blob: 12839f1ad5131d22dd6bcdbddcdd3af1a544599d [file] [log] [blame]
/*
* Copyright (C) 2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include "clk-stm32-core.h"
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/generic_delay_timer.h>
#include <drivers/st/stm32mp2_clk.h>
#include <drivers/st/stm32mp_clkfunc.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
struct stm32_osci_dt_cfg {
unsigned long freq;
uint32_t drive;
bool bypass;
bool digbyp;
bool css;
};
struct stm32_pll_dt_cfg {
uint32_t src;
uint32_t frac;
uint32_t cfg[PLLCFG_NB];
uint32_t csg[PLLCSG_NB];
bool csg_enabled;
bool enabled;
};
struct stm32_clk_platdata {
uintptr_t rcc_base;
uint32_t nosci;
struct stm32_osci_dt_cfg *osci;
uint32_t npll;
struct stm32_pll_dt_cfg *pll;
uint32_t nflexgen;
uint32_t *flexgen;
uint32_t nbusclk;
uint32_t *busclk;
uint32_t nkernelclk;
uint32_t *kernelclk;
};
/* A35 Sub-System which manages its own PLL (PLL1) */
#define A35_SS_CHGCLKREQ 0x0000
#define A35_SS_PLL_FREQ1 0x0080
#define A35_SS_PLL_FREQ2 0x0090
#define A35_SS_PLL_ENABLE 0x00a0
#define A35_SS_CHGCLKREQ_ARM_CHGCLKREQ BIT(0)
#define A35_SS_CHGCLKREQ_ARM_CHGCLKACK BIT(1)
#define A35_SS_PLL_FREQ1_FBDIV_MASK GENMASK(11, 0)
#define A35_SS_PLL_FREQ1_FBDIV_SHIFT 0
#define A35_SS_PLL_FREQ1_REFDIV_MASK GENMASK(21, 16)
#define A35_SS_PLL_FREQ1_REFDIV_SHIFT 16
#define A35_SS_PLL_FREQ2_POSTDIV1_MASK GENMASK(2, 0)
#define A35_SS_PLL_FREQ2_POSTDIV1_SHIFT 0
#define A35_SS_PLL_FREQ2_POSTDIV2_MASK GENMASK(5, 3)
#define A35_SS_PLL_FREQ2_POSTDIV2_SHIFT 3
#define A35_SS_PLL_ENABLE_PD BIT(0)
#define A35_SS_PLL_ENABLE_LOCKP BIT(1)
#define A35_SS_PLL_ENABLE_NRESET_SWPLL_FF BIT(2)
#define TIMEOUT_US_200MS U(200000)
#define TIMEOUT_US_1S U(1000000)
#define PLLRDY_TIMEOUT TIMEOUT_US_200MS
#define CLKSRC_TIMEOUT TIMEOUT_US_200MS
#define CLKDIV_TIMEOUT TIMEOUT_US_200MS
#define OSCRDY_TIMEOUT TIMEOUT_US_1S
/* PLL minimal frequencies for clock sources */
#define PLL_REFCLK_MIN UL(5000000)
#define PLL_FRAC_REFCLK_MIN UL(10000000)
#define XBAR_CHANNEL_NB 64
/* Warning, should be start to 1 */
enum clock {
_CK_0_MHZ,
/* ROOT CLOCKS */
_CK_HSI,
_CK_HSE,
_CK_MSI,
_CK_LSI,
_CK_LSE,
_I2SCKIN,
_SPDIFSYMB,
_CK_PLL1,
_CK_PLL2,
_CK_PLL3,
_CK_PLL4,
_CK_PLL5,
_CK_PLL6,
_CK_PLL7,
_CK_PLL8,
_CK_HSE_RTC,
_CK_RTCCK,
_CK_ICN_HS_MCU,
_CK_ICN_SDMMC,
_CK_ICN_DDR,
_CK_ICN_HSL,
_CK_ICN_NIC,
_CK_ICN_LS_MCU,
_CK_FLEXGEN_07,
_CK_FLEXGEN_08,
_CK_FLEXGEN_09,
_CK_FLEXGEN_10,
_CK_FLEXGEN_11,
_CK_FLEXGEN_12,
_CK_FLEXGEN_13,
_CK_FLEXGEN_14,
_CK_FLEXGEN_15,
_CK_FLEXGEN_16,
_CK_FLEXGEN_17,
_CK_FLEXGEN_18,
_CK_FLEXGEN_19,
_CK_FLEXGEN_20,
_CK_FLEXGEN_21,
_CK_FLEXGEN_22,
_CK_FLEXGEN_23,
_CK_FLEXGEN_24,
_CK_FLEXGEN_25,
_CK_FLEXGEN_26,
_CK_FLEXGEN_27,
_CK_FLEXGEN_28,
_CK_FLEXGEN_29,
_CK_FLEXGEN_30,
_CK_FLEXGEN_31,
_CK_FLEXGEN_32,
_CK_FLEXGEN_33,
_CK_FLEXGEN_34,
_CK_FLEXGEN_35,
_CK_FLEXGEN_36,
_CK_FLEXGEN_37,
_CK_FLEXGEN_38,
_CK_FLEXGEN_39,
_CK_FLEXGEN_40,
_CK_FLEXGEN_41,
_CK_FLEXGEN_42,
_CK_FLEXGEN_43,
_CK_FLEXGEN_44,
_CK_FLEXGEN_45,
_CK_FLEXGEN_46,
_CK_FLEXGEN_47,
_CK_FLEXGEN_48,
_CK_FLEXGEN_49,
_CK_FLEXGEN_50,
_CK_FLEXGEN_51,
_CK_FLEXGEN_52,
_CK_FLEXGEN_53,
_CK_FLEXGEN_54,
_CK_FLEXGEN_55,
