blob: 6787d504c991e3c284b85993c762707dff8749f6 [file] [log] [blame]
/*
* Copyright (C) 2022-2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include "clk-stm32-core.h"
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32mp_clkfunc.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
static struct spinlock reg_lock;
static struct spinlock refcount_lock;
static struct stm32_clk_priv *stm32_clock_data;
const struct stm32_clk_ops clk_mux_ops;
struct stm32_clk_priv *clk_stm32_get_priv(void)
{
return stm32_clock_data;
}
static void _clk_lock(struct spinlock *lock)
{
if (stm32mp_lock_available()) {
/* Assume interrupts are masked */
spin_lock(lock);
}
}
static void _clk_unlock(struct spinlock *lock)
{
if (stm32mp_lock_available()) {
spin_unlock(lock);
}
}
void clk_stm32_rcc_regs_lock(void)
{
_clk_lock(&reg_lock);
}
void clk_stm32_rcc_regs_unlock(void)
{
_clk_unlock(&reg_lock);
}
#define TIMEOUT_US_1S U(1000000)
#define OSCRDY_TIMEOUT TIMEOUT_US_1S
struct clk_oscillator_data *clk_oscillator_get_data(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_osc_cfg *osc_cfg = clk->clock_cfg;
int osc_id = osc_cfg->osc_id;
return &priv->osci_data[osc_id];
}
void clk_oscillator_set_bypass(struct stm32_clk_priv *priv, int id, bool digbyp, bool bypass)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
struct stm32_clk_bypass *bypass_data = osc_data->bypass;
uintptr_t address;
if (bypass_data == NULL) {
return;
}
address = priv->base + bypass_data->offset;
if (digbyp) {
mmio_setbits_32(address, BIT(bypass_data->bit_digbyp));
}
if (bypass || digbyp) {
mmio_setbits_32(address, BIT(bypass_data->bit_byp));
}
}
void clk_oscillator_set_css(struct stm32_clk_priv *priv, int id, bool css)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
struct stm32_clk_css *css_data = osc_data->css;
uintptr_t address;
if (css_data == NULL) {
return;
}
address = priv->base + css_data->offset;
if (css) {
mmio_setbits_32(address, BIT(css_data->bit_css));
}
}
void clk_oscillator_set_drive(struct stm32_clk_priv *priv, int id, uint8_t lsedrv)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
struct stm32_clk_drive *drive_data = osc_data->drive;
uintptr_t address;
uint32_t mask;
uint32_t value;
if (drive_data == NULL) {
return;
}
address = priv->base + drive_data->offset;
mask = (BIT(drive_data->drv_width) - 1U) << drive_data->drv_shift;
/*
* Warning: not recommended to switch directly from "high drive"
* to "medium low drive", and vice-versa.
*/
value = (mmio_read_32(address) & mask) >> drive_data->drv_shift;
while (value != lsedrv) {
if (value > lsedrv) {
value--;
} else {
value++;
}
mmio_clrsetbits_32(address, mask, value << drive_data->drv_shift);
}
}
int clk_oscillator_wait_ready(struct stm32_clk_priv *priv, int id, bool ready_on)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
return _clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, ready_on);
}
int clk_oscillator_wait_ready_on(struct stm32_clk_priv *priv, int id)
{
return clk_oscillator_wait_ready(priv, id, true);
}
int clk_oscillator_wait_ready_off(struct stm32_clk_priv *priv, int id)
{
return clk_oscillator_wait_ready(priv, id, false);
}
static int clk_gate_enable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_gate_cfg *cfg = clk->clock_cfg;
mmio_setbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
return 0;
}
static void clk_gate_disable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_gate_cfg *cfg = clk->clock_cfg;
mmio_clrbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
}
static bool clk_gate_is_enabled(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_gate_cfg *cfg = clk->clock_cfg;
