((first & (SZ_2M - UL(1))) == UL(0)) {
/*
* For region length >= 2MB and at least 2MB aligned
* call to fill_l1_cont_desc will iterate through
* all block sizes (512MB, 32MB and 2MB) supported and
* fill corresponding Contiguous descriptors.
*/
first = fill_l1_cont_desc(l1, first, length, gpi);
} else {
/*
* For not aligned region >= 2MB fill with Granules
* descriptors up to the next 2MB aligned address.
*/
uintptr_t new_last = ALIGN_2MB(first + SZ_2M) -
GPT_PGS_ACTUAL_SIZE(gpt_config.p);
first = fill_l1_gran_desc(l1, first, new_last, gpi);
}
}
#else
/* Fill with Granule descriptors */
first = fill_l1_gran_desc(l1, first, last, gpi);
#endif
assert(first == (last + GPT_PGS_ACTUAL_SIZE(gpt_config.p)));
}
/*
* This function finds the next available unused L1 table and initializes all
* granules descriptor entries to GPI_ANY. This ensures that there are no chunks
* of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
* event that a PAS region stops midway through an L1 table, thus guaranteeing
* that all memory not explicitly assigned is GPI_ANY. This function does not
* check for overflow conditions, that should be done by the caller.
*
* Return
* Pointer to the next available L1 table.
*/
static uint64_t *get_new_l1_tbl(void)
{
/* Retrieve the next L1 table */
uint64_t *l1 = (uint64_t *)gpt_l1_tbl;
/* Increment L1 GPT address */
gpt_l1_tbl += GPT_L1_TABLE_SIZE(gpt_config.p);
/* Initialize all GPIs to GPT_GPI_ANY */
for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
l1[i] = GPT_L1_ANY_DESC;
}
return l1;
}
/*
* When L1 tables are needed, this function creates the necessary L0 table
* descriptors and fills out the L1 table entries according to the supplied
* PAS range.
*
* Parameters
* *pas Pointer to the structure defining the PAS region.
*/
static void generate_l0_tbl_desc(pas_region_t *pas)
{
uintptr_t end_pa;
uintptr_t cur_pa;
uintptr_t last_gran_pa;
uint64_t *l0_gpt_base;
uint64_t *l1_gpt_arr;
unsigned int l0_idx, gpi;
assert(gpt_config.plat_gpt_l0_base != 0U);
assert(pas != NULL);
/*
* Checking of PAS parameters has already been done in
* validate_pas_mappings so no need to check the same things again.
*/
end_pa = pas->base_pa + pas->size;
l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
/* We start working from the granule at base PA */
cur_pa = pas->base_pa;
/* Get GPI */
gpi = GPT_PAS_ATTR_GPI(pas->attrs);
/* Iterate over each L0 region in this memory range */
for (l0_idx = (unsigned int)GPT_L0_IDX(pas->base_pa);
l0_idx <= (unsigned int)GPT_L0_IDX(end_pa - 1UL);
l0_idx++) {
/*
* See if the L0 entry is already a table descriptor or if we
* need to create one.
*/
if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
/* Get the L1 array from the L0 entry */
l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
} else {
/* Get a new L1 table from the L1 memory space */
l1_gpt_arr = get_new_l1_tbl();
/* Fill out the L0 descriptor and flush it */
l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
}
VERBOSE("GPT: L0 entry (TABLE) index %u [%p] ==> L1 Addr %p (0x%"PRIx64")\n",
l0_idx, &l0_gpt_base[l0_idx], l1_gpt_arr, l0_gpt_base[l0_idx]);
/*
* Determine the PA of the last granule in this L0 descriptor.
*/
last_gran_pa = get_l1_end_pa(cur_pa, end_pa) -
GPT_PGS_ACTUAL_SIZE(gpt_config.p);
/*
* Fill up L1 GPT entries between these two addresses. This
* function needs the addresses of the first granule and last
* granule in the range.