_CK_FLEXGEN_56,
_CK_FLEXGEN_57,
_CK_FLEXGEN_58,
_CK_FLEXGEN_59,
_CK_FLEXGEN_60,
_CK_FLEXGEN_61,
_CK_FLEXGEN_62,
_CK_FLEXGEN_63,
_CK_ICN_APB1,
_CK_ICN_APB2,
_CK_ICN_APB3,
_CK_ICN_APB4,
_CK_ICN_APBDBG,
_CK_BKPSRAM,
_CK_BSEC,
_CK_CRC,
_CK_CRYP1,
_CK_CRYP2,
_CK_DDR,
_CK_DDRCAPB,
_CK_DDRCP,
_CK_DDRPHYC,
_CK_FMC,
_CK_GPIOA,
_CK_GPIOB,
_CK_GPIOC,
_CK_GPIOD,
_CK_GPIOE,
_CK_GPIOF,
_CK_GPIOG,
_CK_GPIOH,
_CK_GPIOI,
_CK_GPIOJ,
_CK_GPIOK,
_CK_GPIOZ,
_CK_HASH,
_CK_I2C1,
_CK_I2C2,
_CK_I2C3,
_CK_I2C4,
_CK_I2C5,
_CK_I2C6,
_CK_I2C7,
_CK_I2C8,
_CK_IWDG1,
_CK_IWDG2,
_CK_OSPI1,
_CK_OSPI2,
_CK_OSPIIOM,
_CK_PKA,
_CK_RETRAM,
_CK_RNG,
_CK_RTC,
_CK_SAES,
_CK_SDMMC1,
_CK_SDMMC2,
_CK_SRAM1,
_CK_SRAM2,
_CK_STGEN,
_CK_SYSCPU1,
_CK_SYSRAM,
_CK_UART4,
_CK_UART5,
_CK_UART7,
_CK_UART8,
_CK_UART9,
_CK_USART1,
_CK_USART2,
_CK_USART3,
_CK_USART6,
_CK_USB2EHCI,
_CK_USB2OHCI,
_CK_USB2PHY1,
_CK_USB2PHY2,
_CK_USB3DR,
_CK_USB3PCIEPHY,
_CK_USBTC,
CK_LAST
};
static const uint16_t muxsel_src[] = {
_CK_HSI, _CK_HSE, _CK_MSI, _CK_0_MHZ
};
static const uint16_t xbarsel_src[] = {
_CK_PLL4, _CK_PLL5, _CK_PLL6, _CK_PLL7, _CK_PLL8,
_CK_HSI, _CK_HSE, _CK_MSI, _CK_HSI, _CK_HSE, _CK_MSI,
_SPDIFSYMB, _I2SCKIN, _CK_LSI, _CK_LSE
};
static const uint16_t rtc_src[] = {
_CK_0_MHZ, _CK_LSE, _CK_LSI, _CK_HSE_RTC
};
static const uint16_t usb2phy1_src[] = {
_CK_FLEXGEN_57, _CK_HSE
};
static const uint16_t usb2phy2_src[] = {
_CK_FLEXGEN_58, _CK_HSE
};
static const uint16_t usb3pciphy_src[] = {
_CK_FLEXGEN_34, _CK_HSE
};
static const uint16_t d3per_src[] = {
_CK_MSI, _CK_LSI, _CK_LSE
};
#define MUX_CONF(id, src, _offset, _shift, _witdh)[id] = {\
.id_parents = src,\
.num_parents = ARRAY_SIZE(src),\
.mux = &(struct mux_cfg) {\
.offset = (_offset),\
.shift = (_shift),\
.width = (_witdh),\
.bitrdy = UINT8_MAX,\
},\
}
static const struct parent_cfg parent_mp25[] = {
MUX_CONF(MUX_MUXSEL0, muxsel_src, RCC_MUXSELCFGR, 0, 2),
MUX_CONF(MUX_MUXSEL1, muxsel_src, RCC_MUXSELCFGR, 4, 2),
MUX_CONF(MUX_MUXSEL2, muxsel_src, RCC_MUXSELCFGR, 8, 2),
MUX_CONF(MUX_MUXSEL3, muxsel_src, RCC_MUXSELCFGR, 12, 2),
MUX_CONF(MUX_MUXSEL4, muxsel_src, RCC_MUXSELCFGR, 16, 2),
MUX_CONF(MUX_MUXSEL5, muxsel_src, RCC_MUXSELCFGR, 20, 2),
MUX_CONF(MUX_MUXSEL6, muxsel_src, RCC_MUXSELCFGR, 24, 2),
MUX_CONF(MUX_MUXSEL7, muxsel_src, RCC_MUXSELCFGR, 28, 2),
MUX_CONF(MUX_XBARSEL, xbarsel_src, RCC_XBAR0CFGR, 0, 4),
MUX_CONF(MUX_RTC, rtc_src, RCC_BDCR, 16, 2),
MUX_CONF(MUX_USB2PHY1, usb2phy1_src, RCC_USB2PHY1CFGR, 15, 1),
MUX_CONF(MUX_USB2PHY2, usb2phy2_src, RCC_USB2PHY2CFGR, 15, 1),
MUX_CONF(MUX_USB3PCIEPHY, usb3pciphy_src, RCC_USB3PCIEPHYCFGR, 15, 1),
MUX_CONF(MUX_D3PER, d3per_src, RCC_D3DCR, 16, 2),
};
/* GATES */
enum enum_gate_cfg {
GATE_ZERO, /* reserved for no gate */
GATE_LSE,
GATE_RTCCK,
GATE_LSI,
GATE_HSI,
GATE_MSI,
GATE_HSE,
GATE_LSI_RDY,
GATE_MSI_RDY,
GATE_LSE_RDY,
GATE_HSE_RDY,
GATE_HSI_RDY,
GATE_SYSRAM,
GATE_RETRAM,
GATE_SRAM1,
GATE_SRAM2,
GATE_DDRPHYC,
GATE_SYSCPU1,
GATE_CRC,
GATE_OSPIIOM,
GATE_BKPSRAM,
GATE_HASH,
GATE_RNG,
GATE_CRYP1,
GATE_CRYP2,
GATE_SAES,
GATE_PKA,
GATE_GPIOA,
GATE_GPIOB,
GATE_GPIOC,
GATE_GPIOD,
GATE_GPIOE,
GATE_GPIOF,
GATE_GPIOG,
GATE_GPIOH,
GATE_GPIOI,
GATE_GPIOJ,
GATE_GPIOK,
