| /* |
| * Copyright (c) 2013, ARM Limited and Contributors. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * Neither the name of ARM nor the names of its contributors may be used |
| * to endorse or promote products derived from this software without specific |
| * prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <arch_helpers.h> |
| #include <console.h> |
| #include <platform.h> |
| #include <psci.h> |
| #include <psci_private.h> |
| #include <runtime_svc.h> |
| |
| /******************************************************************************* |
| * Arrays that contains information needs to resume a cpu's execution when woken |
| * out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next |
| * free index in the 'psci_ns_entry_info' & 'psci_secure_context' arrays. Each |
| * cpu is allocated a single entry in each array during startup. |
| ******************************************************************************/ |
| secure_context psci_secure_context[PSCI_NUM_AFFS]; |
| ns_entry_info psci_ns_entry_info[PSCI_NUM_AFFS]; |
| unsigned int psci_ns_einfo_idx; |
| |
| /******************************************************************************* |
| * Grand array that holds the platform's topology information for state |
| * management of affinity instances. Each node (aff_map_node) in the array |
| * corresponds to an affinity instance e.g. cluster, cpu within an mpidr |
| ******************************************************************************/ |
| aff_map_node psci_aff_map[PSCI_NUM_AFFS] |
| __attribute__ ((section("tzfw_coherent_mem"))); |
| |
| /******************************************************************************* |
| * In a system, a certain number of affinity instances are present at an |
| * affinity level. The cumulative number of instances across all levels are |
| * stored in 'psci_aff_map'. The topology tree has been flattenned into this |
| * array. To retrieve nodes, information about the extents of each affinity |
| * level i.e. start index and end index needs to be present. 'psci_aff_limits' |
| * stores this information. |
| ******************************************************************************/ |
| aff_limits_node psci_aff_limits[MPIDR_MAX_AFFLVL + 1]; |
| |
| /******************************************************************************* |
| * Pointer to functions exported by the platform to complete power mgmt. ops |
| ******************************************************************************/ |
| plat_pm_ops *psci_plat_pm_ops; |
| |
| /******************************************************************************* |
| * Simple routine to retrieve the maximum affinity level supported by the |
| * platform and check that it makes sense. |
| ******************************************************************************/ |
| int get_max_afflvl() |
| { |
| int aff_lvl; |
| |
| aff_lvl = plat_get_max_afflvl(); |
| assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0); |
| |
| return aff_lvl; |
| } |
| |
| /******************************************************************************* |
| * Simple routine to set the id of an affinity instance at a given level in the |
| * mpidr. |
| ******************************************************************************/ |
| unsigned long mpidr_set_aff_inst(unsigned long mpidr, |
| unsigned char aff_inst, |
| int aff_lvl) |
| { |
| unsigned long aff_shift; |
| |
| assert(aff_lvl <= MPIDR_AFFLVL3); |
| |
| /* |
| * Decide the number of bits to shift by depending upon |
| * the affinity level |
| */ |
| aff_shift = get_afflvl_shift(aff_lvl); |
| |
| /* Clear the existing affinity instance & set the new one*/ |
| mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift); |
| mpidr |= aff_inst << aff_shift; |
| |
| return mpidr; |
| } |
| |
| /******************************************************************************* |
| * This function sanity checks a range of affinity levels. |
| ******************************************************************************/ |
| int psci_check_afflvl_range(int start_afflvl, int end_afflvl) |
| { |
| /* Sanity check the parameters passed */ |
| if (end_afflvl > MPIDR_MAX_AFFLVL) |
| return PSCI_E_INVALID_PARAMS; |
| |
| if (start_afflvl < MPIDR_AFFLVL0) |
| return PSCI_E_INVALID_PARAMS; |
