blob: c37658bb63cb7e851282c0b53679f5093a71aee1 [file] [log] [blame]
/*
* Copyright (c) 2013, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>
#include <runtime_svc.h>
/*******************************************************************************
* Arrays that contains information needs to resume a cpu's execution when woken
* out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next
* free index in the 'psci_ns_entry_info' & 'psci_secure_context' arrays. Each
* cpu is allocated a single entry in each array during startup.
******************************************************************************/
secure_context psci_secure_context[PSCI_NUM_AFFS];
ns_entry_info psci_ns_entry_info[PSCI_NUM_AFFS];
unsigned int psci_ns_einfo_idx;
/*******************************************************************************
* Grand array that holds the platform's topology information for state
* management of affinity instances. Each node (aff_map_node) in the array
* corresponds to an affinity instance e.g. cluster, cpu within an mpidr
******************************************************************************/
aff_map_node psci_aff_map[PSCI_NUM_AFFS]
__attribute__ ((section("tzfw_coherent_mem")));
/*******************************************************************************
* In a system, a certain number of affinity instances are present at an
* affinity level. The cumulative number of instances across all levels are
* stored in 'psci_aff_map'. The topology tree has been flattenned into this
* array. To retrieve nodes, information about the extents of each affinity
* level i.e. start index and end index needs to be present. 'psci_aff_limits'
* stores this information.
******************************************************************************/
aff_limits_node psci_aff_limits[MPIDR_MAX_AFFLVL + 1];
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
plat_pm_ops *psci_plat_pm_ops;
/*******************************************************************************
* Simple routine to retrieve the maximum affinity level supported by the
* platform and check that it makes sense.
******************************************************************************/
int get_max_afflvl()
{
int aff_lvl;
aff_lvl = plat_get_max_afflvl();
assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);
return aff_lvl;
}
/*******************************************************************************
* Simple routine to set the id of an affinity instance at a given level in the
* mpidr.
******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
unsigned char aff_inst,
int aff_lvl)
{
unsigned long aff_shift;
assert(aff_lvl <= MPIDR_AFFLVL3);
/*
* Decide the number of bits to shift by depending upon
* the affinity level
*/
aff_shift = get_afflvl_shift(aff_lvl);
/* Clear the existing affinity instance & set the new one*/
mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
mpidr |= aff_inst << aff_shift;
return mpidr;
}
/*******************************************************************************
* This function sanity checks a range of affinity levels.
******************************************************************************/
int psci_check_afflvl_range(int start_afflvl, int end_afflvl)
{
/* Sanity check the parameters passed */
if (end_afflvl > MPIDR_MAX_AFFLVL)
return PSCI_E_INVALID_PARAMS;
if (start_afflvl < MPIDR_AFFLVL0)
return PSCI_E_INVALID_PARAMS;
if (end_afflvl < start_afflvl)
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr. It picks up locks for each affinity level bottom
* up in the range specified.
******************************************************************************/
void psci_acquire_afflvl_locks(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
mpidr_aff_map_nodes mpidr_nodes)
{
int level;
for (level = start_afflvl; level <= end_afflvl; level++) {
if (mpidr_nodes[level] == NULL)
continue;
bakery_lock_get(mpidr, &mpidr_nodes[level]->lock);
}
}
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr. It releases the lock for each affinity level top
* down in the range specified.
******************************************************************************/
void psci_release_afflvl_locks(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
mpidr_aff_map_nodes mpidr_nodes)
{
int level;
for (level = end_afflvl; level >= start_afflvl; level--) {
if (mpidr_nodes[level] == NULL)
continue;
bakery_lock_release(mpidr, &mpidr_nodes[level]->lock);
}
}
/*******************************************************************************
* Simple routine to determine whether an affinity instance at a given level
* in an mpidr exists or not.
******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
aff_map_node *node;
node = psci_get_aff_map_node(mpidr, level);
if (node && (node->state & PSCI_AFF_PRESENT))
return PSCI_E_SUCCESS;
else
return PSCI_E_INVALID_PARAMS;
}
/*******************************************************************************
* Simple routine to determine the first affinity level instance that is present
* between the start and end affinity levels. This helps to skip handling of
* absent affinity levels while performing psci operations.