*/
fill_l1_tbl(l1_gpt_arr, cur_pa, last_gran_pa, gpi);
/* Advance cur_pa to first granule in next L0 region */
cur_pa = get_l1_end_pa(cur_pa, end_pa);
}
}
/*
* This function flushes a range of L0 descriptors used by a given PAS region
* array. There is a chance that some unmodified L0 descriptors would be flushed
* in the case that there are "holes" in an array of PAS regions but overall
* this should be faster than individually flushing each modified L0 descriptor
* as they are created.
*
* Parameters
* *pas Pointer to an array of PAS regions.
* pas_count Number of entries in the PAS array.
*/
static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
{
unsigned long idx;
unsigned long start_idx;
unsigned long end_idx;
uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
assert(pas != NULL);
assert(pas_count != 0U);
/* Initial start and end values */
start_idx = GPT_L0_IDX(pas[0].base_pa);
end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1UL);
/* Find lowest and highest L0 indices used in this PAS array */
for (idx = 1UL; idx < pas_count; idx++) {
if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
start_idx = GPT_L0_IDX(pas[idx].base_pa);
}
if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL) > end_idx) {
end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL);
}
}
/*
* Flush all covered L0 descriptors, add 1 because we need to include
* the end index value.
*/
flush_dcache_range((uintptr_t)&l0[start_idx],
((end_idx + 1UL) - start_idx) * sizeof(uint64_t));
}
/*
* Public API to enable granule protection checks once the tables have all been
* initialized. This function is called at first initialization and then again
* later during warm boots of CPU cores.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_enable(void)
{
u_register_t gpccr_el3;
/*
* Granule tables must be initialised before enabling
* granule protection.
*/
if (gpt_config.plat_gpt_l0_base == 0UL) {
ERROR("GPT: Tables have not been initialized!\n");
return -EPERM;
}
/* Write the base address of the L0 tables into GPTBR */
write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
/* GPCCR_EL3.PPS */
gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
/* GPCCR_EL3.PGS */
gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
/*
* Since EL3 maps the L1 region as Inner shareable, use the same
* shareability attribute for GPC as well so that
* GPC fetches are visible to PEs
*/
gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);
/* Outer and Inner cacheability set to Normal memory, WB, RA, WA */
gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
/* Prepopulate GPCCR_EL3 but don't enable GPC yet */
write_gpccr_el3(gpccr_el3);
isb();
/* Invalidate any stale TLB entries and any cached register fields */
tlbipaallos();
dsb();
isb();
/* Enable GPT */
gpccr_el3 |= GPCCR_GPC_BIT;
/* TODO: Configure GPCCR_EL3_GPCP for Fault control */
write_gpccr_el3(gpccr_el3);
isb();
tlbipaallos();
dsb();
isb();
return 0;
}
/*
* Public API to disable granule protection checks.
*/
void gpt_disable(void)
{
u_register_t gpccr_el3 = read_gpccr_el3();
write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
dsbsy();
isb();
}
/*
* Public API that initializes the entire protected space to GPT_GPI_ANY using
* the L0 tables (block descriptors). Ideally, this function is invoked prior
* to DDR discovery and initialization. The MMU must be initialized before
* calling this function.
*
* Parameters
* pps PPS value to use for table generation
* l0_mem_base Base address of L0 tables in memory.
* l0_mem_size Total size of memory available for L0 tables.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base,
size_t l0_mem_size)
{
uint64_t gpt_desc;
size_t locks_size = 0;
__unused bitlock_t *bit_locks;
int ret;
/* Ensure that MMU and Data caches are enabled */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* Validate other parameters */
ret = validate_l0_params(pps, l0_mem_base, l0_mem_size);
if (ret != 0) {
return ret;
}
/* Create the descriptor to initialize L0 entries with */
gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
/* Iterate through all L0 entries */
for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
((uint64_t *)l0_mem_base)[i] = gpt_desc;
}
#if (RME_GPT_BITLOCK_BLOCK != 0)
/* Initialise bitlocks at the end of L0 table */
bit_locks = (bitlock_t *)(l0_mem_base +
GPT_L0_TABLE_SIZE(gpt_config.t));
/* Size of bitlocks in bytes */
locks_size = GPT_PPS_ACTUAL_SIZE(gpt_config.t) /
(RME_GPT_BITLOCK_BLOCK * SZ_512M * 8U);
/*
* If protected space size is less than the size covered
* by 'bitlock' structure, initialise a single bitlock.
