| /* |
| * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved. |
| * Copyright (c) 2022, NVIDIA Corporation. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| #include <string.h> |
| |
| #include <platform_def.h> |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <arch_features.h> |
| #include <bl31/interrupt_mgmt.h> |
| #include <common/bl_common.h> |
| #include <common/debug.h> |
| #include <context.h> |
| #include <drivers/arm/gicv3.h> |
| #include <lib/el3_runtime/context_mgmt.h> |
| #include <lib/el3_runtime/pubsub_events.h> |
| #include <lib/extensions/amu.h> |
| #include <lib/extensions/brbe.h> |
| #include <lib/extensions/mpam.h> |
| #include <lib/extensions/sme.h> |
| #include <lib/extensions/spe.h> |
| #include <lib/extensions/sve.h> |
| #include <lib/extensions/sys_reg_trace.h> |
| #include <lib/extensions/trbe.h> |
| #include <lib/extensions/trf.h> |
| #include <lib/utils.h> |
| |
| #if ENABLE_FEAT_TWED |
| /* Make sure delay value fits within the range(0-15) */ |
| CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); |
| #endif /* ENABLE_FEAT_TWED */ |
| |
| static void manage_extensions_secure(cpu_context_t *ctx); |
| |
| static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t sctlr_elx, actlr_elx; |
| |
| /* |
| * Initialise SCTLR_EL1 to the reset value corresponding to the target |
| * execution state setting all fields rather than relying on the hw. |
| * Some fields have architecturally UNKNOWN reset values and these are |
| * set to zero. |
| * |
| * SCTLR.EE: Endianness is taken from the entrypoint attributes. |
| * |
| * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as |
| * required by PSCI specification) |
| */ |
| sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; |
| if (GET_RW(ep->spsr) == MODE_RW_64) { |
| sctlr_elx |= SCTLR_EL1_RES1; |
| } else { |
| /* |
| * If the target execution state is AArch32 then the following |
| * fields need to be set. |
| * |
| * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE |
| * instructions are not trapped to EL1. |
| * |
| * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI |
| * instructions are not trapped to EL1. |
| * |
| * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the |
| * CP15DMB, CP15DSB, and CP15ISB instructions. |
| */ |
| sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT |
| | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; |
| } |
| |
| #if ERRATA_A75_764081 |
| /* |
| * If workaround of errata 764081 for Cortex-A75 is used then set |
| * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. |
| */ |
| sctlr_elx |= SCTLR_IESB_BIT; |
| #endif |
| /* Store the initialised SCTLR_EL1 value in the cpu_context */ |
| write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); |
| |
| /* |
| * Base the context ACTLR_EL1 on the current value, as it is |
| * implementation defined. The context restore process will write |
| * the value from the context to the actual register and can cause |
| * problems for processor cores that don't expect certain bits to |
| * be zero. |
| */ |
| actlr_elx = read_actlr_el1(); |
| write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); |
| } |
| |
| /****************************************************************************** |
| * This function performs initializations that are specific to SECURE state |
| * and updates the cpu context specified by 'ctx'. |
| *****************************************************************************/ |
| static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t scr_el3; |
| el3_state_t *state; |
| |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| |
| #if defined(IMAGE_BL31) && !defined(SPD_spmd) |
| /* |
| * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as |
| * indicated by the interrupt routing model for BL31. |
| */ |
| scr_el3 |= get_scr_el3_from_routing_model(SECURE); |
| #endif |
| |
| #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS |
| /* Get Memory Tagging Extension support level */ |
| unsigned int mte = get_armv8_5_mte_support(); |
| #endif |
| /* |
| * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS |
| * is set, or when MTE is only implemented at EL0. |
| */ |
| #if CTX_INCLUDE_MTE_REGS |
| assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); |
| scr_el3 |= SCR_ATA_BIT; |
| #else |
| if (mte == MTE_IMPLEMENTED_EL0) { |
| scr_el3 |= SCR_ATA_BIT; |
| } |
| #endif /* CTX_INCLUDE_MTE_REGS */ |
| |
| /* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */ |
| if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) { |
| if (GET_RW(ep->spsr) != MODE_RW_64) { |
| ERROR("S-EL2 can not be used in AArch32\n."); |
| panic(); |
| } |
| |
| scr_el3 |= SCR_EEL2_BIT; |
| } |
| |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| |
| /* |
| * Initialize EL1 context registers unless SPMC is running |
| * at S-EL2. |
| */ |
| #if !SPMD_SPM_AT_SEL2 |
| setup_el1_context(ctx, ep); |
| #endif |
| |
| manage_extensions_secure(ctx); |
| } |
| |
| #if ENABLE_RME |
| /****************************************************************************** |
| * This function performs initializations that are specific to REALM state |
| * and updates the cpu context specified by 'ctx'. |