* The start level can be > or <= to the end level depending upon whether this
* routine is expected to search top down or bottom up.
******************************************************************************/
int psci_get_first_present_afflvl(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
aff_map_node **node)
{
int level;
/* Check whether we have to search up or down */
if (start_afflvl <= end_afflvl) {
for (level = start_afflvl; level <= end_afflvl; level++) {
*node = psci_get_aff_map_node(mpidr, level);
if (*node && ((*node)->state & PSCI_AFF_PRESENT))
break;
}
} else {
for (level = start_afflvl; level >= end_afflvl; level--) {
*node = psci_get_aff_map_node(mpidr, level);
if (*node && ((*node)->state & PSCI_AFF_PRESENT))
break;
}
}
return level;
}
/*******************************************************************************
* Iteratively change the affinity state between the current and target affinity
* levels. The target state matters only if we are starting from affinity level
* 0 i.e. a cpu otherwise the state depends upon the state of the lower affinity
* levels.
******************************************************************************/
int psci_change_state(mpidr_aff_map_nodes mpidr_nodes,
int start_afflvl,
int end_afflvl,
unsigned int tgt_state)
{
int rc = PSCI_E_SUCCESS, level;
unsigned int state;
aff_map_node *node;
/*
* Get a temp pointer to the node. It is not possible that affinity
* level 0 is missing. Simply ignore higher missing levels.
*/
for (level = start_afflvl; level <= end_afflvl; level++) {
node = mpidr_nodes[level];
if (level == MPIDR_AFFLVL0) {
assert(node);
psci_set_state(node->state, tgt_state);
} else {
if (node == NULL)
continue;
state = psci_calculate_affinity_state(node);
psci_set_state(node->state, state);
}
}
/* If all went well then the cpu should be in the target state */
if (start_afflvl == MPIDR_AFFLVL0) {
node = mpidr_nodes[MPIDR_AFFLVL0];
state = psci_get_state(node->state);
assert(tgt_state == state);
}
return rc;
}
/*******************************************************************************
* This routine does the heavy lifting for psci_change_state(). It examines the
* state of each affinity instance at the next lower affinity level and decides
* its final state accordingly. If a lower affinity instance is ON then the
* higher affinity instance is ON. If all the lower affinity instances are OFF
* then the higher affinity instance is OFF. If atleast one lower affinity
* instance is SUSPENDED then the higher affinity instance is SUSPENDED. If only
* a single lower affinity instance is ON_PENDING then the higher affinity
* instance in ON_PENDING as well.
******************************************************************************/
unsigned int psci_calculate_affinity_state(aff_map_node *aff_node)
{
int ctr;
unsigned int aff_count, hi_aff_state;
unsigned long tempidr;
aff_map_node *lo_aff_node;
/* Cannot calculate lowest affinity state. It is simply assigned */
assert(aff_node->level > MPIDR_AFFLVL0);
/*
* Find the number of affinity instances at level X-1 e.g. number of
* cpus in a cluster. The level X state depends upon the state of each
* instance at level X-1
*/
hi_aff_state = PSCI_STATE_OFF;
aff_count = plat_get_aff_count(aff_node->level - 1, aff_node->mpidr);
for (ctr = 0; ctr < aff_count; ctr++) {
/*
* Create a mpidr for each lower affinity level (X-1). Use their
* states to influence the higher affinity state (X).
*/
tempidr = mpidr_set_aff_inst(aff_node->mpidr,
ctr,
aff_node->level - 1);
lo_aff_node = psci_get_aff_map_node(tempidr,
aff_node->level - 1);
assert(lo_aff_node);
/* Continue only if the cpu exists within the cluster */
if (!(lo_aff_node->state & PSCI_AFF_PRESENT))
continue;
switch (psci_get_state(lo_aff_node->state)) {
/*
* If any lower affinity is on within the cluster, then
* the higher affinity is on.
*/
case PSCI_STATE_ON:
return PSCI_STATE_ON;
/*
* At least one X-1 needs to be suspended for X to be suspended
* but it is effectively on for the affinity_info call.
* SUSPEND > ON_PENDING > OFF.