*/
if (locks_size < LOCK_SIZE) {
locks_size = LOCK_SIZE;
}
for (size_t i = 0UL; i < (locks_size/LOCK_SIZE); i++) {
bit_locks[i].lock = 0U;
}
#endif
/* Flush updated L0 tables and bitlocks to memory */
flush_dcache_range((uintptr_t)l0_mem_base,
GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size);
/* Stash the L0 base address once initial setup is complete */
gpt_config.plat_gpt_l0_base = l0_mem_base;
return 0;
}
/*
* Public API that carves out PAS regions from the L0 tables and builds any L1
* tables that are needed. This function ideally is run after DDR discovery and
* initialization. The L0 tables must have already been initialized to GPI_ANY
* when this function is called.
*
* This function can be called multiple times with different L1 memory ranges
* and PAS regions if it is desirable to place L1 tables in different locations
* in memory. (ex: you have multiple DDR banks and want to place the L1 tables
* in the DDR bank that they control).
*
* Parameters
* pgs PGS value to use for table generation.
* l1_mem_base Base address of memory used for L1 tables.
* l1_mem_size Total size of memory available for L1 tables.
* *pas_regions Pointer to PAS regions structure array.
* pas_count Total number of PAS regions.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
size_t l1_mem_size, pas_region_t *pas_regions,
unsigned int pas_count)
{
int l1_gpt_cnt, ret;
/* Ensure that MMU and Data caches are enabled */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* PGS is needed for validate_pas_mappings so check it now */
if (pgs > GPT_PGS_MAX) {
ERROR("GPT: Invalid PGS: 0x%x\n", pgs);
return -EINVAL;
}
gpt_config.pgs = pgs;
gpt_config.p = gpt_p_lookup[pgs];
/* Make sure L0 tables have been initialized */
if (gpt_config.plat_gpt_l0_base == 0U) {
ERROR("GPT: L0 tables must be initialized first!\n");
return -EPERM;
}
/* Check if L1 GPTs are required and how many */
l1_gpt_cnt = validate_pas_mappings(pas_regions, pas_count);
if (l1_gpt_cnt < 0) {
return l1_gpt_cnt;
}
VERBOSE("GPT: %i L1 GPTs requested\n", l1_gpt_cnt);
/* If L1 tables are needed then validate the L1 parameters */
if (l1_gpt_cnt > 0) {
ret = validate_l1_params(l1_mem_base, l1_mem_size,
(unsigned int)l1_gpt_cnt);
if (ret != 0) {
return ret;
}
/* Set up parameters for L1 table generation */
gpt_l1_tbl = l1_mem_base;
}
/* Number of L1 entries in 2MB depends on GPCCR_EL3.PGS value */
gpt_l1_cnt_2mb = (unsigned int)GPT_L1_ENTRY_COUNT_2MB(gpt_config.p);
/* Mask for the L1 index field */
gpt_l1_index_mask = GPT_L1_IDX_MASK(gpt_config.p);
INFO("GPT: Boot Configuration\n");
INFO(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
INFO(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
INFO(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
INFO(" PAS count: %u\n", pas_count);
INFO(" L0 base: 0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
/* Generate the tables in memory */
for (unsigned int idx = 0U; idx < pas_count; idx++) {
VERBOSE("GPT: PAS[%u]: base 0x%"PRIxPTR"\tsize 0x%lx\tGPI 0x%x\ttype 0x%x\n",
idx, pas_regions[idx].base_pa, pas_regions[idx].size,
GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
/* Check if a block or table descriptor is required */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
generate_l0_blk_desc(&pas_regions[idx]);
} else {
generate_l0_tbl_desc(&pas_regions[idx]);
}
}
/* Flush modified L0 tables */
flush_l0_for_pas_array(pas_regions, pas_count);
/* Flush L1 tables if needed */
if (l1_gpt_cnt > 0) {
flush_dcache_range(l1_mem_base,
GPT_L1_TABLE_SIZE(gpt_config.p) *
(size_t)l1_gpt_cnt);
}
/* Make sure that all the entries are written to the memory */
dsbishst();
tlbipaallos();
dsb();
isb();
return 0;
}
/*
* Public API to initialize the runtime gpt_config structure based on the values
* present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
* typically happens in a bootloader stage prior to setting up the EL3 runtime
* environment for the granule transition service so this function detects the
* initialization from a previous stage. Granule protection checks must be
* enabled already or this function will return an error.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_runtime_init(void)
{
u_register_t reg;
/* Ensure that MMU and Data caches are enabled */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* Ensure GPC are already enabled */
if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
ERROR("GPT: Granule protection checks are not enabled!\n");
return -EPERM;
}
/*
* Read the L0 table address from GPTBR, we don't need the L1 base
* address since those are included in the L0 tables as needed.