| *****************************************************************************/ |
| static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t scr_el3; |
| el3_state_t *state; |
| |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| |
| scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT; |
| |
| if (is_feat_csv2_2_supported()) { |
| /* Enable access to the SCXTNUM_ELx registers. */ |
| scr_el3 |= SCR_EnSCXT_BIT; |
| } |
| |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| } |
| #endif /* ENABLE_RME */ |
| |
| /****************************************************************************** |
| * This function performs initializations that are specific to NON-SECURE state |
| * and updates the cpu context specified by 'ctx'. |
| *****************************************************************************/ |
| static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t scr_el3; |
| el3_state_t *state; |
| |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| |
| /* SCR_NS: Set the NS bit */ |
| scr_el3 |= SCR_NS_BIT; |
| |
| #if !CTX_INCLUDE_PAUTH_REGS |
| /* |
| * If the pointer authentication registers aren't saved during world |
| * switches the value of the registers can be leaked from the Secure to |
| * the Non-secure world. To prevent this, rather than enabling pointer |
| * authentication everywhere, we only enable it in the Non-secure world. |
| * |
| * If the Secure world wants to use pointer authentication, |
| * CTX_INCLUDE_PAUTH_REGS must be set to 1. |
| */ |
| scr_el3 |= SCR_API_BIT | SCR_APK_BIT; |
| #endif /* !CTX_INCLUDE_PAUTH_REGS */ |
| |
| /* Allow access to Allocation Tags when MTE is implemented. */ |
| scr_el3 |= SCR_ATA_BIT; |
| |
| #if HANDLE_EA_EL3_FIRST_NS |
| /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */ |
| scr_el3 |= SCR_EA_BIT; |
| #endif |
| |
| #if RAS_TRAP_NS_ERR_REC_ACCESS |
| /* |
| * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR |
| * and RAS ERX registers from EL1 and EL2(from any security state) |
| * are trapped to EL3. |
| * Set here to trap only for NS EL1/EL2 |
| * |
| */ |
| scr_el3 |= SCR_TERR_BIT; |
| #endif |
| |
| if (is_feat_csv2_2_supported()) { |
| /* Enable access to the SCXTNUM_ELx registers. */ |
| scr_el3 |= SCR_EnSCXT_BIT; |
| } |
| |
| #ifdef IMAGE_BL31 |
| /* |
| * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as |
| * indicated by the interrupt routing model for BL31. |
| */ |
| scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); |
| #endif |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| |
| /* Initialize EL1 context registers */ |
| setup_el1_context(ctx, ep); |
| |
| /* Initialize EL2 context registers */ |
| #if CTX_INCLUDE_EL2_REGS |
| |
| /* |
| * Initialize SCTLR_EL2 context register using Endianness value |
| * taken from the entrypoint attribute. |
| */ |
| u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; |
| sctlr_el2 |= SCTLR_EL2_RES1; |
| write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2, |
| sctlr_el2); |
| |
| /* |
| * Program the ICC_SRE_EL2 to make sure the correct bits are set |
| * when restoring NS context. |
| */ |
| u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT | |
| ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT; |
| write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2, |
| icc_sre_el2); |
| |
| /* |
| * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't |
| * throw anyone off who expects this to be sensible. |
| * TODO: A similar thing happens in cm_prepare_el3_exit. They should be |
| * unified with the proper PMU implementation |
| */ |
| u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) & |
| PMCR_EL0_N_MASK); |
| write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2); |
| |
| if (is_feat_hcx_supported()) { |
| /* |
| * Initialize register HCRX_EL2 with its init value. |
| * As the value of HCRX_EL2 is UNKNOWN on reset, there is a |
| * chance that this can lead to unexpected behavior in lower |
| * ELs that have not been updated since the introduction of |
| * this feature if not properly initialized, especially when |
| * it comes to those bits that enable/disable traps. |
| */ |
| write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2, |
| HCRX_EL2_INIT_VAL); |
| } |
| #endif /* CTX_INCLUDE_EL2_REGS */ |
| } |
| |
| /******************************************************************************* |
| * The following function performs initialization of the cpu_context 'ctx' |
| * for first use that is common to all security states, and sets the |
| * initial entrypoint state as specified by the entry_point_info structure. |
| * |
| * The EE and ST attributes are used to configure the endianness and secure |
| * timer availability for the new execution context. |
| ******************************************************************************/ |
| static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) |
| { |
| u_register_t scr_el3; |
| el3_state_t *state; |
| gp_regs_t *gp_regs; |
| |
| /* Clear any residual register values from the context */ |
| zeromem(ctx, sizeof(*ctx)); |
| |
| /* |
| * SCR_EL3 was initialised during reset sequence in macro |
| * el3_arch_init_common. This code modifies the SCR_EL3 fields that |
| * affect the next EL. |