*/
case PSCI_STATE_SUSPEND:
hi_aff_state = PSCI_STATE_SUSPEND;
continue;
/*
* Atleast one X-1 needs to be on_pending & the rest off for X
* to be on_pending. ON_PENDING > OFF.
*/
case PSCI_STATE_ON_PENDING:
if (hi_aff_state != PSCI_STATE_SUSPEND)
hi_aff_state = PSCI_STATE_ON_PENDING;
continue;
/* Higher affinity is off if all lower affinities are off. */
case PSCI_STATE_OFF:
continue;
default:
assert(0);
}
}
return hi_aff_state;
}
/*******************************************************************************
* This function retrieves all the stashed information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND
******************************************************************************/
void psci_get_ns_entry_info(unsigned int index)
{
unsigned long sctlr = 0, scr, el_status, id_aa64pfr0;
gp_regs *ns_gp_regs;
scr = read_scr();
/* Switch to the non-secure view of the registers */
write_scr(scr | SCR_NS_BIT);
/* Find out which EL we are going to */
id_aa64pfr0 = read_id_aa64pfr0_el1();
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
/* Restore endianess */
if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT)
sctlr |= SCTLR_EE_BIT;
else
sctlr &= ~SCTLR_EE_BIT;
/* Turn off MMU and Caching */
sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT);
/* Set the register width */
if (psci_ns_entry_info[index].scr & SCR_RW_BIT)
scr |= SCR_RW_BIT;
else
scr &= ~SCR_RW_BIT;
scr |= SCR_NS_BIT;
if (el_status)
write_sctlr_el2(sctlr);
else
write_sctlr_el1(sctlr);
/* Fulfill the cpu_on entry reqs. as per the psci spec */
write_scr(scr);
write_elr(psci_ns_entry_info[index].eret_info.entrypoint);
/*
* Set the general purpose registers to ~0 upon entry into the
* non-secure world except for x0 which should contain the
* context id & spsr. This is done directly on the "would be"
* stack pointer. Prior to entry into the non-secure world, an
* offset equivalent to the size of the 'gp_regs' structure is
* added to the sp. This general purpose register context is
* retrieved then.
*/
ns_gp_regs = (gp_regs *) platform_get_stack(read_mpidr());
ns_gp_regs--;
memset(ns_gp_regs, ~0, sizeof(*ns_gp_regs));
ns_gp_regs->x0 = psci_ns_entry_info[index].context_id;
ns_gp_regs->spsr = psci_ns_entry_info[index].eret_info.spsr;
}
/*******************************************************************************
* This function retrieves and stashes all the information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND. This is done prior to
* turning it on or before suspending it.
******************************************************************************/
int psci_set_ns_entry_info(unsigned int index,
unsigned long entrypoint,
unsigned long context_id)
{
int rc = PSCI_E_SUCCESS;
unsigned int rw, mode, ee, spsr = 0;
unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr();
unsigned long el_status;
/* Figure out what mode do we enter the non-secure world in */
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
rw = scr & SCR_RW_BIT;
if (rw) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if (entrypoint & 0x1)
return PSCI_E_INVALID_PARAMS;
if (el_status && (scr & SCR_HCE_BIT)) {
mode = MODE_EL2;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = MODE_EL1;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
spsr = DAIF_DBG_BIT | DAIF_ABT_BIT;
spsr |= DAIF_IRQ_BIT | DAIF_FIQ_BIT;
spsr <<= PSR_DAIF_SHIFT;
spsr |= make_spsr(mode, MODE_SP_ELX, !rw);
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr |= SCR_RW_BIT;
} else {
/* Check whether aarch32 has to be entered in Thumb mode */
if (entrypoint & 0x1)
spsr = SPSR32_T_BIT;
if (el_status && (scr & SCR_HCE_BIT)) {
mode = AARCH32_MODE_HYP;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = AARCH32_MODE_SVC;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
spsr |= DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
spsr <<= PSR_DAIF_SHIFT;
if(ee)
spsr |= SPSR32_EE_BIT;
spsr |= mode;
/* Ensure that the CSPR.E and SCTLR.EE bits match */
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr &= ~SCR_RW_BIT;
}
psci_ns_entry_info[index].eret_info.entrypoint = entrypoint;
psci_ns_entry_info[index].eret_info.spsr = spsr;
psci_ns_entry_info[index].context_id = context_id;
return rc;
}
/*******************************************************************************
* An affinity level could be on, on_pending, suspended or off. These are the
* logical states it can be in. Physically either it is off or on. When it is in
* the state on_pending then it is about to be turned on. It is not possible to
* tell whether that's actually happenned or not. So we err on the side of
* caution & treat the affinity level as being turned off.
