| /* |
| * Copyright 2021-2022 NXP |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| * |
| */ |
| |
| #include <errno.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| |
| #include <common/debug.h> |
| #include <ddr.h> |
| #include <dimm.h> |
| #include <i2c.h> |
| #include <lib/utils.h> |
| |
| int read_spd(unsigned char chip, void *buf, int len) |
| { |
| unsigned char dummy = 0U; |
| int ret; |
| |
| if (len < 256) { |
| ERROR("Invalid SPD length\n"); |
| return -EINVAL; |
| } |
| |
| i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1); |
| ret = i2c_read(chip, 0, 1, buf, 256); |
| if (ret == 0) { |
| i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1); |
| ret = i2c_read(chip, 0, 1, buf + 256, min(256, len - 256)); |
| } |
| if (ret != 0) { |
| zeromem(buf, len); |
| } |
| |
| return ret; |
| } |
| |
| int crc16(unsigned char *ptr, int count) |
| { |
| int i; |
| int crc = 0; |
| |
| while (--count >= 0) { |
| crc = crc ^ (int)*ptr++ << 8; |
| for (i = 0; i < 8; ++i) { |
| if ((crc & 0x8000) != 0) { |
| crc = crc << 1 ^ 0x1021; |
| } else { |
| crc = crc << 1; |
| } |
| } |
| } |
| return crc & 0xffff; |
| } |
| |
| static int ddr4_spd_check(const struct ddr4_spd *spd) |
| { |
| void *p = (void *)spd; |
| int csum16; |
| int len; |
| char crc_lsb; /* byte 126 */ |
| char crc_msb; /* byte 127 */ |
| |
| len = 126; |
| csum16 = crc16(p, len); |
| |
| crc_lsb = (char) (csum16 & 0xff); |
| crc_msb = (char) (csum16 >> 8); |
| |
| if (spd->crc[0] != crc_lsb || spd->crc[1] != crc_msb) { |
| ERROR("SPD CRC = 0x%x%x, computed CRC = 0x%x%x\n", |
| spd->crc[1], spd->crc[0], crc_msb, crc_lsb); |
| return -EINVAL; |
| } |
| |
| p = (void *)spd + 128; |
| len = 126; |
| csum16 = crc16(p, len); |
| |
| crc_lsb = (char) (csum16 & 0xff); |
| crc_msb = (char) (csum16 >> 8); |
| |
| if (spd->mod_section.uc[126] != crc_lsb || |
| spd->mod_section.uc[127] != crc_msb) { |
| ERROR("SPD CRC = 0x%x%x, computed CRC = 0x%x%x\n", |
| spd->mod_section.uc[127], spd->mod_section.uc[126], |
| crc_msb, crc_lsb); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned long long |
| compute_ranksize(const struct ddr4_spd *spd) |
| { |
| unsigned long long bsize; |
| |
| int nbit_sdram_cap_bsize = 0; |
| int nbit_primary_bus_width = 0; |
| int nbit_sdram_width = 0; |
| int die_count = 0; |
| bool package_3ds; |
| |
| if ((spd->density_banks & 0xf) <= 7) { |
| nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28; |
| } |
| if ((spd->bus_width & 0x7) < 4) { |
| nbit_primary_bus_width = (spd->bus_width & 0x7) + 3; |
| } |
| if ((spd->organization & 0x7) < 4) { |
| nbit_sdram_width = (spd->organization & 0x7) + 2; |
| } |
| package_3ds = (spd->package_type & 0x3) == 0x2; |
| if (package_3ds) { |
| die_count = (spd->package_type >> 4) & 0x7; |
| } |
| |
| bsize = 1ULL << (nbit_sdram_cap_bsize - 3 + |
| nbit_primary_bus_width - nbit_sdram_width + |
| die_count); |
| |
| return bsize; |
| } |
| |
| int cal_dimm_params(const struct ddr4_spd *spd, struct dimm_params *pdimm) |
| { |
| int ret; |
| int i; |
| static const unsigned char udimm_rc_e_dq[18] = { |
| 0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15, |
| 0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36 |
| }; |
| int spd_error = 0; |
| unsigned char *ptr; |
| unsigned char val; |
| |
| if (spd->mem_type != SPD_MEMTYPE_DDR4) { |
| ERROR("Not a DDR4 DIMM.\n"); |
| return -EINVAL; |
| } |
| |
| ret = ddr4_spd_check(spd); |
| if (ret != 0) { |
| ERROR("DIMM SPD checksum mismatch\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * The part name in ASCII in the SPD EEPROM is not null terminated. |
| * Guarantee null termination here by presetting all bytes to 0 |
| * and copying the part name in ASCII from the SPD onto it |
| */ |
| if ((spd->info_size_crc & 0xF) > 2) { |
| memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); |
| } |
| |
| /* DIMM organization parameters */ |
| pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1; |