| * |
| * The following fields are initially set to zero and then updated to |
| * the required value depending on the state of the SPSR_EL3 and the |
| * Security state and entrypoint attributes of the next EL. |
| */ |
| scr_el3 = read_scr(); |
| scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | |
| SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT); |
| |
| /* |
| * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next |
| * Exception level as specified by SPSR. |
| */ |
| if (GET_RW(ep->spsr) == MODE_RW_64) { |
| scr_el3 |= SCR_RW_BIT; |
| } |
| |
| /* |
| * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical |
| * Secure timer registers to EL3, from AArch64 state only, if specified |
| * by the entrypoint attributes. If SEL2 is present and enabled, the ST |
| * bit always behaves as 1 (i.e. secure physical timer register access |
| * is not trapped) |
| */ |
| if (EP_GET_ST(ep->h.attr) != 0U) { |
| scr_el3 |= SCR_ST_BIT; |
| } |
| |
| /* |
| * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting |
| * SCR_EL3.HXEn. |
| */ |
| if (is_feat_hcx_supported()) { |
| scr_el3 |= SCR_HXEn_BIT; |
| } |
| |
| /* |
| * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS |
| * registers are trapped to EL3. |
| */ |
| #if ENABLE_FEAT_RNG_TRAP |
| scr_el3 |= SCR_TRNDR_BIT; |
| #endif |
| |
| #if FAULT_INJECTION_SUPPORT |
| /* Enable fault injection from lower ELs */ |
| scr_el3 |= SCR_FIEN_BIT; |
| #endif |
| |
| /* |
| * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present. |
| */ |
| if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) { |
| scr_el3 |= SCR_TCR2EN_BIT; |
| } |
| |
| /* |
| * SCR_EL3.PIEN: Enable permission indirection and overlay |
| * registers for AArch64 if present. |
| */ |
| if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) { |
| scr_el3 |= SCR_PIEN_BIT; |
| } |
| |
| /* |
| * CPTR_EL3 was initialized out of reset, copy that value to the |
| * context register. |
| */ |
| write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3()); |
| |
| /* |
| * SCR_EL3.HCE: Enable HVC instructions if next execution state is |
| * AArch64 and next EL is EL2, or if next execution state is AArch32 and |
| * next mode is Hyp. |
| * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the |
| * same conditions as HVC instructions and when the processor supports |
| * ARMv8.6-FGT. |
| * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) |
| * CNTPOFF_EL2 register under the same conditions as HVC instructions |
| * and when the processor supports ECV. |
| */ |
| if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) |
| || ((GET_RW(ep->spsr) != MODE_RW_64) |
| && (GET_M32(ep->spsr) == MODE32_hyp))) { |
| scr_el3 |= SCR_HCE_BIT; |
| |
| if (is_feat_fgt_supported()) { |
| scr_el3 |= SCR_FGTEN_BIT; |
| } |
| |
| if (is_feat_ecv_supported()) { |
| scr_el3 |= SCR_ECVEN_BIT; |
| } |
| } |
| |
| /* Enable WFE trap delay in SCR_EL3 if supported and configured */ |
| if (is_feat_twed_supported()) { |
| /* Set delay in SCR_EL3 */ |
| scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); |
| scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) |
| << SCR_TWEDEL_SHIFT); |
| |
| /* Enable WFE delay */ |
| scr_el3 |= SCR_TWEDEn_BIT; |
| } |
| |
| /* |
| * Populate EL3 state so that we've the right context |
| * before doing ERET |
| */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| write_ctx_reg(state, CTX_ELR_EL3, ep->pc); |
| write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); |
| |
| /* |
| * Store the X0-X7 value from the entrypoint into the context |
| * Use memcpy as we are in control of the layout of the structures |
| */ |
| gp_regs = get_gpregs_ctx(ctx); |
| memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); |
| } |
| |
| /******************************************************************************* |
| * Context management library initialization routine. This library is used by |
| * runtime services to share pointers to 'cpu_context' structures for secure |
| * non-secure and realm states. Management of the structures and their associated |
| * memory is not done by the context management library e.g. the PSCI service |
| * manages the cpu context used for entry from and exit to the non-secure state. |
| * The Secure payload dispatcher service manages the context(s) corresponding to |
| * the secure state. It also uses this library to get access to the non-secure |
| * state cpu context pointers. |
| * Lastly, this library provides the API to make SP_EL3 point to the cpu context |
| * which will be used for programming an entry into a lower EL. The same context |
| * will be used to save state upon exception entry from that EL. |
| ******************************************************************************/ |
| void __init cm_init(void) |
| { |
| /* |
| * The context management library has only global data to intialize, but |
| * that will be done when the BSS is zeroed out. |
| */ |
| } |
| |
| /******************************************************************************* |
| * This is the high-level function used to initialize the cpu_context 'ctx' for |
| * first use. It performs initializations that are common to all security states |