*/
reg = read_gptbr_el3();
gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
GPTBR_BADDR_MASK) <<
GPTBR_BADDR_VAL_SHIFT;
/* Read GPCCR to get PGS and PPS values */
reg = read_gpccr_el3();
gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
gpt_config.t = gpt_t_lookup[gpt_config.pps];
gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
gpt_config.p = gpt_p_lookup[gpt_config.pgs];
/* Number of L1 entries in 2MB depends on GPCCR_EL3.PGS value */
gpt_l1_cnt_2mb = (unsigned int)GPT_L1_ENTRY_COUNT_2MB(gpt_config.p);
/* Mask for the L1 index field */
gpt_l1_index_mask = GPT_L1_IDX_MASK(gpt_config.p);
#if (RME_GPT_BITLOCK_BLOCK != 0)
/* Bitlocks at the end of L0 table */
gpt_bitlock_base = (bitlock_t *)(gpt_config.plat_gpt_l0_base +
GPT_L0_TABLE_SIZE(gpt_config.t));
#endif
VERBOSE("GPT: Runtime Configuration\n");
VERBOSE(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
VERBOSE(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
VERBOSE(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
VERBOSE(" L0 base: 0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
#if (RME_GPT_BITLOCK_BLOCK != 0)
VERBOSE(" Bitlocks: 0x%"PRIxPTR"\n", (uintptr_t)gpt_bitlock_base);
#endif
return 0;
}
/*
* A helper to write the value (target_pas << gpi_shift) to the index of
* the gpt_l1_addr.
*/
static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
unsigned int gpi_shift, unsigned int idx,
unsigned int target_pas)
{
*gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
*gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
gpt_l1_addr[idx] = *gpt_l1_desc;
dsboshst();
}
/*
* Helper to retrieve the gpt_l1_* information from the base address
* returned in gpi_info.
*/
static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
{
uint64_t gpt_l0_desc, *gpt_l0_base;
__unused unsigned int block_idx;
gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
VERBOSE("GPT: Granule is not covered by a table descriptor!\n");
VERBOSE(" Base=0x%"PRIx64"\n", base);
return -EINVAL;
}
/* Get the table index and GPI shift from PA */
gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
gpi_info->idx = (unsigned int)GPT_L1_INDEX(base);
gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
#if (RME_GPT_BITLOCK_BLOCK != 0)
/* Block index */
block_idx = (unsigned int)(base / (RME_GPT_BITLOCK_BLOCK * SZ_512M));
/* Bitlock address and mask */
gpi_info->lock = &gpt_bitlock_base[block_idx / LOCK_BITS];
gpi_info->mask = 1U << (block_idx & (LOCK_BITS - 1U));
#endif
return 0;
}
/*
* Helper to retrieve the gpt_l1_desc and GPI information from gpi_info.
* This function is called with bitlock or spinlock acquired.