GATE_GPIOZ,
GATE_RTC,
GATE_DDRCP,
/* WARNING 2 CLOCKS FOR ONE GATE */
GATE_USB2OHCI,
GATE_USB2EHCI,
GATE_USB3DR,
GATE_BSEC,
GATE_IWDG1,
GATE_IWDG2,
GATE_DDRCAPB,
GATE_DDR,
GATE_USART2,
GATE_UART4,
GATE_USART3,
GATE_UART5,
GATE_I2C1,
GATE_I2C2,
GATE_I2C3,
GATE_I2C5,
GATE_I2C4,
GATE_I2C6,
GATE_I2C7,
GATE_USART1,
GATE_USART6,
GATE_UART7,
GATE_UART8,
GATE_UART9,
GATE_STGEN,
GATE_USB3PCIEPHY,
GATE_USBTC,
GATE_I2C8,
GATE_OSPI1,
GATE_OSPI2,
GATE_FMC,
GATE_SDMMC1,
GATE_SDMMC2,
GATE_USB2PHY1,
GATE_USB2PHY2,
LAST_GATE
};
#define GATE_CFG(id, _offset, _bit_idx, _offset_clr)[id] = {\
.offset = (_offset),\
.bit_idx = (_bit_idx),\
.set_clr = (_offset_clr),\
}
static const struct gate_cfg gates_mp25[LAST_GATE] = {
GATE_CFG(GATE_LSE, RCC_BDCR, 0, 0),
GATE_CFG(GATE_LSI, RCC_BDCR, 9, 0),
GATE_CFG(GATE_RTCCK, RCC_BDCR, 20, 0),
GATE_CFG(GATE_HSI, RCC_OCENSETR, 0, 1),
GATE_CFG(GATE_HSE, RCC_OCENSETR, 8, 1),
GATE_CFG(GATE_MSI, RCC_D3DCR, 0, 0),
GATE_CFG(GATE_LSI_RDY, RCC_BDCR, 10, 0),
GATE_CFG(GATE_LSE_RDY, RCC_BDCR, 2, 0),
GATE_CFG(GATE_MSI_RDY, RCC_D3DCR, 2, 0),
GATE_CFG(GATE_HSE_RDY, RCC_OCRDYR, 8, 0),
GATE_CFG(GATE_HSI_RDY, RCC_OCRDYR, 0, 0),
GATE_CFG(GATE_SYSRAM, RCC_SYSRAMCFGR, 1, 0),
GATE_CFG(GATE_RETRAM, RCC_RETRAMCFGR, 1, 0),
GATE_CFG(GATE_SRAM1, RCC_SRAM1CFGR, 1, 0),
GATE_CFG(GATE_SRAM2, RCC_SRAM2CFGR, 1, 0),
GATE_CFG(GATE_DDRPHYC, RCC_DDRPHYCAPBCFGR, 1, 0),
GATE_CFG(GATE_SYSCPU1, RCC_SYSCPU1CFGR, 1, 0),
GATE_CFG(GATE_CRC, RCC_CRCCFGR, 1, 0),
GATE_CFG(GATE_OSPIIOM, RCC_OSPIIOMCFGR, 1, 0),
GATE_CFG(GATE_BKPSRAM, RCC_BKPSRAMCFGR, 1, 0),
GATE_CFG(GATE_HASH, RCC_HASHCFGR, 1, 0),
GATE_CFG(GATE_RNG, RCC_RNGCFGR, 1, 0),
GATE_CFG(GATE_CRYP1, RCC_CRYP1CFGR, 1, 0),
GATE_CFG(GATE_CRYP2, RCC_CRYP2CFGR, 1, 0),
GATE_CFG(GATE_SAES, RCC_SAESCFGR, 1, 0),
GATE_CFG(GATE_PKA, RCC_PKACFGR, 1, 0),
GATE_CFG(GATE_GPIOA, RCC_GPIOACFGR, 1, 0),
GATE_CFG(GATE_GPIOB, RCC_GPIOBCFGR, 1, 0),
GATE_CFG(GATE_GPIOC, RCC_GPIOCCFGR, 1, 0),
GATE_CFG(GATE_GPIOD, RCC_GPIODCFGR, 1, 0),
GATE_CFG(GATE_GPIOE, RCC_GPIOECFGR, 1, 0),
GATE_CFG(GATE_GPIOF, RCC_GPIOFCFGR, 1, 0),
GATE_CFG(GATE_GPIOG, RCC_GPIOGCFGR, 1, 0),
GATE_CFG(GATE_GPIOH, RCC_GPIOHCFGR, 1, 0),
GATE_CFG(GATE_GPIOI, RCC_GPIOICFGR, 1, 0),
GATE_CFG(GATE_GPIOJ, RCC_GPIOJCFGR, 1, 0),
GATE_CFG(GATE_GPIOK, RCC_GPIOKCFGR, 1, 0),
GATE_CFG(GATE_GPIOZ, RCC_GPIOZCFGR, 1, 0),
GATE_CFG(GATE_RTC, RCC_RTCCFGR, 1, 0),
GATE_CFG(GATE_DDRCP, RCC_DDRCPCFGR, 1, 0),
/* WARNING 2 CLOCKS FOR ONE GATE */
GATE_CFG(GATE_USB2OHCI, RCC_USB2CFGR, 1, 0),
GATE_CFG(GATE_USB2EHCI, RCC_USB2CFGR, 1, 0),
GATE_CFG(GATE_USB3DR, RCC_USB3DRCFGR, 1, 0),
GATE_CFG(GATE_BSEC, RCC_BSECCFGR, 1, 0),
GATE_CFG(GATE_IWDG1, RCC_IWDG1CFGR, 1, 0),
GATE_CFG(GATE_IWDG2, RCC_IWDG2CFGR, 1, 0),
GATE_CFG(GATE_DDRCAPB, RCC_DDRCAPBCFGR, 1, 0),
GATE_CFG(GATE_DDR, RCC_DDRCFGR, 1, 0),
GATE_CFG(GATE_USART2, RCC_USART2CFGR, 1, 0),
GATE_CFG(GATE_UART4, RCC_UART4CFGR, 1, 0),
GATE_CFG(GATE_USART3, RCC_USART3CFGR, 1, 0),
GATE_CFG(GATE_UART5, RCC_UART5CFGR, 1, 0),
GATE_CFG(GATE_I2C1, RCC_I2C1CFGR, 1, 0),
GATE_CFG(GATE_I2C2, RCC_I2C2CFGR, 1, 0),
GATE_CFG(GATE_I2C3, RCC_I2C3CFGR, 1, 0),
GATE_CFG(GATE_I2C5, RCC_I2C5CFGR, 1, 0),
GATE_CFG(GATE_I2C4, RCC_I2C4CFGR, 1, 0),