| * and initializations specific to the security state specified in 'ep' |
| ******************************************************************************/ |
| void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) |
| { |
| unsigned int security_state; |
| |
| assert(ctx != NULL); |
| |
| /* |
| * Perform initializations that are common |
| * to all security states |
| */ |
| setup_context_common(ctx, ep); |
| |
| security_state = GET_SECURITY_STATE(ep->h.attr); |
| |
| /* Perform security state specific initializations */ |
| switch (security_state) { |
| case SECURE: |
| setup_secure_context(ctx, ep); |
| break; |
| #if ENABLE_RME |
| case REALM: |
| setup_realm_context(ctx, ep); |
| break; |
| #endif |
| case NON_SECURE: |
| setup_ns_context(ctx, ep); |
| break; |
| default: |
| ERROR("Invalid security state\n"); |
| panic(); |
| break; |
| } |
| } |
| |
| /******************************************************************************* |
| * Enable architecture extensions on first entry to Non-secure world. |
| * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise |
| * it is zero. |
| ******************************************************************************/ |
| static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx) |
| { |
| #if IMAGE_BL31 |
| if (is_feat_spe_supported()) { |
| spe_enable(el2_unused); |
| } |
| |
| if (is_feat_amu_supported()) { |
| amu_enable(el2_unused, ctx); |
| } |
| |
| /* Enable SME, SVE, and FPU/SIMD for non-secure world. */ |
| if (is_feat_sme_supported()) { |
| sme_enable(ctx); |
| } else if (is_feat_sve_supported()) { |
| /* Enable SVE and FPU/SIMD for non-secure world. */ |
| sve_enable(ctx); |
| } |
| |
| if (is_feat_mpam_supported()) { |
| mpam_enable(el2_unused); |
| } |
| |
| if (is_feat_trbe_supported()) { |
| trbe_enable(); |
| } |
| |
| if (is_feat_brbe_supported()) { |
| brbe_enable(); |
| } |
| |
| if (is_feat_sys_reg_trace_supported()) { |
| sys_reg_trace_enable(ctx); |
| } |
| |
| if (is_feat_trf_supported()) { |
| trf_enable(); |
| } |
| #endif |
| } |
| |
| /******************************************************************************* |
| * Enable architecture extensions on first entry to Secure world. |
| ******************************************************************************/ |
| static void manage_extensions_secure(cpu_context_t *ctx) |
| { |
| #if IMAGE_BL31 |
| |
| if (is_feat_sme_supported()) { |
| if (ENABLE_SME_FOR_SWD) { |
| /* |
| * Enable SME, SVE, FPU/SIMD in secure context, secure manager |
| * must ensure SME, SVE, and FPU/SIMD context properly managed. |
| */ |
| sme_enable(ctx); |
| } else { |
| /* |
| * Disable SME, SVE, FPU/SIMD in secure context so non-secure |
| * world can safely use the associated registers. |
| */ |
| sme_disable(ctx); |
| } |
| } else if (is_feat_sve_supported()) { |
| if (ENABLE_SVE_FOR_SWD) { |
| /* |
| * Enable SVE and FPU in secure context, secure manager must |
| * ensure that the SVE and FPU register contexts are properly |
| * managed. |
| */ |
| sve_enable(ctx); |
| } else { |
| /* |
| * Disable SVE and FPU in secure context so non-secure world |
| * can safely use them. |
| */ |
| sve_disable(ctx); |
| } |
| } |
| |
| #endif /* IMAGE_BL31 */ |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context for a CPU specified by |
| * its `cpu_idx` for first use, and sets the initial entrypoint state as |
| * specified by the entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_context_by_index(unsigned int cpu_idx, |
| const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); |
| cm_setup_context(ctx, ep); |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context for the current CPU |
| * for first use, and sets the initial entrypoint state as specified by the |
| * entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_my_context(const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); |
| cm_setup_context(ctx, ep); |
| } |
| |
| /******************************************************************************* |
| * Prepare the CPU system registers for first entry into realm, secure, or |
| * normal world. |
| * |
| * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized |
| * If execution is requested to non-secure EL1 or svc mode, and the CPU supports |
| * EL2 then EL2 is disabled by configuring all necessary EL2 registers. |
| * For all entries, the EL1 registers are initialized from the cpu_context |
| ******************************************************************************/ |
| void cm_prepare_el3_exit(uint32_t security_state) |
| { |
| u_register_t sctlr_elx, scr_el3, mdcr_el2; |
| cpu_context_t *ctx = cm_get_context(security_state); |
| bool el2_unused = false; |
| uint64_t hcr_el2 = 0U; |
| |
| assert(ctx != NULL); |
| |
| if (security_state == NON_SECURE) { |
| uint64_t el2_implemented = el_implemented(2); |
| |
| scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), |
| CTX_SCR_EL3); |
| |
| if (((scr_el3 & SCR_HCE_BIT) != 0U) |
| || (el2_implemented != EL_IMPL_NONE)) { |
| /* |
| * If context is not being used for EL2, initialize |
| * HCRX_EL2 with its init value here. |
| */ |
| if (is_feat_hcx_supported()) { |
| write_hcrx_el2(HCRX_EL2_INIT_VAL); |
| } |
| } |
| |