*/
static void read_gpi(gpi_info_t *gpi_info)
{
gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
if ((gpi_info->gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
GPT_L1_TYPE_CONT_DESC) {
/* Read GPI from Contiguous descriptor */
gpi_info->gpi = (unsigned int)GPT_L1_CONT_GPI(gpi_info->gpt_l1_desc);
} else {
/* Read GPI from Granules descriptor */
gpi_info->gpi = (unsigned int)((gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
GPT_L1_GRAN_DESC_GPI_MASK);
}
}
static void flush_page_to_popa(uintptr_t addr)
{
size_t size = GPT_PGS_ACTUAL_SIZE(gpt_config.p);
if (is_feat_mte2_supported()) {
flush_dcache_to_popa_range_mte2(addr, size);
} else {
flush_dcache_to_popa_range(addr, size);
}
}
/*
* Helper function to check if all L1 entries in 2MB block have
* the same Granules descriptor value.
*
* Parameters
* base Base address of the region to be checked
* gpi_info Pointer to 'gpt_config_t' structure
* l1_desc GPT Granules descriptor with all entries
* set to the same GPI.
*
* Return
* true if L1 all entries have the same descriptor value, false otherwise.
*/
__unused static bool check_fuse_2mb(uint64_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* Last L1 entry index in 2MB block */
unsigned int long idx = GPT_L1_INDEX(ALIGN_2MB(base)) +
gpt_l1_cnt_2mb - 1UL;
/* Number of L1 entries in 2MB block */
unsigned int cnt = gpt_l1_cnt_2mb;
/*
* Start check from the last L1 entry and continue until the first
* non-matching to the passed Granules descriptor value is found.
*/
while (cnt-- != 0U) {
if (gpi_info->gpt_l1_addr[idx--] != l1_desc) {
/* Non-matching L1 entry found */
return false;
}
}
return true;
}
__unused static void fuse_2mb(uint64_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* L1 entry index of the start of 2MB block */
unsigned long idx_2 = GPT_L1_INDEX(ALIGN_2MB(base));
/* 2MB Contiguous descriptor */
uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
fill_desc(&gpi_info->gpt_l1_addr[idx_2], l1_cont_desc, L1_QWORDS_2MB);
}
/*
* Helper function to check if all 1st L1 entries of 2MB blocks
* in 32MB have the same 2MB Contiguous descriptor value.
*
* Parameters
* base Base address of the region to be checked
* gpi_info Pointer to 'gpt_config_t' structure
* l1_desc GPT Granules descriptor.
*
* Return
* true if all L1 entries have the same descriptor value, false otherwise.
*/
__unused static bool check_fuse_32mb(uint64_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* The 1st L1 entry index of the last 2MB block in 32MB */
unsigned long idx = GPT_L1_INDEX(ALIGN_32MB(base)) +
(15UL * gpt_l1_cnt_2mb);
/* 2MB Contiguous descriptor */
uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
/* Number of 2MB blocks in 32MB */
unsigned int cnt = 16U;
/* Set the first L1 entry to 2MB Contiguous descriptor */
gpi_info->gpt_l1_addr[GPT_L1_INDEX(ALIGN_2MB(base))] = l1_cont_desc;
/*
* Start check from the 1st L1 entry of the last 2MB block and
* continue until the first non-matching to 2MB Contiguous descriptor
* value is found.
*/
while (cnt-- != 0U) {
if (gpi_info->gpt_l1_addr[idx] != l1_cont_desc) {
/* Non-matching L1 entry found */
return false;
}
idx -= gpt_l1_cnt_2mb;
}
return true;
}
__unused static void fuse_32mb(uint64_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* L1 entry index of the start of 32MB block */
unsigned long idx_32 = GPT_L1_INDEX(ALIGN_32MB(base));
/* 32MB Contiguous descriptor */
uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
fill_desc(&gpi_info->gpt_l1_addr[idx_32], l1_cont_desc, L1_QWORDS_32MB);
}
/*
* Helper function to check if all 1st L1 entries of 32MB blocks
* in 512MB have the same 32MB Contiguous descriptor value.