return ((mmio_read_32(priv->base + cfg->offset) & BIT(cfg->bit_idx)) != 0U);
}
const struct stm32_clk_ops clk_gate_ops = {
.enable = clk_gate_enable,
.disable = clk_gate_disable,
.is_enabled = clk_gate_is_enabled,
};
void _clk_stm32_gate_disable(struct stm32_clk_priv *priv, uint16_t gate_id)
{
const struct gate_cfg *gate = &priv->gates[gate_id];
uintptr_t addr = priv->base + gate->offset;
if (gate->set_clr != 0U) {
mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
} else {
mmio_clrbits_32(addr, BIT(gate->bit_idx));
}
}
int _clk_stm32_gate_enable(struct stm32_clk_priv *priv, uint16_t gate_id)
{
const struct gate_cfg *gate = &priv->gates[gate_id];
uintptr_t addr = priv->base + gate->offset;
if (gate->set_clr != 0U) {
mmio_write_32(addr, BIT(gate->bit_idx));
} else {
mmio_setbits_32(addr, BIT(gate->bit_idx));
}
return 0;
}
const struct clk_stm32 *_clk_get(struct stm32_clk_priv *priv, int id)
{
if ((unsigned int)id < priv->num) {
return &priv->clks[id];
}
return NULL;
}
static const struct stm32_clk_ops *_clk_get_ops(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
assert(clk->ops != NO_OPS);
return priv->ops_array[clk->ops];
}
#define clk_div_mask(_width) GENMASK(((_width) - 1U), 0U)
static unsigned int _get_table_div(const struct clk_div_table *table,
unsigned int val)
{
const struct clk_div_table *clkt;
for (clkt = table; clkt->div; clkt++) {
if (clkt->val == val) {
return clkt->div;
}
}
return 0;
}
static unsigned int _get_div(const struct clk_div_table *table,
unsigned int val, unsigned long flags,
uint8_t width)
{
if ((flags & CLK_DIVIDER_ONE_BASED) != 0UL) {
return val;
}
if ((flags & CLK_DIVIDER_POWER_OF_TWO) != 0UL) {
return BIT(val);
}
if ((flags & CLK_DIVIDER_MAX_AT_ZERO) != 0UL) {
return (val != 0U) ? val : BIT(width);
}
if (table != NULL) {
return _get_table_div(table, val);
}
return val + 1U;
}
#define TIMEOUT_US_200MS U(200000)
#define CLKSRC_TIMEOUT TIMEOUT_US_200MS
int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel)
{
const struct parent_cfg *parents = &priv->parents[pid & MUX_PARENT_MASK];
const struct mux_cfg *mux = parents->mux;
uintptr_t address = priv->base + mux->offset;
uint32_t mask;
uint64_t timeout;
mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask);
if (mux->bitrdy == MUX_NO_BIT_RDY) {
return 0;
}
timeout = timeout_init_us(CLKSRC_TIMEOUT);
mask = BIT(mux->bitrdy);
while ((mmio_read_32(address) & mask) == 0U) {
if (timeout_elapsed(timeout)) {
return -ETIMEDOUT;
}
}
return 0;
}
int _clk_stm32_set_parent(struct stm32_clk_priv *priv, int clk, int clkp)
{
const struct parent_cfg *parents;
uint16_t pid;
uint8_t sel;
int old_parent;
pid = priv->clks[clk].parent;
if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
return -EINVAL;
}
old_parent = _clk_stm32_get_parent(priv, clk);
if (old_parent < 0) {
return old_parent;
}
if (old_parent == clkp) {
return 0;
}
parents = &priv->parents[pid & MUX_PARENT_MASK];
for (sel = 0; sel < parents->num_parents; sel++) {
if (parents->id_parents[sel] == (uint16_t)clkp) {
bool clk_was_enabled = _clk_stm32_is_enabled(priv, clk);
int err = 0;
/* Enable the parents (for glitch free mux) */
_clk_stm32_enable(priv, clkp);
_clk_stm32_enable(priv, old_parent);
err = clk_mux_set_parent(priv, pid, sel);
_clk_stm32_disable(priv, old_parent);
if (clk_was_enabled) {
_clk_stm32_disable(priv, old_parent);
} else {
_clk_stm32_disable(priv, clkp);
}
return err;
}
}
return -EINVAL;
}
int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id)
{
const struct parent_cfg *parent;
const struct mux_cfg *mux;
uint32_t mask;
if (mux_id >= priv->nb_parents) {
panic();
}