| |
| if (end_afflvl < start_afflvl) |
| return PSCI_E_INVALID_PARAMS; |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| /******************************************************************************* |
| * This function is passed an array of pointers to affinity level nodes in the |
| * topology tree for an mpidr. It picks up locks for each affinity level bottom |
| * up in the range specified. |
| ******************************************************************************/ |
| void psci_acquire_afflvl_locks(unsigned long mpidr, |
| int start_afflvl, |
| int end_afflvl, |
| mpidr_aff_map_nodes mpidr_nodes) |
| { |
| int level; |
| |
| for (level = start_afflvl; level <= end_afflvl; level++) { |
| if (mpidr_nodes[level] == NULL) |
| continue; |
| bakery_lock_get(mpidr, &mpidr_nodes[level]->lock); |
| } |
| } |
| |
| /******************************************************************************* |
| * This function is passed an array of pointers to affinity level nodes in the |
| * topology tree for an mpidr. It releases the lock for each affinity level top |
| * down in the range specified. |
| ******************************************************************************/ |
| void psci_release_afflvl_locks(unsigned long mpidr, |
| int start_afflvl, |
| int end_afflvl, |
| mpidr_aff_map_nodes mpidr_nodes) |
| { |
| int level; |
| |
| for (level = end_afflvl; level >= start_afflvl; level--) { |
| if (mpidr_nodes[level] == NULL) |
| continue; |
| bakery_lock_release(mpidr, &mpidr_nodes[level]->lock); |
| } |
| } |
| |
| /******************************************************************************* |
| * Simple routine to determine whether an affinity instance at a given level |
| * in an mpidr exists or not. |
| ******************************************************************************/ |
| int psci_validate_mpidr(unsigned long mpidr, int level) |
| { |
| aff_map_node *node; |
| |
| node = psci_get_aff_map_node(mpidr, level); |
| if (node && (node->state & PSCI_AFF_PRESENT)) |
| return PSCI_E_SUCCESS; |
| else |
| return PSCI_E_INVALID_PARAMS; |
| } |
| |
| /******************************************************************************* |
| * Simple routine to determine the first affinity level instance that is present |
| * between the start and end affinity levels. This helps to skip handling of |
| * absent affinity levels while performing psci operations. |
| * The start level can be > or <= to the end level depending upon whether this |
| * routine is expected to search top down or bottom up. |
| ******************************************************************************/ |
| int psci_get_first_present_afflvl(unsigned long mpidr, |
| int start_afflvl, |
| int end_afflvl, |
| aff_map_node **node) |
| { |
| int level; |
| |
| /* Check whether we have to search up or down */ |
| if (start_afflvl <= end_afflvl) { |
| for (level = start_afflvl; level <= end_afflvl; level++) { |
| *node = psci_get_aff_map_node(mpidr, level); |
| if (*node && ((*node)->state & PSCI_AFF_PRESENT)) |
| break; |
| } |
| } else { |
| for (level = start_afflvl; level >= end_afflvl; level--) { |
| *node = psci_get_aff_map_node(mpidr, level); |
| if (*node && ((*node)->state & PSCI_AFF_PRESENT)) |
| break; |
| } |
| } |
| |
| return level; |
| } |
| |
| /******************************************************************************* |
| * Iteratively change the affinity state between the current and target affinity |
| * levels. The target state matters only if we are starting from affinity level |
| * 0 i.e. a cpu otherwise the state depends upon the state of the lower affinity |
| * levels. |
| ******************************************************************************/ |
| int psci_change_state(mpidr_aff_map_nodes mpidr_nodes, |
| int start_afflvl, |
| int end_afflvl, |
| unsigned int tgt_state) |
| { |
| int rc = PSCI_E_SUCCESS, level; |
| unsigned int state; |
| aff_map_node *node; |
| |
| /* |
| * Get a temp pointer to the node. It is not possible that affinity |
| * level 0 is missing. Simply ignore higher missing levels. |
| */ |
| for (level = start_afflvl; level <= end_afflvl; level++) { |
| |
| node = mpidr_nodes[level]; |
| if (level == MPIDR_AFFLVL0) { |
| assert(node); |
| psci_set_state(node->state, tgt_state); |