*
* Parameters
* base Base address of the region to be checked
* gpi_info Pointer to 'gpt_config_t' structure
* l1_desc GPT Granules descriptor.
*
* Return
* true if all L1 entries have the same descriptor value, false otherwise.
*/
__unused static bool check_fuse_512mb(uint64_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* The 1st L1 entry index of the last 32MB block in 512MB */
unsigned long idx = GPT_L1_INDEX(ALIGN_512MB(base)) +
(15UL * 16UL * gpt_l1_cnt_2mb);
/* 32MB Contiguous descriptor */
uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
/* Number of 32MB blocks in 512MB */
unsigned int cnt = 16U;
/* Set the first L1 entry to 2MB Contiguous descriptor */
gpi_info->gpt_l1_addr[GPT_L1_INDEX(ALIGN_32MB(base))] = l1_cont_desc;
/*
* Start check from the 1st L1 entry of the last 32MB block and
* continue until the first non-matching to 32MB Contiguous descriptor
* value is found.
*/
while (cnt-- != 0U) {
if (gpi_info->gpt_l1_addr[idx] != l1_cont_desc) {
/* Non-matching L1 entry found */
return false;
}
idx -= 16UL * gpt_l1_cnt_2mb;
}
return true;
}
__unused static void fuse_512mb(uint64_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* L1 entry index of the start of 512MB block */
unsigned long idx_512 = GPT_L1_INDEX(ALIGN_512MB(base));
/* 512MB Contiguous descriptor */
uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 512MB);
VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
fill_desc(&gpi_info->gpt_l1_addr[idx_512], l1_cont_desc, L1_QWORDS_512MB);
}
/*
* Helper function to convert GPI entries in a single L1 table
* from Granules to Contiguous descriptor.
*
* Parameters
* base Base address of the region to be written
* gpi_info Pointer to 'gpt_config_t' structure
* l1_desc GPT Granules descriptor with all entries
* set to the same GPI.
*/
__unused static void fuse_block(uint64_t base, const gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* Start with check for 2MB block */
if (!check_fuse_2mb(base, gpi_info, l1_desc)) {
/* Check for 2MB fusing failed */
return;
}
#if (RME_GPT_MAX_BLOCK == 2)
fuse_2mb(base, gpi_info, l1_desc);
#else
/* Check for 32MB block */
if (!check_fuse_32mb(base, gpi_info, l1_desc)) {
/* Check for 32MB fusing failed, fuse to 2MB */
fuse_2mb(base, gpi_info, l1_desc);
return;
}
#if (RME_GPT_MAX_BLOCK == 32)
fuse_32mb(base, gpi_info, l1_desc);
#else
/* Check for 512MB block */
if (!check_fuse_512mb(base, gpi_info, l1_desc)) {
/* Check for 512MB fusing failed, fuse to 32MB */
fuse_32mb(base, gpi_info, l1_desc);
return;
}
/* Fuse to 512MB */
fuse_512mb(base, gpi_info, l1_desc);
#endif /* RME_GPT_MAX_BLOCK == 32 */
#endif /* RME_GPT_MAX_BLOCK == 2 */
}
/*
* Helper function to convert GPI entries in a single L1 table
* from Contiguous to Granules descriptor. This function updates
* descriptor to Granules in passed 'gpt_config_t' structure as
* the result of shuttering.
*
* Parameters
* base Base address of the region to be written
* gpi_info Pointer to 'gpt_config_t' structure
* l1_desc GPT Granules descriptor set this range to.