| if ((scr_el3 & SCR_HCE_BIT) != 0U) { |
| /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ |
| sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), |
| CTX_SCTLR_EL1); |
| sctlr_elx &= SCTLR_EE_BIT; |
| sctlr_elx |= SCTLR_EL2_RES1; |
| #if ERRATA_A75_764081 |
| /* |
| * If workaround of errata 764081 for Cortex-A75 is used |
| * then set SCTLR_EL2.IESB to enable Implicit Error |
| * Synchronization Barrier. |
| */ |
| sctlr_elx |= SCTLR_IESB_BIT; |
| #endif |
| write_sctlr_el2(sctlr_elx); |
| } else if (el2_implemented != EL_IMPL_NONE) { |
| el2_unused = true; |
| |
| /* |
| * EL2 present but unused, need to disable safely. |
| * SCTLR_EL2 can be ignored in this case. |
| * |
| * Set EL2 register width appropriately: Set HCR_EL2 |
| * field to match SCR_EL3.RW. |
| */ |
| if ((scr_el3 & SCR_RW_BIT) != 0U) |
| hcr_el2 |= HCR_RW_BIT; |
| |
| /* |
| * For Armv8.3 pointer authentication feature, disable |
| * traps to EL2 when accessing key registers or using |
| * pointer authentication instructions from lower ELs. |
| */ |
| hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); |
| |
| write_hcr_el2(hcr_el2); |
| |
| /* |
| * Initialise CPTR_EL2 setting all fields rather than |
| * relying on the hw. All fields have architecturally |
| * UNKNOWN reset values. |
| * |
| * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 |
| * accesses to the CPACR_EL1 or CPACR from both |
| * Execution states do not trap to EL2. |
| * |
| * CPTR_EL2.TTA: Set to zero so that Non-secure System |
| * register accesses to the trace registers from both |
| * Execution states do not trap to EL2. |
| * If PE trace unit System registers are not implemented |
| * then this bit is reserved, and must be set to zero. |
| * |
| * CPTR_EL2.TFP: Set to zero so that Non-secure accesses |
| * to SIMD and floating-point functionality from both |
| * Execution states do not trap to EL2. |
| */ |
| write_cptr_el2(CPTR_EL2_RESET_VAL & |
| ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT |
| | CPTR_EL2_TFP_BIT)); |
| |
| /* |
| * Initialise CNTHCTL_EL2. All fields are |
| * architecturally UNKNOWN on reset and are set to zero |
| * except for field(s) listed below. |
| * |
| * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to |
| * Hyp mode of Non-secure EL0 and EL1 accesses to the |
| * physical timer registers. |
| * |
| * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to |
| * Hyp mode of Non-secure EL0 and EL1 accesses to the |
| * physical counter registers. |
| */ |
| write_cnthctl_el2(CNTHCTL_RESET_VAL | |
| EL1PCEN_BIT | EL1PCTEN_BIT); |
| |
| /* |
| * Initialise CNTVOFF_EL2 to zero as it resets to an |
| * architecturally UNKNOWN value. |
| */ |
| write_cntvoff_el2(0); |
| |
| /* |
| * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and |
| * MPIDR_EL1 respectively. |
| */ |
| write_vpidr_el2(read_midr_el1()); |
| write_vmpidr_el2(read_mpidr_el1()); |
| |
| /* |
| * Initialise VTTBR_EL2. All fields are architecturally |
| * UNKNOWN on reset. |
| * |
| * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage |
| * 2 address translation is disabled, cache maintenance |
| * operations depend on the VMID. |
| * |
| * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address |
| * translation is disabled. |
| */ |
| write_vttbr_el2(VTTBR_RESET_VAL & |
| ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
| | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); |
| |
| /* |
| * Initialise MDCR_EL2, setting all fields rather than |
| * relying on hw. Some fields are architecturally |
| * UNKNOWN on reset. |
| * |
| * MDCR_EL2.HLP: Set to one so that event counter |
| * overflow, that is recorded in PMOVSCLR_EL0[0-30], |
| * occurs on the increment that changes |
| * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is |
| * implemented. This bit is RES0 in versions of the |
| * architecture earlier than ARMv8.5, setting it to 1 |
| * doesn't have any effect on them. |
| * |
| * MDCR_EL2.TTRF: Set to zero so that access to Trace |
| * Filter Control register TRFCR_EL1 at EL1 is not |
| * trapped to EL2. This bit is RES0 in versions of |
| * the architecture earlier than ARMv8.4. |
| * |
| * MDCR_EL2.HPMD: Set to one so that event counting is |
| * prohibited at EL2. This bit is RES0 in versions of |
| * the architecture earlier than ARMv8.1, setting it |
| * to 1 doesn't have any effect on them. |
| * |
| * MDCR_EL2.TPMS: Set to zero so that accesses to |
| * Statistical Profiling control registers from EL1 |
| * do not trap to EL2. This bit is RES0 when SPE is |
| * not implemented. |
| * |
| * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and |
| * EL1 System register accesses to the Debug ROM |
| * registers are not trapped to EL2. |
| * |
| * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 |
| * System register accesses to the powerdown debug |
| * registers are not trapped to EL2. |
| * |
| * MDCR_EL2.TDA: Set to zero so that System register |
| * accesses to the debug registers do not trap to EL2. |
| * |
| * MDCR_EL2.TDE: Set to zero so that debug exceptions |
| * are not routed to EL2. |
| * |
| * MDCR_EL2.HPME: Set to zero to disable EL2 Performance |
| * Monitors. |
| * |
| * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and |