GATE_CFG(GATE_I2C6, RCC_I2C6CFGR, 1, 0),
GATE_CFG(GATE_I2C7, RCC_I2C7CFGR, 1, 0),
GATE_CFG(GATE_USART1, RCC_USART1CFGR, 1, 0),
GATE_CFG(GATE_USART6, RCC_USART6CFGR, 1, 0),
GATE_CFG(GATE_UART7, RCC_UART7CFGR, 1, 0),
GATE_CFG(GATE_UART8, RCC_UART8CFGR, 1, 0),
GATE_CFG(GATE_UART9, RCC_UART9CFGR, 1, 0),
GATE_CFG(GATE_STGEN, RCC_STGENCFGR, 1, 0),
GATE_CFG(GATE_USB3PCIEPHY, RCC_USB3PCIEPHYCFGR, 1, 0),
GATE_CFG(GATE_USBTC, RCC_USBTCCFGR, 1, 0),
GATE_CFG(GATE_I2C8, RCC_I2C8CFGR, 1, 0),
GATE_CFG(GATE_OSPI1, RCC_OSPI1CFGR, 1, 0),
GATE_CFG(GATE_OSPI2, RCC_OSPI2CFGR, 1, 0),
GATE_CFG(GATE_FMC, RCC_FMCCFGR, 1, 0),
GATE_CFG(GATE_SDMMC1, RCC_SDMMC1CFGR, 1, 0),
GATE_CFG(GATE_SDMMC2, RCC_SDMMC2CFGR, 1, 0),
GATE_CFG(GATE_USB2PHY1, RCC_USB2PHY1CFGR, 1, 0),
GATE_CFG(GATE_USB2PHY2, RCC_USB2PHY2CFGR, 1, 0),
};
static const struct clk_div_table apb_div_table[] = {
{ 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, { 4, 16 },
{ 5, 16 }, { 6, 16 }, { 7, 16 }, { 0 },
};
#undef DIV_CFG
#define DIV_CFG(id, _offset, _shift, _width, _flags, _table, _bitrdy)[id] = {\
.offset = _offset,\
.shift = _shift,\
.width = _width,\
.flags = _flags,\
.table = _table,\
.bitrdy = _bitrdy,\
}
static const struct div_cfg dividers_mp25[] = {
DIV_CFG(DIV_APB1, RCC_APB1DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB2, RCC_APB2DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB3, RCC_APB3DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB4, RCC_APB4DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APBDBG, RCC_APBDBGDIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_LSMCU, RCC_LSMCUDIVR, 0, 1, 0, NULL, 31),
DIV_CFG(DIV_RTC, RCC_RTCDIVR, 0, 6, 0, NULL, 0),
};
enum stm32_osc {
OSC_HSI,
OSC_HSE,
OSC_MSI,
OSC_LSI,
OSC_LSE,
OSC_I2SCKIN,
OSC_SPDIFSYMB,
NB_OSCILLATOR
};
static struct clk_oscillator_data stm32mp25_osc_data[] = {
OSCILLATOR(OSC_HSI, _CK_HSI, "clk-hsi", GATE_HSI, GATE_HSI_RDY,
NULL, NULL, NULL),
OSCILLATOR(OSC_LSI, _CK_LSI, "clk-lsi", GATE_LSI, GATE_LSI_RDY,
NULL, NULL, NULL),
OSCILLATOR(OSC_MSI, _CK_MSI, "clk-msi", GATE_MSI, GATE_MSI_RDY,
NULL, NULL, NULL),
OSCILLATOR(OSC_HSE, _CK_HSE, "clk-hse", GATE_HSE, GATE_HSE_RDY,
BYPASS(RCC_OCENSETR, 10, 7),
CSS(RCC_OCENSETR, 11),
NULL),
OSCILLATOR(OSC_LSE, _CK_LSE, "clk-lse", GATE_LSE, GATE_LSE_RDY,
BYPASS(RCC_BDCR, 1, 3),
CSS(RCC_BDCR, 8),
DRIVE(RCC_BDCR, 4, 2, 2)),
OSCILLATOR(OSC_I2SCKIN, _I2SCKIN, "i2s_ckin", NO_GATE, NO_GATE,
NULL, NULL, NULL),
OSCILLATOR(OSC_SPDIFSYMB, _SPDIFSYMB, "spdif_symb", NO_GATE, NO_GATE,
NULL, NULL, NULL),
};
#ifdef IMAGE_BL2
static const char *clk_stm32_get_oscillator_name(enum stm32_osc id)
{
if (id < NB_OSCILLATOR) {
return stm32mp25_osc_data[id].name;
}
return NULL;
}
#endif
enum pll_id {
_PLL1,
_PLL2,
_PLL3,
_PLL4,
_PLL5,
_PLL6,
_PLL7,
_PLL8,
_PLL_NB
};
/* PLL configuration registers offsets from RCC_PLLxCFGR1 */
#define RCC_OFFSET_PLLXCFGR1 0x00
#define RCC_OFFSET_PLLXCFGR2 0x04
#define RCC_OFFSET_PLLXCFGR3 0x08
#define RCC_OFFSET_PLLXCFGR4 0x0C
#define RCC_OFFSET_PLLXCFGR5 0x10
#define RCC_OFFSET_PLLXCFGR6 0x18
#define RCC_OFFSET_PLLXCFGR7 0x1C
struct stm32_clk_pll {
uint16_t clk_id;
uint16_t reg_pllxcfgr1;
};