*/
__unused static void shatter_block(uint64_t base, gpi_info_t *gpi_info,
uint64_t l1_desc)
{
/* Look-up table for 2MB, 32MB and 512MB locks shattering */
static const gpt_shatter_func gpt_shatter_lookup[] = {
shatter_2mb,
shatter_32mb,
shatter_512mb
};
/* Look-up table for invalidation TLBs for 2MB, 32MB and 512MB blocks */
static const gpt_tlbi_lookup_t tlbi_lookup[] = {
{ tlbirpalos_2m, ~(SZ_2M - 1UL) },
{ tlbirpalos_32m, ~(SZ_32M - 1UL) },
{ tlbirpalos_512m, ~(SZ_512M - 1UL) }
};
/* Get shattering level from Contig field of Contiguous descriptor */
unsigned long level = GPT_L1_CONT_CONTIG(gpi_info->gpt_l1_desc) - 1UL;
/* Shatter contiguous block */
gpt_shatter_lookup[level](base, gpi_info, l1_desc);
tlbi_lookup[level].function(base & tlbi_lookup[level].mask);
dsbosh();
/*
* Update 'gpt_config_t' structure's descriptor to Granules to reflect
* the shattered GPI back to caller.
*/
gpi_info->gpt_l1_desc = l1_desc;
}
/*
* This function is the granule transition delegate service. When a granule
* transition request occurs it is routed to this function to have the request,
* if valid, fulfilled following A1.1.1 Delegate of RME supplement.
*
* TODO: implement support for transitioning multiple granules at once.
*
* Parameters
* base Base address of the region to transition, must be
* aligned to granule size.
* size Size of region to transition, must be aligned to granule
* size.
* src_sec_state Security state of the caller.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
gpi_info_t gpi_info;
uint64_t nse, __unused l1_desc;
unsigned int target_pas;
int res;
/* Ensure that the tables have been set up before taking requests */
assert(gpt_config.plat_gpt_l0_base != 0UL);
/* Ensure that caches are enabled */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
/* See if this is a single or a range of granule transition */
if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
return -EINVAL;
}
/* Check that base and size are valid */
if ((ULONG_MAX - base) < size) {
VERBOSE("GPT: Transition request address overflow!\n");
VERBOSE(" Base=0x%"PRIx64"\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/* Make sure base and size are valid */
if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
(size == 0UL) ||
((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
VERBOSE("GPT: Invalid granule transition address range!\n");
VERBOSE(" Base=0x%"PRIx64"\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/* Delegate request can only come from REALM or SECURE */
if ((src_sec_state != SMC_FROM_REALM) &&
(src_sec_state != SMC_FROM_SECURE)) {
VERBOSE("GPT: Invalid caller security state 0x%x\n",
src_sec_state);
return -EINVAL;
}
if (src_sec_state == SMC_FROM_REALM) {
target_pas = GPT_GPI_REALM;
nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
l1_desc = GPT_L1_REALM_DESC;
} else {
target_pas = GPT_GPI_SECURE;
nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
l1_desc = GPT_L1_SECURE_DESC;
}
res = get_gpi_params(base, &gpi_info);
if (res != 0) {
return res;
}
/*
* Access to GPT is controlled by a lock to ensure that no more
* than one CPU is allowed to make changes at any given time.
*/
GPT_LOCK;
read_gpi(&gpi_info);
/* Check that the current address is in NS state */
if (gpi_info.gpi != GPT_GPI_NS) {
VERBOSE("GPT: Only Granule in NS state can be delegated.\n");
VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state,
gpi_info.gpi);
GPT_UNLOCK;
return -EPERM;
}
#if (RME_GPT_MAX_BLOCK != 0)
/* Check for Contiguous descriptor */
if ((gpi_info.gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
GPT_L1_TYPE_CONT_DESC) {
shatter_block(base, &gpi_info, GPT_L1_NS_DESC);
}
#endif
/*
* In order to maintain mutual distrust between Realm and Secure
* states, remove any data speculatively fetched into the target
* physical address space.
* Issue DC CIPAPA or DC_CIGDPAPA on implementations with FEAT_MTE2.