| * EL1 accesses to all Performance Monitors registers |
| * are not trapped to EL2. |
| * |
| * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 |
| * and EL1 accesses to the PMCR_EL0 or PMCR are not |
| * trapped to EL2. |
| * |
| * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the |
| * architecturally-defined reset value. |
| * |
| * MDCR_EL2.E2TB: Set to zero so that the trace Buffer |
| * owning exception level is NS-EL1 and, tracing is |
| * prohibited at NS-EL2. These bits are RES0 when |
| * FEAT_TRBE is not implemented. |
| */ |
| mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP | |
| MDCR_EL2_HPMD) | |
| ((read_pmcr_el0() & PMCR_EL0_N_BITS) |
| >> PMCR_EL0_N_SHIFT)) & |
| ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS | |
| MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | |
| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT | |
| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT | |
| MDCR_EL2_TPMCR_BIT | |
| MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1)); |
| |
| write_mdcr_el2(mdcr_el2); |
| |
| /* |
| * Initialise HSTR_EL2. All fields are architecturally |
| * UNKNOWN on reset. |
| * |
| * HSTR_EL2.T<n>: Set all these fields to zero so that |
| * Non-secure EL0 or EL1 accesses to System registers |
| * do not trap to EL2. |
| */ |
| write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); |
| /* |
| * Initialise CNTHP_CTL_EL2. All fields are |
| * architecturally UNKNOWN on reset. |
| * |
| * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 |
| * physical timer and prevent timer interrupts. |
| */ |
| write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & |
| ~(CNTHP_CTL_ENABLE_BIT)); |
| } |
| manage_extensions_nonsecure(el2_unused, ctx); |
| } |
| |
| cm_el1_sysregs_context_restore(security_state); |
| cm_set_next_eret_context(security_state); |
| } |
| |
| #if CTX_INCLUDE_EL2_REGS |
| |
| static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx) |
| { |
| write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2()); |
| if (is_feat_amu_supported()) { |
| write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2()); |
| } |
| write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2()); |
| write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2()); |
| write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2()); |
| write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2()); |
| } |
| |
| static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx) |
| { |
| write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2)); |
| if (is_feat_amu_supported()) { |
| write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2)); |
| } |
| write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2)); |
| write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2)); |
| write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2)); |
| write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2)); |
| } |
| |
| static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx) |
| { |
| u_register_t mpam_idr = read_mpamidr_el1(); |
| |
| write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2()); |
| |
| /* |
| * The context registers that we intend to save would be part of the |
| * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1. |
| */ |
| if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { |
| return; |
| } |
| |
| /* |
| * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if |
| * MPAMIDR_HAS_HCR_BIT == 1. |
| */ |
| write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2()); |
| write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2()); |
| write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2()); |
| |
| /* |
| * The number of MPAMVPM registers is implementation defined, their |
| * number is stored in the MPAMIDR_EL1 register. |
| */ |
| switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { |
| case 7: |
| write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2()); |
| __fallthrough; |
| case 6: |
| write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2()); |
| __fallthrough; |
| case 5: |
| write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2()); |
| __fallthrough; |
| case 4: |
| write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2()); |
| __fallthrough; |
| case 3: |
| write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2()); |
| __fallthrough; |
| case 2: |
| write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2()); |
| __fallthrough; |
| case 1: |
| write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2()); |
| break; |
| } |
| } |
| |
| static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx) |
| { |
| u_register_t mpam_idr = read_mpamidr_el1(); |
| |
| write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2)); |
| |
| if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { |
| return; |
| } |
| |
| write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2)); |
| write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2)); |
| write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2)); |
| |
| switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { |
| case 7: |
| write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2)); |