#define CLK_PLL_CFG(_idx, _clk_id, _reg)\
[(_idx)] = {\
.clk_id = (_clk_id),\
.reg_pllxcfgr1 = (_reg),\
}
static const struct stm32_clk_pll stm32mp25_clk_pll[_PLL_NB] = {
CLK_PLL_CFG(_PLL1, _CK_PLL1, A35_SS_CHGCLKREQ),
CLK_PLL_CFG(_PLL2, _CK_PLL2, RCC_PLL2CFGR1),
CLK_PLL_CFG(_PLL3, _CK_PLL3, RCC_PLL3CFGR1),
CLK_PLL_CFG(_PLL4, _CK_PLL4, RCC_PLL4CFGR1),
CLK_PLL_CFG(_PLL5, _CK_PLL5, RCC_PLL5CFGR1),
CLK_PLL_CFG(_PLL6, _CK_PLL6, RCC_PLL6CFGR1),
CLK_PLL_CFG(_PLL7, _CK_PLL7, RCC_PLL7CFGR1),
CLK_PLL_CFG(_PLL8, _CK_PLL8, RCC_PLL8CFGR1),
};
static const struct stm32_clk_pll *clk_stm32_pll_data(unsigned int idx)
{
return &stm32mp25_clk_pll[idx];
}
static unsigned long clk_get_pll_fvco(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll,
unsigned long prate)
{
unsigned long refclk, fvco;
uint32_t fracin, fbdiv, refdiv;
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
uintptr_t pllxcfgr2 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR2;
uintptr_t pllxcfgr3 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR3;
refclk = prate;
fracin = mmio_read_32(pllxcfgr3) & RCC_PLLxCFGR3_FRACIN_MASK;
fbdiv = (mmio_read_32(pllxcfgr2) & RCC_PLLxCFGR2_FBDIV_MASK) >>
RCC_PLLxCFGR2_FBDIV_SHIFT;
refdiv = mmio_read_32(pllxcfgr2) & RCC_PLLxCFGR2_FREFDIV_MASK;
if (fracin != 0U) {
uint64_t numerator, denominator;
numerator = ((uint64_t)fbdiv << 24) + fracin;
numerator = refclk * numerator;
denominator = (uint64_t)refdiv << 24;
fvco = (unsigned long)(numerator / denominator);
} else {
fvco = (unsigned long)(refclk * fbdiv / refdiv);
}
return fvco;
}
struct stm32_pll_cfg {
uint16_t pll_id;
};
static bool _clk_stm32_pll_is_enabled(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
return ((mmio_read_32(pllxcfgr1) & RCC_PLLxCFGR1_PLLEN) != 0U);
}
static void _clk_stm32_pll_set_on(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
mmio_setbits_32(pllxcfgr1, RCC_PLLxCFGR1_PLLEN);
}
static void _clk_stm32_pll_set_off(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
/* Stop PLL */
mmio_clrbits_32(pllxcfgr1, RCC_PLLxCFGR1_PLLEN);
}
static int _clk_stm32_pll_wait_ready_on(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
/* Wait PLL lock */
while ((mmio_read_32(pllxcfgr1) & RCC_PLLxCFGR1_PLLRDY) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("PLL%d start failed @ 0x%x: 0x%x\n",
pll->clk_id - _CK_PLL1 + 1, pll->reg_pllxcfgr1,
mmio_read_32(pllxcfgr1));
return -ETIMEDOUT;
}
}
return 0;
}
static int _clk_stm32_pll_wait_ready_off(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
/* Wait PLL stopped */
while ((mmio_read_32(pllxcfgr1) & RCC_PLLxCFGR1_PLLRDY) != 0U) {
if (timeout_elapsed(timeout)) {
ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
pll->clk_id - _CK_PLL1 + 1, pllxcfgr1, mmio_read_32(pllxcfgr1));
return -ETIMEDOUT;
}
}
return 0;
}
static int _clk_stm32_pll_enable(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
if (_clk_stm32_pll_is_enabled(priv, pll)) {
return 0;
}
_clk_stm32_pll_set_on(priv, pll);
return _clk_stm32_pll_wait_ready_on(priv, pll);
}
static void _clk_stm32_pll_disable(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
if (!_clk_stm32_pll_is_enabled(priv, pll)) {
return;
}
