| /* |
| * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include <platform_def.h> |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include <lib/cassert.h> |
| #include <lib/utils.h> |
| #include <lib/xlat_tables/xlat_tables.h> |
| #include <plat/common/common_def.h> |
| |
| #include "xlat_tables_private.h" |
| |
| #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| #define LVL0_SPACER "" |
| #define LVL1_SPACER " " |
| #define LVL2_SPACER " " |
| #define LVL3_SPACER " " |
| #define get_level_spacer(level) \ |
| (((level) == U(0)) ? LVL0_SPACER : \ |
| (((level) == U(1)) ? LVL1_SPACER : \ |
| (((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER))) |
| #define debug_print(...) printf(__VA_ARGS__) |
| #else |
| #define debug_print(...) ((void)0) |
| #endif |
| |
| #define UNSET_DESC ~0ULL |
| #define MT_UNKNOWN ~0U |
| |
| static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES] |
| __aligned(XLAT_TABLE_SIZE) __section(".xlat_table"); |
| |
| static unsigned int next_xlat; |
| static unsigned long long xlat_max_pa; |
| static uintptr_t xlat_max_va; |
| |
| static uint64_t execute_never_mask; |
| static uint64_t ap1_mask; |
| |
| /* |
| * Array of all memory regions stored in order of ascending base address. |
| * The list is terminated by the first entry with size == 0. |
| */ |
| static mmap_region_t mmap[MAX_MMAP_REGIONS + 1]; |
| |
| |
| void print_mmap(void) |
| { |
| #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| debug_print("mmap:\n"); |
| mmap_region_t *mm = mmap; |
| while (mm->size != 0U) { |
| debug_print(" VA:%p PA:0x%llx size:0x%zx attr:0x%x\n", |
| (void *)mm->base_va, mm->base_pa, |
| mm->size, mm->attr); |
| ++mm; |
| }; |
| debug_print("\n"); |
| #endif |
| } |
| |
| void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, |
| size_t size, unsigned int attr) |
| { |
| mmap_region_t *mm = mmap; |
| const mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1U; |
| unsigned long long end_pa = base_pa + size - 1U; |
| uintptr_t end_va = base_va + size - 1U; |
| |
| assert(IS_PAGE_ALIGNED(base_pa)); |
| assert(IS_PAGE_ALIGNED(base_va)); |
| assert(IS_PAGE_ALIGNED(size)); |
| |
| if (size == 0U) |
| return; |
| |
| assert(base_pa < end_pa); /* Check for overflows */ |
| assert(base_va < end_va); |
| |
| assert((base_va + (uintptr_t)size - (uintptr_t)1) <= |
| (PLAT_VIRT_ADDR_SPACE_SIZE - 1U)); |
| assert((base_pa + (unsigned long long)size - 1ULL) <= |
| (PLAT_PHY_ADDR_SPACE_SIZE - 1U)); |
| |
| #if ENABLE_ASSERTIONS |
| |
| /* Check for PAs and VAs overlaps with all other regions */ |
| for (mm = mmap; mm->size; ++mm) { |
| |
| uintptr_t mm_end_va = mm->base_va + mm->size - 1U; |
| |
| /* |
| * Check if one of the regions is completely inside the other |
| * one. |
| */ |
| bool fully_overlapped_va = |
| ((base_va >= mm->base_va) && (end_va <= mm_end_va)) || |
| ((mm->base_va >= base_va) && (mm_end_va <= end_va)); |
| |
| /* |
| * Full VA overlaps are only allowed if both regions are |
| * identity mapped (zero offset) or have the same VA to PA |
| * offset. Also, make sure that it's not the exact same area. |
| */ |
| if (fully_overlapped_va) { |
| assert((mm->base_va - mm->base_pa) == |
| (base_va - base_pa)); |
| assert((base_va != mm->base_va) || (size != mm->size)); |
| } else { |
| /* |
| * If the regions do not have fully overlapping VAs, |
| * then they must have fully separated VAs and PAs. |
| * Partial overlaps are not allowed |
| */ |
| |
| unsigned long long mm_end_pa = |
| mm->base_pa + mm->size - 1; |
| |
| bool separated_pa = (end_pa < mm->base_pa) || |
| (base_pa > mm_end_pa); |
| bool separated_va = (end_va < mm->base_va) || |
| (base_va > mm_end_va); |
| |
| assert(separated_va && separated_pa); |
| } |
| } |
| |
| mm = mmap; /* Restore pointer to the start of the array */ |
| |
| #endif /* ENABLE_ASSERTIONS */ |
| |
| /* Find correct place in mmap to insert new region */ |
| while ((mm->base_va < base_va) && (mm->size != 0U)) |
| ++mm; |
| |
| /* |
| * If a section is contained inside another one with the same base |
| * address, it must be placed after the one it is contained in: |
| * |
| * 1st |-----------------------| |
| * 2nd |------------| |
| * 3rd |------| |
| * |
| * This is required for mmap_region_attr() to get the attributes of the |