| __fallthrough; |
| case 6: |
| write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2)); |
| __fallthrough; |
| case 5: |
| write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2)); |
| __fallthrough; |
| case 4: |
| write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2)); |
| __fallthrough; |
| case 3: |
| write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2)); |
| __fallthrough; |
| case 2: |
| write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2)); |
| __fallthrough; |
| case 1: |
| write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2)); |
| break; |
| } |
| } |
| |
| /******************************************************************************* |
| * Save EL2 sysreg context |
| ******************************************************************************/ |
| void cm_el2_sysregs_context_save(uint32_t security_state) |
| { |
| u_register_t scr_el3 = read_scr(); |
| |
| /* |
| * Always save the non-secure and realm EL2 context, only save the |
| * S-EL2 context if S-EL2 is enabled. |
| */ |
| if ((security_state != SECURE) || |
| ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { |
| cpu_context_t *ctx; |
| el2_sysregs_t *el2_sysregs_ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); |
| |
| el2_sysregs_context_save_common(el2_sysregs_ctx); |
| #if CTX_INCLUDE_MTE_REGS |
| el2_sysregs_context_save_mte(el2_sysregs_ctx); |
| #endif |
| if (is_feat_mpam_supported()) { |
| el2_sysregs_context_save_mpam(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_fgt_supported()) { |
| el2_sysregs_context_save_fgt(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_ecv_v2_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, |
| read_cntpoff_el2()); |
| } |
| |
| if (is_feat_vhe_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, |
| read_contextidr_el2()); |
| write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, |
| read_ttbr1_el2()); |
| } |
| #if RAS_EXTENSION |
| el2_sysregs_context_save_ras(el2_sysregs_ctx); |
| #endif |
| |
| if (is_feat_nv2_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, |
| read_vncr_el2()); |
| } |
| |
| if (is_feat_trf_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2()); |
| } |
| |
| if (is_feat_csv2_2_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, |
| read_scxtnum_el2()); |
| } |
| |
| if (is_feat_hcx_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2()); |
| } |
| if (is_feat_tcr2_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2()); |
| } |
| if (is_feat_sxpie_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2()); |
| write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2()); |
| } |
| if (is_feat_s2pie_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2()); |
| } |
| if (is_feat_sxpoe_supported()) { |
| write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2()); |
| } |
| } |
| } |
| |
| /******************************************************************************* |
| * Restore EL2 sysreg context |
| ******************************************************************************/ |
| void cm_el2_sysregs_context_restore(uint32_t security_state) |
| { |
| u_register_t scr_el3 = read_scr(); |
| |
| /* |
| * Always restore the non-secure and realm EL2 context, only restore the |
| * S-EL2 context if S-EL2 is enabled. |
| */ |
| if ((security_state != SECURE) || |
| ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { |
| cpu_context_t *ctx; |
| el2_sysregs_t *el2_sysregs_ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); |
| |
| el2_sysregs_context_restore_common(el2_sysregs_ctx); |
| #if CTX_INCLUDE_MTE_REGS |
| el2_sysregs_context_restore_mte(el2_sysregs_ctx); |
| #endif |
| if (is_feat_mpam_supported()) { |
| el2_sysregs_context_restore_mpam(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_fgt_supported()) { |
| el2_sysregs_context_restore_fgt(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_ecv_v2_supported()) { |
| write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, |
| CTX_CNTPOFF_EL2)); |
| } |
| |
| if (is_feat_vhe_supported()) { |
| write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2)); |
| write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2)); |
| } |
| #if RAS_EXTENSION |
| el2_sysregs_context_restore_ras(el2_sysregs_ctx); |
| #endif |
| |
| if (is_feat_nv2_supported()) { |
| write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2)); |
| } |
| if (is_feat_trf_supported()) { |
| write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2)); |
| } |
| |
| if (is_feat_csv2_2_supported()) { |
| write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, |
| CTX_SCXTNUM_EL2)); |
| } |
| |
| if (is_feat_hcx_supported()) { |
| write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2)); |
| } |
| if (is_feat_tcr2_supported()) { |
| write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2)); |
| } |
| if (is_feat_sxpie_supported()) { |
| write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2)); |
| write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2)); |
| } |
| if (is_feat_s2pie_supported()) { |
| write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2)); |
| } |
| if (is_feat_sxpoe_supported()) { |