| } else { |
| if (node == NULL) |
| continue; |
| state = psci_calculate_affinity_state(node); |
| psci_set_state(node->state, state); |
| } |
| } |
| |
| /* If all went well then the cpu should be in the target state */ |
| if (start_afflvl == MPIDR_AFFLVL0) { |
| node = mpidr_nodes[MPIDR_AFFLVL0]; |
| state = psci_get_state(node->state); |
| assert(tgt_state == state); |
| } |
| |
| return rc; |
| } |
| |
| /******************************************************************************* |
| * This routine does the heavy lifting for psci_change_state(). It examines the |
| * state of each affinity instance at the next lower affinity level and decides |
| * its final state accordingly. If a lower affinity instance is ON then the |
| * higher affinity instance is ON. If all the lower affinity instances are OFF |
| * then the higher affinity instance is OFF. If atleast one lower affinity |
| * instance is SUSPENDED then the higher affinity instance is SUSPENDED. If only |
| * a single lower affinity instance is ON_PENDING then the higher affinity |
| * instance in ON_PENDING as well. |
| ******************************************************************************/ |
| unsigned int psci_calculate_affinity_state(aff_map_node *aff_node) |
| { |
| int ctr; |
| unsigned int aff_count, hi_aff_state; |
| unsigned long tempidr; |
| aff_map_node *lo_aff_node; |
| |
| /* Cannot calculate lowest affinity state. It is simply assigned */ |
| assert(aff_node->level > MPIDR_AFFLVL0); |
| |
| /* |
| * Find the number of affinity instances at level X-1 e.g. number of |
| * cpus in a cluster. The level X state depends upon the state of each |
| * instance at level X-1 |
| */ |
| hi_aff_state = PSCI_STATE_OFF; |
| aff_count = plat_get_aff_count(aff_node->level - 1, aff_node->mpidr); |
| for (ctr = 0; ctr < aff_count; ctr++) { |
| |
| /* |
| * Create a mpidr for each lower affinity level (X-1). Use their |
| * states to influence the higher affinity state (X). |
| */ |
| tempidr = mpidr_set_aff_inst(aff_node->mpidr, |
| ctr, |
| aff_node->level - 1); |
| lo_aff_node = psci_get_aff_map_node(tempidr, |
| aff_node->level - 1); |
| assert(lo_aff_node); |
| |
| /* Continue only if the cpu exists within the cluster */ |
| if (!(lo_aff_node->state & PSCI_AFF_PRESENT)) |
| continue; |
| |
| switch (psci_get_state(lo_aff_node->state)) { |
| |
| /* |
| * If any lower affinity is on within the cluster, then |
| * the higher affinity is on. |
| */ |
| case PSCI_STATE_ON: |
| return PSCI_STATE_ON; |
| |
| /* |
| * At least one X-1 needs to be suspended for X to be suspended |
| * but it is effectively on for the affinity_info call. |
| * SUSPEND > ON_PENDING > OFF. |
| */ |
| case PSCI_STATE_SUSPEND: |
| hi_aff_state = PSCI_STATE_SUSPEND; |
| continue; |
| |
| /* |
| * Atleast one X-1 needs to be on_pending & the rest off for X |
| * to be on_pending. ON_PENDING > OFF. |
| */ |
| case PSCI_STATE_ON_PENDING: |
| if (hi_aff_state != PSCI_STATE_SUSPEND) |
| hi_aff_state = PSCI_STATE_ON_PENDING; |
| continue; |
| |
| /* Higher affinity is off if all lower affinities are off. */ |
| case PSCI_STATE_OFF: |
| continue; |
| |
| default: |
| assert(0); |
| } |
| } |
| |
| return hi_aff_state; |
| } |
| |
| /******************************************************************************* |
| * This function retrieves all the stashed information needed to correctly |
| * resume a cpu's execution in the non-secure state after it has been physically |
| * powered on i.e. turned ON or resumed from SUSPEND |
| ******************************************************************************/ |
| void psci_get_ns_entry_info(unsigned int index) |
| { |
| unsigned long sctlr = 0, scr, el_status, id_aa64pfr0; |
| gp_regs *ns_gp_regs; |
| |
| scr = read_scr(); |
| |
| /* Switch to the non-secure view of the registers */ |
| write_scr(scr | SCR_NS_BIT); |
| |
| /* Find out which EL we are going to */ |
| id_aa64pfr0 = read_id_aa64pfr0_el1(); |
| el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) & |
| ID_AA64PFR0_ELX_MASK; |
| |
| /* Restore endianess */ |
| if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT) |
| sctlr |= SCTLR_EE_BIT; |
| else |
| sctlr &= ~SCTLR_EE_BIT; |
| |
| /* Turn off MMU and Caching */ |
| sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT); |
