| /* |
| * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * Neither the name of ARM nor the names of its contributors may be used |
| * to endorse or promote products derived from this software without specific |
| * prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <context_mgmt.h> |
| #include <debug.h> |
| #include <tsp.h> |
| #include "tspd_private.h" |
| |
| /******************************************************************************* |
| * The target cpu is being turned on. Allow the TSPD/TSP to perform any actions |
| * needed. Nothing at the moment. |
| ******************************************************************************/ |
| static void tspd_cpu_on_handler(uint64_t target_cpu) |
| { |
| } |
| |
| /******************************************************************************* |
| * This cpu is being turned off. Allow the TSPD/TSP to perform any actions |
| * needed |
| ******************************************************************************/ |
| static int32_t tspd_cpu_off_handler(uint64_t cookie) |
| { |
| int32_t rc = 0; |
| uint64_t mpidr = read_mpidr(); |
| uint32_t linear_id = platform_get_core_pos(mpidr); |
| tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; |
| |
| assert(tsp_vectors); |
| assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); |
| |
| /* Program the entry point and enter the TSP */ |
| cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_off_entry); |
| rc = tspd_synchronous_sp_entry(tsp_ctx); |
| |
| /* |
| * Read the response from the TSP. A non-zero return means that |
| * something went wrong while communicating with the TSP. |
| */ |
| if (rc != 0) |
| panic(); |
| |
| /* |
| * Reset TSP's context for a fresh start when this cpu is turned on |
| * subsequently. |
| */ |
| set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_OFF); |
| |
| return 0; |
| } |
| |
| /******************************************************************************* |
| * This cpu is being suspended. S-EL1 state must have been saved in the |
| * resident cpu (mpidr format) if it is a UP/UP migratable TSP. |
| ******************************************************************************/ |
| static void tspd_cpu_suspend_handler(uint64_t power_state) |
| { |
| int32_t rc = 0; |
| uint64_t mpidr = read_mpidr(); |
| uint32_t linear_id = platform_get_core_pos(mpidr); |
| tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; |
| |
| assert(tsp_vectors); |
| assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); |
| |
| /* Program the entry point, power_state parameter and enter the TSP */ |
| write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx), |
| CTX_GPREG_X0, |
| power_state); |
| cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_suspend_entry); |
| rc = tspd_synchronous_sp_entry(tsp_ctx); |
| |
| /* |
| * Read the response from the TSP. A non-zero return means that |
| * something went wrong while communicating with the TSP. |
| */ |
| if (rc != 0) |
| panic(); |
| |
| /* Update its context to reflect the state the TSP is in */ |
| set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_SUSPEND); |
| } |
| |
| /******************************************************************************* |
| * This cpu has been turned on. Enter the TSP to initialise S-EL1 and other bits |
| * before passing control back to the Secure Monitor. Entry in S-El1 is done |
| * after initialising minimal architectural state that guarantees safe |
| * execution. |
| ******************************************************************************/ |
| static void tspd_cpu_on_finish_handler(uint64_t cookie) |
| { |
| int32_t rc = 0; |
| uint64_t mpidr = read_mpidr(); |
| uint32_t linear_id = platform_get_core_pos(mpidr); |
| tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; |
| |
| assert(tsp_vectors); |
| assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_OFF); |
| |
| /* Initialise this cpu's secure context */ |
| tspd_init_secure_context((uint64_t) &tsp_vectors->cpu_on_entry, |
| TSP_AARCH64, |
| mpidr, |
| tsp_ctx); |
| |
| /* Enter the TSP */ |
| rc = tspd_synchronous_sp_entry(tsp_ctx); |
| |
| /* |
| * Read the response from the TSP. A non-zero return means that |
| * something went wrong while communicating with the SP. |
| */ |
| if (rc != 0) |
| panic(); |
| |
| /* Update its context to reflect the state the SP is in */ |
| set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); |
| } |
| |
| /******************************************************************************* |
| * This cpu has resumed from suspend. The SPD saved the TSP context when it |
| * completed the preceding suspend call. Use that context to program an entry |
| * into the TSP to allow it to do any remaining book keeping |
| ******************************************************************************/ |
| static void tspd_cpu_suspend_finish_handler(uint64_t suspend_level) |
| { |
| int32_t rc = 0; |
| uint64_t mpidr = read_mpidr(); |
| uint32_t linear_id = platform_get_core_pos(mpidr); |
| tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; |
| |
| assert(tsp_vectors); |
| assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_SUSPEND); |
| |
| /* Program the entry point, suspend_level and enter the SP */ |
| write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx), |
| CTX_GPREG_X0, |
| suspend_level); |
| cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_resume_entry); |
| rc = tspd_synchronous_sp_entry(tsp_ctx); |
| |
| /* |
| * Read the response from the TSP. A non-zero return means that |
| * something went wrong while communicating with the TSP. |
| */ |
| if (rc != 0) |
| panic(); |
| |
| /* Update its context to reflect the state the SP is in */ |
| set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); |
| } |
| |
| /******************************************************************************* |
| * Return the type of TSP the TSPD is dealing with. Report the current resident |
| * cpu (mpidr format) if it is a UP/UP migratable TSP. |
| ******************************************************************************/ |
| static int32_t tspd_cpu_migrate_info(uint64_t *resident_cpu) |
| { |
| return TSP_MIGRATE_INFO; |
| } |
| |
| /******************************************************************************* |
| * Structure populated by the TSP Dispatcher to be given a chance to perform any |
| * TSP bookkeeping before PSCI executes a power mgmt. operation. |
| ******************************************************************************/ |
| const spd_pm_ops_t tspd_pm = { |
| tspd_cpu_on_handler, |
| tspd_cpu_off_handler, |
| tspd_cpu_suspend_handler, |
| tspd_cpu_on_finish_handler, |
| tspd_cpu_suspend_finish_handler, |
| NULL, |
| tspd_cpu_migrate_info |
| }; |
| |