parent = &priv->parents[mux_id];
mux = parent->mux;
mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift;
}
int _clk_stm32_set_parent_by_index(struct stm32_clk_priv *priv, int clk, int sel)
{
uint16_t pid;
pid = priv->clks[clk].parent;
if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
return -EINVAL;
}
return clk_mux_set_parent(priv, pid, sel);
}
int _clk_stm32_get_parent(struct stm32_clk_priv *priv, int clk_id)
{
const struct stm32_clk_ops *ops = _clk_get_ops(priv, clk_id);
const struct parent_cfg *parent;
uint16_t mux_id;
int sel;
mux_id = priv->clks[clk_id].parent;
if (mux_id == CLK_IS_ROOT) {
return CLK_IS_ROOT;
}
if (mux_id < MUX_MAX_PARENTS) {
return mux_id & MUX_PARENT_MASK;
}
mux_id &= MUX_PARENT_MASK;
parent = &priv->parents[mux_id];
if (ops->get_parent != NULL) {
sel = ops->get_parent(priv, clk_id);
} else {
sel = clk_mux_get_parent(priv, mux_id);
}
if ((sel >= 0) && (sel < parent->num_parents)) {
return parent->id_parents[sel];
}
return -EINVAL;
}
int _clk_stm32_get_parent_index(struct stm32_clk_priv *priv, int clk_id)
{
uint16_t mux_id;
mux_id = priv->clks[clk_id].parent;
if (mux_id == CLK_IS_ROOT) {
return CLK_IS_ROOT;
}
if (mux_id < MUX_MAX_PARENTS) {
return mux_id & MUX_PARENT_MASK;
}
mux_id &= MUX_PARENT_MASK;
return clk_mux_get_parent(priv, mux_id);
}
int _clk_stm32_get_parent_by_index(struct stm32_clk_priv *priv, int clk_id, int idx)
{
const struct parent_cfg *parent;
uint16_t mux_id;
mux_id = priv->clks[clk_id].parent;
if (mux_id == CLK_IS_ROOT) {
return CLK_IS_ROOT;
}
if (mux_id < MUX_MAX_PARENTS) {
return mux_id & MUX_PARENT_MASK;
}
mux_id &= MUX_PARENT_MASK;
parent = &priv->parents[mux_id];
if (idx < parent->num_parents) {
return parent->id_parents[idx];
}
return -EINVAL;
}
int clk_get_index(struct stm32_clk_priv *priv, unsigned long binding_id)
{
unsigned int i;
for (i = 0U; i < priv->num; i++) {
if (binding_id == priv->clks[i].binding) {
return (int)i;
}
}
return -EINVAL;
}
unsigned long _clk_stm32_get_rate(struct stm32_clk_priv *priv, int id)
{
const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
int parent;
if ((unsigned int)id >= priv->num) {
return 0UL;
}
parent = _clk_stm32_get_parent(priv, id);
if (parent < 0) {
return 0UL;
}
if (ops->recalc_rate != NULL) {
unsigned long prate = 0UL;
if (parent != CLK_IS_ROOT) {
prate = _clk_stm32_get_rate(priv, parent);
}
return ops->recalc_rate(priv, id, prate);
}
if (parent == CLK_IS_ROOT) {
panic();
}
return _clk_stm32_get_rate(priv, parent);
}
unsigned long _clk_stm32_get_parent_rate(struct stm32_clk_priv *priv, int id)
{
int parent_id = _clk_stm32_get_parent(priv, id);
if (parent_id < 0) {
return 0UL;
}
return _clk_stm32_get_rate(priv, parent_id);
}
static uint8_t _stm32_clk_get_flags(struct stm32_clk_priv *priv, int id)
{
return priv->clks[id].flags;
}
bool _stm32_clk_is_flags(struct stm32_clk_priv *priv, int id, uint8_t flag)
{
if ((_stm32_clk_get_flags(priv, id) & flag) != 0U) {
return true;
}
return false;
}
int clk_stm32_enable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
{
const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
if (ops->enable != NULL) {
ops->enable(priv, id);
}
return 0;
}
static int _clk_stm32_enable_core(struct stm32_clk_priv *priv, int id)
{
int parent;
int ret = 0;
if (priv->gate_refcounts[id] == 0U) {
parent = _clk_stm32_get_parent(priv, id);
if (parent < 0) {
return parent;
}
if (parent != CLK_IS_ROOT) {
ret = _clk_stm32_enable_core(priv, parent);
if (ret != 0) {
return ret;
}
}
clk_stm32_enable_call_ops(priv, id);
}
priv->gate_refcounts[id]++;
if (priv->gate_refcounts[id] == UINT8_MAX) {