| write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2)); |
| } |
| } |
| } |
| #endif /* CTX_INCLUDE_EL2_REGS */ |
| |
| /******************************************************************************* |
| * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS |
| * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly |
| * updating EL1 and EL2 registers. Otherwise, it calls the generic |
| * cm_prepare_el3_exit function. |
| ******************************************************************************/ |
| void cm_prepare_el3_exit_ns(void) |
| { |
| #if CTX_INCLUDE_EL2_REGS |
| cpu_context_t *ctx = cm_get_context(NON_SECURE); |
| assert(ctx != NULL); |
| |
| /* Assert that EL2 is used. */ |
| #if ENABLE_ASSERTIONS |
| el3_state_t *state = get_el3state_ctx(ctx); |
| u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| #endif |
| assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && |
| (el_implemented(2U) != EL_IMPL_NONE)); |
| |
| /* |
| * Currently some extensions are configured using |
| * direct register updates. Therefore, do this here |
| * instead of when setting up context. |
| */ |
| manage_extensions_nonsecure(0, ctx); |
| |
| /* |
| * Set the NS bit to be able to access the ICC_SRE_EL2 |
| * register when restoring context. |
| */ |
| write_scr_el3(read_scr_el3() | SCR_NS_BIT); |
| |
| /* |
| * Ensure the NS bit change is committed before the EL2/EL1 |
| * state restoration. |
| */ |
| isb(); |
| |
| /* Restore EL2 and EL1 sysreg contexts */ |
| cm_el2_sysregs_context_restore(NON_SECURE); |
| cm_el1_sysregs_context_restore(NON_SECURE); |
| cm_set_next_eret_context(NON_SECURE); |
| #else |
| cm_prepare_el3_exit(NON_SECURE); |
| #endif /* CTX_INCLUDE_EL2_REGS */ |
| } |
| |
| /******************************************************************************* |
| * The next four functions are used by runtime services to save and restore |
| * EL1 context on the 'cpu_context' structure for the specified security |
| * state. |
| ******************************************************************************/ |
| void cm_el1_sysregs_context_save(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); |
| |
| #if IMAGE_BL31 |
| if (security_state == SECURE) |
| PUBLISH_EVENT(cm_exited_secure_world); |
| else |
| PUBLISH_EVENT(cm_exited_normal_world); |
| #endif |
| } |
| |
| void cm_el1_sysregs_context_restore(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); |
| |
| #if IMAGE_BL31 |
| if (security_state == SECURE) |
| PUBLISH_EVENT(cm_entering_secure_world); |
| else |
| PUBLISH_EVENT(cm_entering_normal_world); |
| #endif |
| } |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 member of 'cpu_context' pertaining to the |
| * given security state with the given entrypoint |
| ******************************************************************************/ |
| void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| } |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' |
| * pertaining to the given security state |
| ******************************************************************************/ |
| void cm_set_elr_spsr_el3(uint32_t security_state, |
| uintptr_t entrypoint, uint32_t spsr) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| write_ctx_reg(state, CTX_SPSR_EL3, spsr); |
| } |
| |
| /******************************************************************************* |
| * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' |
| * pertaining to the given security state using the value and bit position |
| * specified in the parameters. It preserves all other bits. |
| ******************************************************************************/ |
| void cm_write_scr_el3_bit(uint32_t security_state, |
| uint32_t bit_pos, |
| uint32_t value) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| u_register_t scr_el3; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Ensure that the bit position is a valid one */ |
| assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); |
| |
| /* Ensure that the 'value' is only a bit wide */ |
| assert(value <= 1U); |
| |
| /* |
| * Get the SCR_EL3 value from the cpu context, clear the desired bit |
| * and set it to its new value. |
| */ |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| scr_el3 &= ~(1UL << bit_pos); |
| scr_el3 |= (u_register_t)value << bit_pos; |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| } |
| |
| /******************************************************************************* |
| * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the |
| * given security state. |
| ******************************************************************************/ |
| u_register_t cm_get_scr_el3(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| return read_ctx_reg(state, CTX_SCR_EL3); |
| } |
| |
| /******************************************************************************* |
| * This function is used to program the context that's used for exception |
| * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for |
| * the required security state |
| ******************************************************************************/ |
| void cm_set_next_eret_context(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| cm_set_next_context(ctx); |
| } |