_clk_stm32_pll_set_off(priv, pll);
_clk_stm32_pll_wait_ready_off(priv, pll);
}
static bool clk_stm32_pll_is_enabled(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_stm32_pll_data(pll_cfg->pll_id);
return _clk_stm32_pll_is_enabled(priv, pll);
}
static int clk_stm32_pll_enable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_stm32_pll_data(pll_cfg->pll_id);
return _clk_stm32_pll_enable(priv, pll);
}
static void clk_stm32_pll_disable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_stm32_pll_data(pll_cfg->pll_id);
_clk_stm32_pll_disable(priv, pll);
}
static unsigned long clk_stm32_pll_recalc_rate(struct stm32_clk_priv *priv, int id,
unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_stm32_pll_data(pll_cfg->pll_id);
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
uintptr_t pllxcfgr4 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR4;
uintptr_t pllxcfgr6 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR6;
uintptr_t pllxcfgr7 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR7;
unsigned long dfout;
uint32_t postdiv1, postdiv2;
postdiv1 = mmio_read_32(pllxcfgr6) & RCC_PLLxCFGR6_POSTDIV1_MASK;
postdiv2 = mmio_read_32(pllxcfgr7) & RCC_PLLxCFGR7_POSTDIV2_MASK;
if ((mmio_read_32(pllxcfgr4) & RCC_PLLxCFGR4_BYPASS) != 0U) {
dfout = prate;
} else {
if ((postdiv1 == 0U) || (postdiv2 == 0U)) {
dfout = prate;
} else {
dfout = clk_get_pll_fvco(priv, pll, prate) / (postdiv1 * postdiv2);
}
}
return dfout;
}
static const struct stm32_clk_ops clk_stm32_pll_ops = {
.recalc_rate = clk_stm32_pll_recalc_rate,
.enable = clk_stm32_pll_enable,
.disable = clk_stm32_pll_disable,
.is_enabled = clk_stm32_pll_is_enabled,
};
#define CLK_PLL(idx, _idx, _parent, _pll_id, _flags)[idx] = {\
.binding = _idx,\
.parent = _parent,\
.flags = (_flags),\
.clock_cfg = &(struct stm32_pll_cfg) {\
.pll_id = _pll_id,\
},\
.ops = STM32_PLL_OPS,\
}
static unsigned long clk_get_pll1_fvco(unsigned long refclk)
{
uintptr_t pll_freq1_reg = A35SSC_BASE + A35_SS_PLL_FREQ1;
uint32_t reg, fbdiv, refdiv;
reg = mmio_read_32(pll_freq1_reg);
fbdiv = (reg & A35_SS_PLL_FREQ1_FBDIV_MASK) >> A35_SS_PLL_FREQ1_FBDIV_SHIFT;
refdiv = (reg & A35_SS_PLL_FREQ1_REFDIV_MASK) >> A35_SS_PLL_FREQ1_REFDIV_SHIFT;
return (unsigned long)(refclk * fbdiv / refdiv);
}
static unsigned long clk_stm32_pll1_recalc_rate(struct stm32_clk_priv *priv,
int id, unsigned long prate)
{
uintptr_t pll_freq2_reg = A35SSC_BASE + A35_SS_PLL_FREQ2;
uint32_t postdiv1, postdiv2;
unsigned long dfout;
postdiv1 = (mmio_read_32(pll_freq2_reg) & A35_SS_PLL_FREQ2_POSTDIV1_MASK) >>
A35_SS_PLL_FREQ2_POSTDIV1_SHIFT;
postdiv2 = (mmio_read_32(pll_freq2_reg) & A35_SS_PLL_FREQ2_POSTDIV2_MASK) >>
A35_SS_PLL_FREQ2_POSTDIV2_SHIFT;
if ((postdiv1 == 0U) || (postdiv2 == 0U)) {
dfout = prate;
} else {
dfout = clk_get_pll1_fvco(prate) / (postdiv1 * postdiv2);
}
return dfout;
}
static const struct stm32_clk_ops clk_stm32_pll1_ops = {
.recalc_rate = clk_stm32_pll1_recalc_rate,
};
#define CLK_PLL1(idx, _idx, _parent, _pll_id, _flags)[idx] = {\
.binding = _idx,\
.parent = _parent,\
.flags = (_flags),\
.clock_cfg = &(struct stm32_pll_cfg) {\
.pll_id = _pll_id,\
},\
.ops = STM32_PLL1_OPS,\