ERROR("%s: %d max enable count !", __func__, id);
panic();
}
return 0;
}
int _clk_stm32_enable(struct stm32_clk_priv *priv, int id)
{
int ret;
_clk_lock(&refcount_lock);
ret = _clk_stm32_enable_core(priv, id);
_clk_unlock(&refcount_lock);
return ret;
}
void clk_stm32_disable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
{
const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
if (ops->disable != NULL) {
ops->disable(priv, id);
}
}
static void _clk_stm32_disable_core(struct stm32_clk_priv *priv, int id)
{
int parent;
if ((priv->gate_refcounts[id] == 1U) && _stm32_clk_is_flags(priv, id, CLK_IS_CRITICAL)) {
return;
}
if (priv->gate_refcounts[id] == 0U) {
/* case of clock ignore unused */
if (_clk_stm32_is_enabled(priv, id)) {
clk_stm32_disable_call_ops(priv, id);
return;
}
VERBOSE("%s: %d already disabled !\n\n", __func__, id);
return;
}
if (--priv->gate_refcounts[id] > 0U) {
return;
}
clk_stm32_disable_call_ops(priv, id);
parent = _clk_stm32_get_parent(priv, id);
if ((parent >= 0) && (parent != CLK_IS_ROOT)) {
_clk_stm32_disable_core(priv, parent);
}
}
void _clk_stm32_disable(struct stm32_clk_priv *priv, int id)
{
_clk_lock(&refcount_lock);
_clk_stm32_disable_core(priv, id);
_clk_unlock(&refcount_lock);
}
bool _clk_stm32_is_enabled(struct stm32_clk_priv *priv, int id)
{
const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
if (ops->is_enabled != NULL) {
return ops->is_enabled(priv, id);
}
return priv->gate_refcounts[id];
}
static int clk_stm32_enable(unsigned long binding_id)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
int id;
id = clk_get_index(priv, binding_id);
if (id == -EINVAL) {
return id;
}
return _clk_stm32_enable(priv, id);
}
static void clk_stm32_disable(unsigned long binding_id)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
int id;
id = clk_get_index(priv, binding_id);
if (id != -EINVAL) {
_clk_stm32_disable(priv, id);
}
}
static bool clk_stm32_is_enabled(unsigned long binding_id)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
int id;
id = clk_get_index(priv, binding_id);
if (id == -EINVAL) {
return false;
}
return _clk_stm32_is_enabled(priv, id);
}
static unsigned long clk_stm32_get_rate(unsigned long binding_id)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
int id;
id = clk_get_index(priv, binding_id);
if (id == -EINVAL) {
return 0UL;
}
return _clk_stm32_get_rate(priv, id);
}
static int clk_stm32_get_parent(unsigned long binding_id)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
int id;
id = clk_get_index(priv, binding_id);
if (id == -EINVAL) {
return id;
}
return _clk_stm32_get_parent(priv, id);
}
static const struct clk_ops stm32mp_clk_ops = {
.enable = clk_stm32_enable,
.disable = clk_stm32_disable,
.is_enabled = clk_stm32_is_enabled,
.get_rate = clk_stm32_get_rate,
.get_parent = clk_stm32_get_parent,
};
void clk_stm32_enable_critical_clocks(void)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
unsigned int i;
for (i = 0U; i < priv->num; i++) {
if (_stm32_clk_is_flags(priv, i, CLK_IS_CRITICAL)) {
_clk_stm32_enable(priv, i);
}
}
}
static void stm32_clk_register(void)
{
clk_register(&stm32mp_clk_ops);
}
uint32_t clk_stm32_div_get_value(struct stm32_clk_priv *priv, int div_id)
{
const struct div_cfg *divider = &priv->div[div_id];
uint32_t val = 0;
val = mmio_read_32(priv->base + divider->offset) >> divider->shift;
val &= clk_div_mask(divider->width);
return val;
}
unsigned long _clk_stm32_divider_recalc(struct stm32_clk_priv *priv,
int div_id,
unsigned long prate)
{
const struct div_cfg *divider = &priv->div[div_id];
uint32_t val = clk_stm32_div_get_value(priv, div_id);
unsigned int div = 0U;