| |
| /* Set the register width */ |
| if (psci_ns_entry_info[index].scr & SCR_RW_BIT) |
| scr |= SCR_RW_BIT; |
| else |
| scr &= ~SCR_RW_BIT; |
| |
| scr |= SCR_NS_BIT; |
| |
| if (el_status) |
| write_sctlr_el2(sctlr); |
| else |
| write_sctlr_el1(sctlr); |
| |
| /* Fulfill the cpu_on entry reqs. as per the psci spec */ |
| write_scr(scr); |
| write_elr(psci_ns_entry_info[index].eret_info.entrypoint); |
| |
| /* |
| * Set the general purpose registers to ~0 upon entry into the |
| * non-secure world except for x0 which should contain the |
| * context id & spsr. This is done directly on the "would be" |
| * stack pointer. Prior to entry into the non-secure world, an |
| * offset equivalent to the size of the 'gp_regs' structure is |
| * added to the sp. This general purpose register context is |
| * retrieved then. |
| */ |
| ns_gp_regs = (gp_regs *) platform_get_stack(read_mpidr()); |
| ns_gp_regs--; |
| memset(ns_gp_regs, ~0, sizeof(*ns_gp_regs)); |
| ns_gp_regs->x0 = psci_ns_entry_info[index].context_id; |
| ns_gp_regs->spsr = psci_ns_entry_info[index].eret_info.spsr; |
| } |
| |
| /******************************************************************************* |
| * This function retrieves and stashes all the information needed to correctly |
| * resume a cpu's execution in the non-secure state after it has been physically |
| * powered on i.e. turned ON or resumed from SUSPEND. This is done prior to |
| * turning it on or before suspending it. |
| ******************************************************************************/ |
| int psci_set_ns_entry_info(unsigned int index, |
| unsigned long entrypoint, |
| unsigned long context_id) |
| { |
| int rc = PSCI_E_SUCCESS; |
| unsigned int rw, mode, ee, spsr = 0; |
| unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr(); |
| unsigned long el_status; |
| |
| /* Figure out what mode do we enter the non-secure world in */ |
| el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) & |
| ID_AA64PFR0_ELX_MASK; |
| |
| /* |
| * Figure out whether the cpu enters the non-secure address space |
| * in aarch32 or aarch64 |
| */ |
| rw = scr & SCR_RW_BIT; |
| if (rw) { |
| |
| /* |
| * Check whether a Thumb entry point has been provided for an |
| * aarch64 EL |
| */ |
| if (entrypoint & 0x1) |
| return PSCI_E_INVALID_PARAMS; |
| |
| if (el_status && (scr & SCR_HCE_BIT)) { |
| mode = MODE_EL2; |
| ee = read_sctlr_el2() & SCTLR_EE_BIT; |
| } else { |
| mode = MODE_EL1; |
| ee = read_sctlr_el1() & SCTLR_EE_BIT; |
| } |
| |
| spsr = DAIF_DBG_BIT | DAIF_ABT_BIT; |
| spsr |= DAIF_IRQ_BIT | DAIF_FIQ_BIT; |
| spsr <<= PSR_DAIF_SHIFT; |
| spsr |= make_spsr(mode, MODE_SP_ELX, !rw); |
| |
| psci_ns_entry_info[index].sctlr |= ee; |
| psci_ns_entry_info[index].scr |= SCR_RW_BIT; |
| } else { |
| |
| /* Check whether aarch32 has to be entered in Thumb mode */ |
| if (entrypoint & 0x1) |
| spsr = SPSR32_T_BIT; |
| |
| if (el_status && (scr & SCR_HCE_BIT)) { |
| mode = AARCH32_MODE_HYP; |
| ee = read_sctlr_el2() & SCTLR_EE_BIT; |
| } else { |
| mode = AARCH32_MODE_SVC; |
| ee = read_sctlr_el1() & SCTLR_EE_BIT; |
| } |
| |
| /* |
| * TODO: Choose async. exception bits if HYP mode is not |
| * implemented according to the values of SCR.{AW, FW} bits |
| */ |
| spsr |= DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; |
| spsr <<= PSR_DAIF_SHIFT; |
| if(ee) |
| spsr |= SPSR32_EE_BIT; |
| spsr |= mode; |
| |
| /* Ensure that the CSPR.E and SCTLR.EE bits match */ |
| psci_ns_entry_info[index].sctlr |= ee; |
| psci_ns_entry_info[index].scr &= ~SCR_RW_BIT; |
| } |
| |
| psci_ns_entry_info[index].eret_info.entrypoint = entrypoint; |
| psci_ns_entry_info[index].eret_info.spsr = spsr; |
| psci_ns_entry_info[index].context_id = context_id; |
| |
| return rc; |
| } |
| |
| /******************************************************************************* |
| * An affinity level could be on, on_pending, suspended or off. These are the |
| * logical states it can be in. Physically either it is off or on. When it is in |
| * the state on_pending then it is about to be turned on. It is not possible to |
| * tell whether that's actually happenned or not. So we err on the side of |
| * caution & treat the affinity level as being turned off. |
| ******************************************************************************/ |