*/
flush_page_to_popa(base | nse);
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, target_pas);
/* Ensure that all agents observe the new configuration */
tlbi_page_dsbosh(base);
nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
/* Ensure that the scrubbed data have made it past the PoPA */
flush_page_to_popa(base | nse);
#if (RME_GPT_MAX_BLOCK != 0)
if (gpi_info.gpt_l1_desc == l1_desc) {
/* Try to fuse */
fuse_block(base, &gpi_info, l1_desc);
}
#endif
/* Unlock the lock to GPT */
GPT_UNLOCK;
/*
* The isb() will be done as part of context
* synchronization when returning to lower EL.
*/
VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
base, gpi_info.gpi, target_pas);
return 0;
}
/*
* This function is the granule transition undelegate service. When a granule
* transition request occurs it is routed to this function where the request is
* validated then fulfilled if possible.
*
* TODO: implement support for transitioning multiple granules at once.
*
* Parameters
* base Base address of the region to transition, must be
* aligned to granule size.
* size Size of region to transition, must be aligned to granule
* size.
* src_sec_state Security state of the caller.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
gpi_info_t gpi_info;
uint64_t nse, __unused l1_desc;
int res;
/* Ensure that the tables have been set up before taking requests */
assert(gpt_config.plat_gpt_l0_base != 0UL);
/* Ensure that MMU and caches are enabled */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
/* See if this is a single or a range of granule transition */
if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
return -EINVAL;
}
/* Check that base and size are valid */
if ((ULONG_MAX - base) < size) {
VERBOSE("GPT: Transition request address overflow!\n");
VERBOSE(" Base=0x%"PRIx64"\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/* Make sure base and size are valid */
if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
(size == 0UL) ||
((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
VERBOSE("GPT: Invalid granule transition address range!\n");
VERBOSE(" Base=0x%"PRIx64"\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
res = get_gpi_params(base, &gpi_info);
if (res != 0) {
return res;
}
/*
* Access to GPT is controlled by a lock to ensure that no more
* than one CPU is allowed to make changes at any given time.
*/
GPT_LOCK;
read_gpi(&gpi_info);
/* Check that the current address is in the delegated state */
if ((src_sec_state == SMC_FROM_REALM) &&
(gpi_info.gpi == GPT_GPI_REALM)) {
l1_desc = GPT_L1_REALM_DESC;
nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
} else if ((src_sec_state == SMC_FROM_SECURE) &&
(gpi_info.gpi == GPT_GPI_SECURE)) {
l1_desc = GPT_L1_SECURE_DESC;
nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
} else {
VERBOSE("GPT: Only Granule in REALM or SECURE state can be undelegated\n");
VERBOSE(" Caller: %u Current GPI: %u\n", src_sec_state,
gpi_info.gpi);
GPT_UNLOCK;
return -EPERM;
}
#if (RME_GPT_MAX_BLOCK != 0)
/* Check for Contiguous descriptor */
if ((gpi_info.gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
GPT_L1_TYPE_CONT_DESC) {
shatter_block(base, &gpi_info, l1_desc);
}
#endif
/*
* In order to maintain mutual distrust between Realm and Secure
* states, remove access now, in order to guarantee that writes
* to the currently-accessible physical address space will not
* later become observable.
*/
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
/* Ensure that all agents observe the new NO_ACCESS configuration */
tlbi_page_dsbosh(base);
/* Ensure that the scrubbed data have made it past the PoPA */
flush_page_to_popa(base | nse);
/*
* Remove any data loaded speculatively in NS space from before
* the scrubbing.
*/
nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
flush_page_to_popa(base | nse);
/* Clear existing GPI encoding and transition granule */
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
/* Ensure that all agents observe the new NS configuration */
tlbi_page_dsbosh(base);
#if (RME_GPT_MAX_BLOCK != 0)
if (gpi_info.gpt_l1_desc == GPT_L1_NS_DESC) {
/* Try to fuse */
fuse_block(base, &gpi_info, GPT_L1_NS_DESC);
}
#endif
/* Unlock the lock to GPT */
GPT_UNLOCK;
/*
* The isb() will be done as part of context
* synchronization when returning to lower EL.
*/
VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
base, gpi_info.gpi, GPT_GPI_NS);
return 0;
}