| * small region correctly. |
| */ |
| while ((mm->base_va == base_va) && (mm->size > size)) |
| ++mm; |
| |
| /* Make room for new region by moving other regions up by one place */ |
| (void)memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm); |
| |
| /* Check we haven't lost the empty sentinel from the end of the array */ |
| assert(mm_last->size == 0U); |
| |
| mm->base_pa = base_pa; |
| mm->base_va = base_va; |
| mm->size = size; |
| mm->attr = attr; |
| |
| if (end_pa > xlat_max_pa) |
| xlat_max_pa = end_pa; |
| if (end_va > xlat_max_va) |
| xlat_max_va = end_va; |
| } |
| |
| void mmap_add(const mmap_region_t *mm) |
| { |
| const mmap_region_t *mm_cursor = mm; |
| |
| while ((mm_cursor->size != 0U) || (mm_cursor->attr != 0U)) { |
| mmap_add_region(mm_cursor->base_pa, mm_cursor->base_va, |
| mm_cursor->size, mm_cursor->attr); |
| mm_cursor++; |
| } |
| } |
| |
| static uint64_t mmap_desc(unsigned int attr, unsigned long long addr_pa, |
| unsigned int level) |
| { |
| uint64_t desc; |
| int mem_type; |
| |
| /* Make sure that the granularity is fine enough to map this address. */ |
| assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0U); |
| |
| desc = addr_pa; |
| /* |
| * There are different translation table descriptors for level 3 and the |
| * rest. |
| */ |
| desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC; |
| desc |= ((attr & MT_NS) != 0U) ? LOWER_ATTRS(NS) : 0U; |
| desc |= ((attr & MT_RW) != 0U) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO); |
| /* |
| * Always set the access flag, as this library assumes access flag |
| * faults aren't managed. |
| */ |
| desc |= LOWER_ATTRS(ACCESS_FLAG); |
| desc |= ap1_mask; |
| |
| /* |
| * Deduce shareability domain and executability of the memory region |
| * from the memory type. |
| * |
| * Data accesses to device memory and non-cacheable normal memory are |
| * coherent for all observers in the system, and correspondingly are |
| * always treated as being Outer Shareable. Therefore, for these 2 types |
| * of memory, it is not strictly needed to set the shareability field |
| * in the translation tables. |
| */ |
| mem_type = MT_TYPE(attr); |
| if (mem_type == MT_DEVICE) { |
| desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH); |
| /* |
| * Always map device memory as execute-never. |
| * This is to avoid the possibility of a speculative instruction |
| * fetch, which could be an issue if this memory region |
| * corresponds to a read-sensitive peripheral. |
| */ |
| desc |= execute_never_mask; |
| |
| } else { /* Normal memory */ |
| /* |
| * Always map read-write normal memory as execute-never. |
| * This library assumes that it is used by software that does |
| * not self-modify its code, therefore R/W memory is reserved |
| * for data storage, which must not be executable. |
| * |
| * Note that setting the XN bit here is for consistency only. |
| * The function that enables the MMU sets the SCTLR_ELx.WXN bit, |
| * which makes any writable memory region to be treated as |
| * execute-never, regardless of the value of the XN bit in the |
| * translation table. |
| * |
| * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER |
| * attribute to figure out the value of the XN bit. |
| */ |
| if (((attr & MT_RW) != 0U) || ((attr & MT_EXECUTE_NEVER) != 0U)) { |
| desc |= execute_never_mask; |
| } |
| |
| if (mem_type == MT_MEMORY) { |
| desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH); |
| } else { |
| assert(mem_type == MT_NON_CACHEABLE); |
| desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH); |
| } |
| } |
| |
| debug_print((mem_type == MT_MEMORY) ? "MEM" : |
| ((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV")); |
| debug_print(((attr & MT_RW) != 0U) ? "-RW" : "-RO"); |
| debug_print(((attr & MT_NS) != 0U) ? "-NS" : "-S"); |
| debug_print(((attr & MT_EXECUTE_NEVER) != 0U) ? "-XN" : "-EXEC"); |
| return desc; |
| } |
| |
| /* |
| * Look for the innermost region that contains the area at `base_va` with size |
| * `size`. Populate *attr with the attributes of this region. |
| * |
| * On success, this function returns 0. |
| * If there are partial overlaps (meaning that a smaller size is needed) or if |
| * the region can't be found in the given area, it returns MT_UNKNOWN. In this |