******************************************************************************/
inline unsigned int psci_get_phys_state(unsigned int aff_state)
{
return (aff_state != PSCI_STATE_ON ? PSCI_STATE_OFF : PSCI_STATE_ON);
}
unsigned int psci_get_aff_phys_state(aff_map_node *aff_node)
{
unsigned int aff_state;
aff_state = psci_get_state(aff_node->state);
return psci_get_phys_state(aff_state);
}
/*******************************************************************************
* This function takes an array of pointers to affinity instance nodes in the
* topology tree and calls the physical power on handler for the corresponding
* affinity levels
******************************************************************************/
static int psci_call_power_on_handlers(mpidr_aff_map_nodes mpidr_nodes,
int start_afflvl,
int end_afflvl,
afflvl_power_on_finisher *pon_handlers,
unsigned long mpidr)
{
int rc = PSCI_E_INVALID_PARAMS, level;
aff_map_node *node;
for (level = end_afflvl; level >= start_afflvl; level--) {
node = mpidr_nodes[level];
if (node == NULL)
continue;
/*
* If we run into any trouble while powering up an
* affinity instance, then there is no recovery path
* so simply return an error and let the caller take
* care of the situation.
*/
rc = pon_handlers[level](mpidr, node);
if (rc != PSCI_E_SUCCESS)
break;
}
return rc;
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* traverses through all the affinity levels performing generic, architectural,
* platform setup and state management e.g. for a cluster that's been powered
* on, it will call the platform specific code which will enable coherency at
* the interconnect level. For a cpu it could mean turning on the MMU etc.
*
* The state of all the relevant affinity levels is changed after calling the
* affinity level specific handlers as their actions would depend upon the state
* the affinity level is exiting from.
*
* The affinity level specific handlers are called in descending order i.e. from
* the highest to the lowest affinity level implemented by the platform because
* to turn on affinity level X it is neccesary to turn on affinity level X + 1
* first.
*
* CAUTION: This function is called with coherent stacks so that coherency and
* the mmu can be turned on safely.
******************************************************************************/
void psci_afflvl_power_on_finish(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
afflvl_power_on_finisher *pon_handlers)
{
mpidr_aff_map_nodes mpidr_nodes;
int rc;
mpidr &= MPIDR_AFFINITY_MASK;;
/*
* Collect the pointers to the nodes in the topology tree for
* each affinity instance in the mpidr. If this function does
* not return successfully then either the mpidr or the affinity
* levels are incorrect. Either case is an irrecoverable error.
*/
rc = psci_get_aff_map_nodes(mpidr,
start_afflvl,
end_afflvl,
mpidr_nodes);
assert (rc == PSCI_E_SUCCESS);
/*
* This function acquires the lock corresponding to each affinity
* level so that by the time all locks are taken, the system topology
* is snapshot and state management can be done safely.
*/
psci_acquire_afflvl_locks(mpidr,
start_afflvl,
end_afflvl,
mpidr_nodes);
/* Perform generic, architecture and platform specific handling */
rc = psci_call_power_on_handlers(mpidr_nodes,
start_afflvl,
end_afflvl,
pon_handlers,
mpidr);
assert (rc == PSCI_E_SUCCESS);
/*
* State management: Update the state of each affinity instance
* between the start and end affinity levels
*/
psci_change_state(mpidr_nodes,
start_afflvl,
end_afflvl,
PSCI_STATE_ON);
/*
* This loop releases the lock corresponding to each affinity level
* in the reverse order to which they were acquired.
*/
psci_release_afflvl_locks(mpidr,
start_afflvl,
end_afflvl,
mpidr_nodes);
}