div = _get_div(divider->table, val, divider->flags, divider->width);
if (div == 0U) {
return prate;
}
return div_round_up((uint64_t)prate, div);
}
unsigned long clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int id,
unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_stm32_div_cfg *div_cfg = clk->clock_cfg;
return _clk_stm32_divider_recalc(priv, div_cfg->id, prate);
}
const struct stm32_clk_ops clk_stm32_divider_ops = {
.recalc_rate = clk_stm32_divider_recalc,
};
int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value)
{
const struct div_cfg *divider;
uintptr_t address;
uint64_t timeout;
uint32_t mask;
if (div_id >= priv->nb_div) {
panic();
}
divider = &priv->div[div_id];
address = priv->base + divider->offset;
mask = MASK_WIDTH_SHIFT(divider->width, divider->shift);
mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask);
if (divider->bitrdy == DIV_NO_BIT_RDY) {
return 0;
}
timeout = timeout_init_us(CLKSRC_TIMEOUT);
mask = BIT(divider->bitrdy);
while ((mmio_read_32(address) & mask) == 0U) {
if (timeout_elapsed(timeout)) {
return -ETIMEDOUT;
}
}
return 0;
}
int _clk_stm32_gate_wait_ready(struct stm32_clk_priv *priv, uint16_t gate_id,
bool ready_on)
{
const struct gate_cfg *gate = &priv->gates[gate_id];
uintptr_t address = priv->base + gate->offset;
uint32_t mask_rdy = BIT(gate->bit_idx);
uint64_t timeout;
uint32_t mask_test;
if (ready_on) {
mask_test = BIT(gate->bit_idx);
} else {
mask_test = 0U;
}
timeout = timeout_init_us(OSCRDY_TIMEOUT);
while ((mmio_read_32(address) & mask_rdy) != mask_test) {
if (timeout_elapsed(timeout)) {
break;
}
}
if ((mmio_read_32(address) & mask_rdy) != mask_test) {
return -ETIMEDOUT;
}
return 0;
}
int clk_stm32_gate_enable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
const struct gate_cfg *gate = &priv->gates[cfg->id];
uintptr_t addr = priv->base + gate->offset;
if (gate->set_clr != 0U) {
mmio_write_32(addr, BIT(gate->bit_idx));
} else {
mmio_setbits_32(addr, BIT(gate->bit_idx));
}
return 0;
}
void clk_stm32_gate_disable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
const struct gate_cfg *gate = &priv->gates[cfg->id];
uintptr_t addr = priv->base + gate->offset;
if (gate->set_clr != 0U) {
mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
} else {
mmio_clrbits_32(addr, BIT(gate->bit_idx));
}
}
bool _clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int gate_id)
{
const struct gate_cfg *gate;
uint32_t addr;
gate = &priv->gates[gate_id];
addr = priv->base + gate->offset;
return ((mmio_read_32(addr) & BIT(gate->bit_idx)) != 0U);
}
bool clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
return _clk_stm32_gate_is_enabled(priv, cfg->id);
}
const struct stm32_clk_ops clk_stm32_gate_ops = {
.enable = clk_stm32_gate_enable,
.disable = clk_stm32_gate_disable,
.is_enabled = clk_stm32_gate_is_enabled,
};
const struct stm32_clk_ops clk_fixed_factor_ops = {
.recalc_rate = fixed_factor_recalc_rate,
};
unsigned long fixed_factor_recalc_rate(struct stm32_clk_priv *priv,
int id, unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
const struct fixed_factor_cfg *cfg = clk->clock_cfg;
unsigned long long rate;
rate = (unsigned long long)prate * cfg->mult;
if (cfg->div == 0U) {
ERROR("division by zero\n");
panic();
}
return (unsigned long)(rate / cfg->div);
};
#define APB_DIV_MASK GENMASK(2, 0)
#define TIM_PRE_MASK BIT(0)
static unsigned long timer_recalc_rate(struct stm32_clk_priv *priv,
int id, unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
const struct clk_timer_cfg *cfg = clk->clock_cfg;
uint32_t prescaler, timpre;
uintptr_t rcc_base = priv->base;