}
struct stm32_clk_flexgen_cfg {
uint8_t id;
};
static unsigned long clk_flexgen_recalc(struct stm32_clk_priv *priv, int idx,
unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, idx);
struct stm32_clk_flexgen_cfg *cfg = clk->clock_cfg;
uintptr_t rcc_base = priv->base;
uint32_t prediv, findiv;
uint8_t channel = cfg->id;
unsigned long freq = prate;
prediv = mmio_read_32(rcc_base + RCC_PREDIV0CFGR + (0x4U * channel)) &
RCC_PREDIVxCFGR_PREDIVx_MASK;
findiv = mmio_read_32(rcc_base + RCC_FINDIV0CFGR + (0x4U * channel)) &
RCC_FINDIVxCFGR_FINDIVx_MASK;
if (freq == 0UL) {
return 0U;
}
switch (prediv) {
case 0x0:
case 0x1:
case 0x3:
case 0x3FF:
break;
default:
ERROR("Unsupported PREDIV value (%x)\n", prediv);
panic();
break;
}
freq /= (prediv + 1U);
freq /= (findiv + 1U);
return freq;
}
static int clk_flexgen_get_parent(struct stm32_clk_priv *priv, int idx)
{
const struct clk_stm32 *clk = _clk_get(priv, idx);
struct stm32_clk_flexgen_cfg *cfg = clk->clock_cfg;
uint32_t sel;
uint32_t address;
uintptr_t rcc_base = priv->base;
address = RCC_XBAR0CFGR + (cfg->id * 4);
sel = mmio_read_32(rcc_base + address) & RCC_XBARxCFGR_XBARxSEL_MASK;
return sel;
}
static int clk_flexgen_gate_enable(struct stm32_clk_priv *priv, int idx)
{
const struct clk_stm32 *clk = _clk_get(priv, idx);
struct stm32_clk_flexgen_cfg *cfg = clk->clock_cfg;
uintptr_t rcc_base = priv->base;
uint8_t channel = cfg->id;
mmio_setbits_32(rcc_base + RCC_FINDIV0CFGR + (0x4U * channel),
RCC_FINDIVxCFGR_FINDIVxEN);
return 0;
}
static void clk_flexgen_gate_disable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_clk_flexgen_cfg *cfg = clk->clock_cfg;
uintptr_t rcc_base = priv->base;
uint8_t channel = cfg->id;
mmio_clrbits_32(rcc_base + RCC_FINDIV0CFGR + (0x4U * channel),
RCC_FINDIVxCFGR_FINDIVxEN);
}
static bool clk_flexgen_gate_is_enabled(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_clk_flexgen_cfg *cfg = clk->clock_cfg;
uintptr_t rcc_base = priv->base;
uint8_t channel = cfg->id;
return !!(mmio_read_32(rcc_base + RCC_FINDIV0CFGR + (0x4U * channel)) &
RCC_FINDIVxCFGR_FINDIVxEN);
}
static const struct stm32_clk_ops clk_stm32_flexgen_ops = {
.recalc_rate = clk_flexgen_recalc,
.get_parent = clk_flexgen_get_parent,
.enable = clk_flexgen_gate_enable,
.disable = clk_flexgen_gate_disable,
.is_enabled = clk_flexgen_gate_is_enabled,
};
#define FLEXGEN(idx, _idx, _flags, _id)[idx] = {\
.binding = _idx,\
.parent = MUX(MUX_XBARSEL),\
.flags = (_flags),\
.clock_cfg = &(struct stm32_clk_flexgen_cfg) {\
.id = _id,\
},\
.ops = STM32_FLEXGEN_OPS,\
}
#define RCC_0_MHZ UL(0)
#define RCC_4_MHZ UL(4000000)
#define RCC_16_MHZ UL(16000000)
#ifdef IMAGE_BL2
static int clk_stm32_osc_msi_set_rate(struct stm32_clk_priv *priv, int id, unsigned long rate,
unsigned long prate)
{
uintptr_t address = priv->base + RCC_BDCR;
uint32_t mask = RCC_BDCR_MSIFREQSEL;
int ret = -1;
switch (rate) {
case RCC_4_MHZ:
mmio_clrbits_32(address, mask);
ret = 0;
break;
case RCC_16_MHZ:
mmio_setbits_32(address, mask);
ret = 0;
break;
default:
break;
}
return ret;
}
#endif /* IMAGE_BL2 */
static unsigned long clk_stm32_osc_msi_recalc_rate(struct stm32_clk_priv *priv,
int id __unused,