| debug("n_ranks %d\n", pdimm->n_ranks); |
| pdimm->rank_density = compute_ranksize(spd); |
| if (pdimm->rank_density == 0) { |
| return -EINVAL; |
| } |
| |
| debug("rank_density 0x%llx\n", pdimm->rank_density); |
| pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; |
| debug("capacity 0x%llx\n", pdimm->capacity); |
| pdimm->die_density = spd->density_banks & 0xf; |
| debug("die density 0x%x\n", pdimm->die_density); |
| pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7)); |
| debug("primary_sdram_width %d\n", pdimm->primary_sdram_width); |
| if (((spd->bus_width >> 3) & 0x3) != 0) { |
| pdimm->ec_sdram_width = 8; |
| } else { |
| pdimm->ec_sdram_width = 0; |
| } |
| debug("ec_sdram_width %d\n", pdimm->ec_sdram_width); |
| pdimm->device_width = 1 << ((spd->organization & 0x7) + 2); |
| debug("device_width %d\n", pdimm->device_width); |
| pdimm->package_3ds = (spd->package_type & 0x3) == 0x2 ? |
| (spd->package_type >> 4) & 0x7 : 0; |
| debug("package_3ds %d\n", pdimm->package_3ds); |
| |
| switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) { |
| case DDR4_SPD_RDIMM: |
| case DDR4_SPD_MINI_RDIMM: |
| case DDR4_SPD_72B_SO_RDIMM: |
| pdimm->rdimm = 1; |
| pdimm->rc = spd->mod_section.registered.ref_raw_card & 0x9f; |
| if ((spd->mod_section.registered.reg_map & 0x1) != 0) { |
| pdimm->mirrored_dimm = 1; |
| } |
| val = spd->mod_section.registered.ca_stren; |
| pdimm->rcw[3] = val >> 4; |
| pdimm->rcw[4] = ((val & 0x3) << 2) | ((val & 0xc) >> 2); |
| val = spd->mod_section.registered.clk_stren; |
| pdimm->rcw[5] = ((val & 0x3) << 2) | ((val & 0xc) >> 2); |
| pdimm->rcw[6] = 0xf; |
| /* A17 used for 16Gb+, C[2:0] used for 3DS */ |
| pdimm->rcw[8] = pdimm->die_density >= 0x6 ? 0x0 : 0x8 | |
| (pdimm->package_3ds > 0x3 ? 0x0 : |
| (pdimm->package_3ds > 0x1 ? 0x1 : |
| (pdimm->package_3ds > 0 ? 0x2 : 0x3))); |
| if (pdimm->package_3ds != 0 || pdimm->n_ranks != 4) { |
| pdimm->rcw[13] = 0x4; |
| } else { |
| pdimm->rcw[13] = 0x5; |
| } |
| pdimm->rcw[13] |= pdimm->mirrored_dimm ? 0x8 : 0; |
| break; |
| |
| case DDR4_SPD_UDIMM: |
| case DDR4_SPD_SO_DIMM: |
| case DDR4_SPD_MINI_UDIMM: |
| case DDR4_SPD_72B_SO_UDIMM: |
| case DDR4_SPD_16B_SO_DIMM: |
| case DDR4_SPD_32B_SO_DIMM: |
| pdimm->rc = spd->mod_section.unbuffered.ref_raw_card & 0x9f; |
| if ((spd->mod_section.unbuffered.addr_mapping & 0x1) != 0) { |
| pdimm->mirrored_dimm = 1; |
| } |
| if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 && |
| (spd->mod_section.unbuffered.ref_raw_card == 0x04)) { |
| /* Fix SPD error found on DIMMs with raw card E0 */ |
| for (i = 0; i < 18; i++) { |
| if (spd->mapping[i] == udimm_rc_e_dq[i]) { |
| continue; |
| } |
| spd_error = 1; |
| ptr = (unsigned char *)&spd->mapping[i]; |
| *ptr = udimm_rc_e_dq[i]; |
| } |
| if (spd_error != 0) { |
| INFO("SPD DQ mapping error fixed\n"); |
| } |
| } |
| break; |
| |
| default: |
| ERROR("Unknown module_type 0x%x\n", spd->module_type); |
| return -EINVAL; |
| } |
| debug("rdimm %d\n", pdimm->rdimm); |
| debug("mirrored_dimm %d\n", pdimm->mirrored_dimm); |
| debug("rc 0x%x\n", pdimm->rc); |
| |
| /* SDRAM device parameters */ |
| pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12; |
| debug("n_row_addr %d\n", pdimm->n_row_addr); |
| pdimm->n_col_addr = (spd->addressing & 0x7) + 9; |
| debug("n_col_addr %d\n", pdimm->n_col_addr); |
| pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3; |
| debug("bank_addr_bits %d\n", pdimm->bank_addr_bits); |
| pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3; |
| debug("bank_group_bits %d\n", pdimm->bank_group_bits); |
| |
| if (pdimm->ec_sdram_width != 0) { |
| pdimm->edc_config = 0x02; |
| } else { |
| pdimm->edc_config = 0x00; |
| } |
| debug("edc_config %d\n", pdimm->edc_config); |
| |
| /* DDR4 spec has BL8 -bit3, BC4 -bit2 */ |
| pdimm->burst_lengths_bitmask = 0x0c; |
| debug("burst_lengths_bitmask 0x%x\n", pdimm->burst_lengths_bitmask); |
| |