| inline unsigned int psci_get_phys_state(unsigned int aff_state) |
| { |
| return (aff_state != PSCI_STATE_ON ? PSCI_STATE_OFF : PSCI_STATE_ON); |
| } |
| |
| unsigned int psci_get_aff_phys_state(aff_map_node *aff_node) |
| { |
| unsigned int aff_state; |
| |
| aff_state = psci_get_state(aff_node->state); |
| return psci_get_phys_state(aff_state); |
| } |
| |
| /******************************************************************************* |
| * This function takes an array of pointers to affinity instance nodes in the |
| * topology tree and calls the physical power on handler for the corresponding |
| * affinity levels |
| ******************************************************************************/ |
| static int psci_call_power_on_handlers(mpidr_aff_map_nodes mpidr_nodes, |
| int start_afflvl, |
| int end_afflvl, |
| afflvl_power_on_finisher *pon_handlers, |
| unsigned long mpidr) |
| { |
| int rc = PSCI_E_INVALID_PARAMS, level; |
| aff_map_node *node; |
| |
| for (level = end_afflvl; level >= start_afflvl; level--) { |
| node = mpidr_nodes[level]; |
| if (node == NULL) |
| continue; |
| |
| /* |
| * If we run into any trouble while powering up an |
| * affinity instance, then there is no recovery path |
| * so simply return an error and let the caller take |
| * care of the situation. |
| */ |
| rc = pon_handlers[level](mpidr, node); |
| if (rc != PSCI_E_SUCCESS) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| /******************************************************************************* |
| * Generic handler which is called when a cpu is physically powered on. It |
| * traverses through all the affinity levels performing generic, architectural, |
| * platform setup and state management e.g. for a cluster that's been powered |
| * on, it will call the platform specific code which will enable coherency at |
| * the interconnect level. For a cpu it could mean turning on the MMU etc. |
| * |
| * The state of all the relevant affinity levels is changed after calling the |
| * affinity level specific handlers as their actions would depend upon the state |
| * the affinity level is exiting from. |
| * |
| * The affinity level specific handlers are called in descending order i.e. from |
| * the highest to the lowest affinity level implemented by the platform because |
| * to turn on affinity level X it is neccesary to turn on affinity level X + 1 |
| * first. |
| * |
| * CAUTION: This function is called with coherent stacks so that coherency and |
| * the mmu can be turned on safely. |
| ******************************************************************************/ |
| void psci_afflvl_power_on_finish(unsigned long mpidr, |
| int start_afflvl, |
| int end_afflvl, |
| afflvl_power_on_finisher *pon_handlers) |
| { |
| mpidr_aff_map_nodes mpidr_nodes; |
| int rc; |
| |
| mpidr &= MPIDR_AFFINITY_MASK;; |
| |
| /* |
| * Collect the pointers to the nodes in the topology tree for |
| * each affinity instance in the mpidr. If this function does |
| * not return successfully then either the mpidr or the affinity |
| * levels are incorrect. Either case is an irrecoverable error. |
| */ |
| rc = psci_get_aff_map_nodes(mpidr, |
| start_afflvl, |
| end_afflvl, |
| mpidr_nodes); |
| assert (rc == PSCI_E_SUCCESS); |
| |
| /* |
| * This function acquires the lock corresponding to each affinity |
| * level so that by the time all locks are taken, the system topology |
| * is snapshot and state management can be done safely. |
| */ |
| psci_acquire_afflvl_locks(mpidr, |
| start_afflvl, |
| end_afflvl, |
| mpidr_nodes); |
| |
| /* Perform generic, architecture and platform specific handling */ |
| rc = psci_call_power_on_handlers(mpidr_nodes, |
| start_afflvl, |
| end_afflvl, |
| pon_handlers, |
| mpidr); |
| assert (rc == PSCI_E_SUCCESS); |
| |
| /* |
| * State management: Update the state of each affinity instance |
| * between the start and end affinity levels |
| */ |
| psci_change_state(mpidr_nodes, |
| start_afflvl, |
| end_afflvl, |
| PSCI_STATE_ON); |
| |
| /* |
| * This loop releases the lock corresponding to each affinity level |
| * in the reverse order to which they were acquired. |
| */ |
| psci_release_afflvl_locks(mpidr, |
| start_afflvl, |
| end_afflvl, |
| mpidr_nodes); |
| } |