prescaler = mmio_read_32(rcc_base + cfg->apbdiv) &
APB_DIV_MASK;
timpre = mmio_read_32(rcc_base + cfg->timpre) &
TIM_PRE_MASK;
if (prescaler == 0U) {
return prate;
}
return prate * (timpre + 1U) * 2U;
};
const struct stm32_clk_ops clk_timer_ops = {
.recalc_rate = timer_recalc_rate,
};
static unsigned long clk_fixed_rate_recalc(struct stm32_clk_priv *priv, int id,
unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct clk_stm32_fixed_rate_cfg *cfg = clk->clock_cfg;
return cfg->rate;
}
const struct stm32_clk_ops clk_stm32_fixed_rate_ops = {
.recalc_rate = clk_fixed_rate_recalc,
};
static unsigned long clk_stm32_osc_recalc_rate(struct stm32_clk_priv *priv,
int id, unsigned long prate)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
return osc_data->frequency;
};
bool clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv *priv, int id)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
return _clk_stm32_gate_is_enabled(priv, osc_data->gate_id);
}
int clk_stm32_osc_gate_enable(struct stm32_clk_priv *priv, int id)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
if (osc_data->frequency == 0UL) {
return 0;
}
_clk_stm32_gate_enable(priv, osc_data->gate_id);
if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, true) != 0U) {
ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
panic();
}
return 0;
}
void clk_stm32_osc_gate_disable(struct stm32_clk_priv *priv, int id)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
if (osc_data->frequency == 0UL) {
return;
}
_clk_stm32_gate_disable(priv, osc_data->gate_id);
if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, false) != 0U) {
ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
panic();
}
}
static unsigned long clk_stm32_get_dt_oscillator_frequency(const char *name)
{
void *fdt = NULL;
int node = 0;
int subnode = 0;
if (fdt_get_address(&fdt) == 0) {
panic();
}
node = fdt_path_offset(fdt, "/clocks");
if (node < 0) {
return 0UL;
}
fdt_for_each_subnode(subnode, fdt, node) {
const char *cchar = NULL;
const fdt32_t *cuint = NULL;
int ret = 0;
cchar = fdt_get_name(fdt, subnode, &ret);
if (cchar == NULL) {
continue;
}
if (strncmp(cchar, name, (size_t)ret) ||
fdt_get_status(subnode) == DT_DISABLED) {
continue;
}
cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret);
if (cuint == NULL) {
return 0UL;
}
return fdt32_to_cpu(*cuint);
}
return 0UL;
}
void clk_stm32_osc_init(struct stm32_clk_priv *priv, int id)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
const char *name = osc_data->name;
osc_data->frequency = clk_stm32_get_dt_oscillator_frequency(name);
}
const struct stm32_clk_ops clk_stm32_osc_ops = {
.recalc_rate = clk_stm32_osc_recalc_rate,
.is_enabled = clk_stm32_osc_gate_is_enabled,
.enable = clk_stm32_osc_gate_enable,
.disable = clk_stm32_osc_gate_disable,
.init = clk_stm32_osc_init,
};
const struct stm32_clk_ops clk_stm32_osc_nogate_ops = {
.recalc_rate = clk_stm32_osc_recalc_rate,
.init = clk_stm32_osc_init,
};
int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name, uint32_t *tab, uint32_t *nb)
{
const fdt32_t *cell;
int len = 0;
uint32_t i;
cell = fdt_getprop(fdt, node, name, &len);
if (cell == NULL) {
*nb = 0U;
return 0;
}
for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
uint32_t val = fdt32_to_cpu(cell[i]);
tab[i] = val;
}
*nb = (uint32_t)len / sizeof(uint32_t);
return 0;
}
int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base)
{
unsigned int i;
stm32_clock_data = priv;
priv->base = base;
for (i = 0U; i < priv->num; i++) {
const struct stm32_clk_ops *ops = _clk_get_ops(priv, i);
if (ops->init != NULL) {
ops->init(priv, i);
}
}
stm32_clk_register();
return 0;
}