| /* MTB - medium timebase |
| * The MTB in the SPD spec is 125ps, |
| * |
| * FTB - fine timebase |
| * use 1/10th of ps as our unit to avoid floating point |
| * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps |
| */ |
| if ((spd->timebases & 0xf) == 0x0) { |
| pdimm->mtb_ps = 125; |
| pdimm->ftb_10th_ps = 10; |
| |
| } else { |
| ERROR("Unknown Timebases\n"); |
| return -EINVAL; |
| } |
| |
| /* sdram minimum cycle time */ |
| pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min); |
| debug("tckmin_x_ps %d\n", pdimm->tckmin_x_ps); |
| |
| /* sdram max cycle time */ |
| pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max); |
| debug("tckmax_ps %d\n", pdimm->tckmax_ps); |
| |
| /* |
| * CAS latency supported |
| * bit0 - CL7 |
| * bit4 - CL11 |
| * bit8 - CL15 |
| * bit12- CL19 |
| * bit16- CL23 |
| */ |
| pdimm->caslat_x = (spd->caslat_b1 << 7) | |
| (spd->caslat_b2 << 15) | |
| (spd->caslat_b3 << 23); |
| debug("caslat_x 0x%x\n", pdimm->caslat_x); |
| |
| if (spd->caslat_b4 != 0) { |
| WARN("Unhandled caslat_b4 value\n"); |
| } |
| |
| /* |
| * min CAS latency time |
| */ |
| pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min); |
| debug("taa_ps %d\n", pdimm->taa_ps); |
| |
| /* |
| * min RAS to CAS delay time |
| */ |
| pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min); |
| debug("trcd_ps %d\n", pdimm->trcd_ps); |
| |
| /* |
| * Min Row Precharge Delay Time |
| */ |
| pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min); |
| debug("trp_ps %d\n", pdimm->trp_ps); |
| |
| /* min active to precharge delay time */ |
| pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) + |
| spd->tras_min_lsb) * pdimm->mtb_ps; |
| debug("tras_ps %d\n", pdimm->tras_ps); |
| |
| /* min active to actice/refresh delay time */ |
| pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) + |
| spd->trc_min_lsb), spd->fine_trc_min); |
| debug("trc_ps %d\n", pdimm->trc_ps); |
| /* Min Refresh Recovery Delay Time */ |
| pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) * |
| pdimm->mtb_ps; |
| debug("trfc1_ps %d\n", pdimm->trfc1_ps); |
| pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) * |
| pdimm->mtb_ps; |
| debug("trfc2_ps %d\n", pdimm->trfc2_ps); |
| pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) * |
| pdimm->mtb_ps; |
| debug("trfc4_ps %d\n", pdimm->trfc4_ps); |
| /* min four active window delay time */ |
| pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) * |
| pdimm->mtb_ps; |
| debug("tfaw_ps %d\n", pdimm->tfaw_ps); |
| |
| /* min row active to row active delay time, different bank group */ |
| pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min); |
| debug("trrds_ps %d\n", pdimm->trrds_ps); |
| /* min row active to row active delay time, same bank group */ |
| pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min); |
| debug("trrdl_ps %d\n", pdimm->trrdl_ps); |
| /* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */ |
| pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min); |
| debug("tccdl_ps %d\n", pdimm->tccdl_ps); |
| if (pdimm->package_3ds != 0) { |
| if (pdimm->die_density > 5) { |
| debug("Unsupported logical rank density 0x%x\n", |
| pdimm->die_density); |
| return -EINVAL; |
| } |
| pdimm->trfc_slr_ps = (pdimm->die_density <= 4) ? |
| 260000 : 350000; |
| } |
| debug("trfc_slr_ps %d\n", pdimm->trfc_slr_ps); |
| |
| /* 15ns for all speed bins */ |
| pdimm->twr_ps = 15000; |
| debug("twr_ps %d\n", pdimm->twr_ps); |
| |
| /* |
| * Average periodic refresh interval |
| * tREFI = 7.8 us at normal temperature range |
| */ |
| pdimm->refresh_rate_ps = 7800000; |
| debug("refresh_rate_ps %d\n", pdimm->refresh_rate_ps); |
| |
| for (i = 0; i < 18; i++) { |
| pdimm->dq_mapping[i] = spd->mapping[i]; |
| debug("dq_mapping 0x%x\n", pdimm->dq_mapping[i]); |
| } |
| |
| pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0; |
| debug("dq_mapping_ors %d\n", pdimm->dq_mapping_ors); |
| |
| return 0; |
| } |