| * case the value pointed by attr should be ignored by the caller. |
| */ |
| static unsigned int mmap_region_attr(const mmap_region_t *mm, uintptr_t base_va, |
| size_t size, unsigned int *attr) |
| { |
| /* Don't assume that the area is contained in the first region */ |
| unsigned int ret = MT_UNKNOWN; |
| |
| /* |
| * Get attributes from last (innermost) region that contains the |
| * requested area. Don't stop as soon as one region doesn't contain it |
| * because there may be other internal regions that contain this area: |
| * |
| * |-----------------------------1-----------------------------| |
| * |----2----| |-------3-------| |----5----| |
| * |--4--| |
| * |
| * |---| <- Area we want the attributes of. |
| * |
| * In this example, the area is contained in regions 1, 3 and 4 but not |
| * in region 2. The loop shouldn't stop at region 2 as inner regions |
| * have priority over outer regions, it should stop at region 5. |
| */ |
| for ( ; ; ++mm) { |
| |
| if (mm->size == 0U) |
| return ret; /* Reached end of list */ |
| |
| if (mm->base_va > (base_va + size - 1U)) |
| return ret; /* Next region is after area so end */ |
| |
| if ((mm->base_va + mm->size - 1U) < base_va) |
| continue; /* Next region has already been overtaken */ |
| |
| if ((ret == 0U) && (mm->attr == *attr)) |
| continue; /* Region doesn't override attribs so skip */ |
| |
| if ((mm->base_va > base_va) || |
| ((mm->base_va + mm->size - 1U) < (base_va + size - 1U))) |
| return MT_UNKNOWN; /* Region doesn't fully cover area */ |
| |
| *attr = mm->attr; |
| ret = 0U; |
| } |
| return ret; |
| } |
| |
| static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm, |
| uintptr_t base_va, |
| uint64_t *table, |
| unsigned int level) |
| { |
| assert((level >= XLAT_TABLE_LEVEL_MIN) && |
| (level <= XLAT_TABLE_LEVEL_MAX)); |
| |
| unsigned int level_size_shift = |
| L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT; |
| u_register_t level_size = (u_register_t)1 << level_size_shift; |
| u_register_t level_index_mask = |
| ((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift; |
| |
| debug_print("New xlat table:\n"); |
| |
| do { |
| uint64_t desc = UNSET_DESC; |
| |
| if (mm->size == 0U) { |
| /* Done mapping regions; finish zeroing the table */ |
| desc = INVALID_DESC; |
| } else if ((mm->base_va + mm->size - 1U) < base_va) { |
| /* This area is after the region so get next region */ |
| ++mm; |
| continue; |
| } |
| |
| debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level), |
| (void *)base_va, (unsigned long long)level_size); |
| |
| if (mm->base_va > (base_va + level_size - 1U)) { |
| /* Next region is after this area. Nothing to map yet */ |
| desc = INVALID_DESC; |
| /* Make sure that the current level allows block descriptors */ |
| } else if (level >= XLAT_BLOCK_LEVEL_MIN) { |
| /* |
| * Try to get attributes of this area. It will fail if |
| * there are partially overlapping regions. On success, |
| * it will return the innermost region's attributes. |
| */ |
| unsigned int attr; |
| unsigned int r = mmap_region_attr(mm, base_va, |
| level_size, &attr); |
| |
| if (r == 0U) { |
| desc = mmap_desc(attr, |
| base_va - mm->base_va + mm->base_pa, |
| level); |
| } |
| } |
| |
| if (desc == UNSET_DESC) { |
| /* Area not covered by a region so need finer table */ |
| uint64_t *new_table = xlat_tables[next_xlat]; |
| |
| next_xlat++; |
| assert(next_xlat <= MAX_XLAT_TABLES); |
| desc = TABLE_DESC | (uintptr_t)new_table; |
| |
| /* Recurse to fill in new table */ |
| mm = init_xlation_table_inner(mm, base_va, |
| new_table, level + 1U); |
| } |
| |
| debug_print("\n"); |
| |
| *table++ = desc; |
| base_va += level_size; |
| } while ((base_va & level_index_mask) && |
| ((base_va - 1U) < (PLAT_VIRT_ADDR_SPACE_SIZE - 1U))); |
| |
| return mm; |
| } |
| |
| void init_xlation_table(uintptr_t base_va, uint64_t *table, |
| unsigned int level, uintptr_t *max_va, |
| unsigned long long *max_pa) |
| { |
| unsigned int el = xlat_arch_current_el(); |
| |
| execute_never_mask = xlat_arch_get_xn_desc(el); |
| |
| if (el == 3U) { |
| ap1_mask = LOWER_ATTRS(AP_ONE_VA_RANGE_RES1); |
| } else { |
| assert(el == 1U); |
| ap1_mask = 0ULL; |
| } |
| |
| init_xlation_table_inner(mmap, base_va, table, level); |
| *max_va = xlat_max_va; |
| *max_pa = xlat_max_pa; |
| } |