unsigned long prate __unused)
{
uintptr_t address = priv->base + RCC_BDCR;
if ((mmio_read_32(address) & RCC_BDCR_MSIFREQSEL) == 0U) {
return RCC_4_MHZ;
} else {
return RCC_16_MHZ;
}
}
static const struct stm32_clk_ops clk_stm32_osc_msi_ops = {
.recalc_rate = clk_stm32_osc_msi_recalc_rate,
.is_enabled = clk_stm32_osc_gate_is_enabled,
.enable = clk_stm32_osc_gate_enable,
.disable = clk_stm32_osc_gate_disable,
.init = clk_stm32_osc_init,
};
#define CLK_OSC_MSI(idx, _idx, _parent, _osc_id) \
[(idx)] = (struct clk_stm32){ \
.binding = (_idx),\
.parent = (_parent),\
.flags = CLK_IS_CRITICAL,\
.clock_cfg = &(struct stm32_osc_cfg){\
.osc_id = (_osc_id),\
},\
.ops = STM32_OSC_MSI_OPS,\
}
static const struct stm32_clk_ops clk_stm32_rtc_ops = {
.enable = clk_stm32_gate_enable,
.disable = clk_stm32_gate_disable,
.is_enabled = clk_stm32_gate_is_enabled,
};
#define CLK_RTC(idx, _binding, _parent, _flags, _gate_id)[idx] = {\
.binding = (_binding),\
.parent = (_parent),\
.flags = (_flags),\
.clock_cfg = &(struct clk_stm32_gate_cfg) {\
.id = (_gate_id),\
},\
.ops = STM32_RTC_OPS,\
}
enum {
STM32_PLL_OPS = STM32_LAST_OPS,
STM32_PLL1_OPS,
STM32_FLEXGEN_OPS,
STM32_OSC_MSI_OPS,
STM32_RTC_OPS,
MP25_LAST_OPS
};
static const struct stm32_clk_ops *ops_array_mp25[MP25_LAST_OPS] = {
[NO_OPS] = NULL,
[FIXED_FACTOR_OPS] = &clk_fixed_factor_ops,
[GATE_OPS] = &clk_gate_ops,
[STM32_MUX_OPS] = &clk_mux_ops,
[STM32_DIVIDER_OPS] = &clk_stm32_divider_ops,
[STM32_GATE_OPS] = &clk_stm32_gate_ops,
[STM32_TIMER_OPS] = &clk_timer_ops,
[STM32_FIXED_RATE_OPS] = &clk_stm32_fixed_rate_ops,
[STM32_OSC_OPS] = &clk_stm32_osc_ops,
[STM32_OSC_NOGATE_OPS] = &clk_stm32_osc_nogate_ops,
[STM32_PLL_OPS] = &clk_stm32_pll_ops,
[STM32_PLL1_OPS] = &clk_stm32_pll1_ops,
[STM32_FLEXGEN_OPS] = &clk_stm32_flexgen_ops,
[STM32_OSC_MSI_OPS] = &clk_stm32_osc_msi_ops,
[STM32_RTC_OPS] = &clk_stm32_rtc_ops
};
static const struct clk_stm32 stm32mp25_clk[CK_LAST] = {
CLK_FIXED_RATE(_CK_0_MHZ, _NO_ID, RCC_0_MHZ),
/* ROOT CLOCKS */
CLK_OSC(_CK_HSE, HSE_CK, CLK_IS_ROOT, OSC_HSE),
CLK_OSC(_CK_LSE, LSE_CK, CLK_IS_ROOT, OSC_LSE),
CLK_OSC(_CK_HSI, HSI_CK, CLK_IS_ROOT, OSC_HSI),
CLK_OSC(_CK_LSI, LSI_CK, CLK_IS_ROOT, OSC_LSI),
CLK_OSC_MSI(_CK_MSI, MSI_CK, CLK_IS_ROOT, OSC_MSI),
CLK_OSC_FIXED(_I2SCKIN, _NO_ID, CLK_IS_ROOT, OSC_I2SCKIN),
CLK_OSC_FIXED(_SPDIFSYMB, _NO_ID, CLK_IS_ROOT, OSC_SPDIFSYMB),
STM32_DIV(_CK_HSE_RTC, _NO_ID, _CK_HSE, 0, DIV_RTC),
CLK_RTC(_CK_RTCCK, RTC_CK, MUX(MUX_RTC), 0, GATE_RTCCK),
CLK_PLL1(_CK_PLL1, PLL1_CK, MUX(MUX_MUXSEL5), _PLL1, 0),
CLK_PLL(_CK_PLL2, PLL2_CK, MUX(MUX_MUXSEL6), _PLL2, 0),
CLK_PLL(_CK_PLL3, PLL3_CK, MUX(MUX_MUXSEL7), _PLL3, 0),
CLK_PLL(_CK_PLL4, PLL4_CK, MUX(MUX_MUXSEL0), _PLL4, 0),
CLK_PLL(_CK_PLL5, PLL5_CK, MUX(MUX_MUXSEL1), _PLL5, 0),
CLK_PLL(_CK_PLL6, PLL6_CK, MUX(MUX_MUXSEL2), _PLL6, 0),
CLK_PLL(_CK_PLL7, PLL7_CK, MUX(MUX_MUXSEL3), _PLL7, 0),
CLK_PLL(_CK_PLL8, PLL8_CK, MUX(MUX_MUXSEL4), _PLL8, 0),
FLEXGEN(_CK_ICN_HS_MCU, CK_ICN_HS_MCU, CLK_IS_CRITICAL, 0),
FLEXGEN(_CK_ICN_SDMMC, CK_ICN_SDMMC, CLK_IS_CRITICAL, 1),
FLEXGEN(_CK_ICN_DDR, CK_ICN_DDR, CLK_IS_CRITICAL, 2),
FLEXGEN(_CK_ICN_HSL, CK_ICN_HSL, CLK_IS_CRITICAL, 4),
FLEXGEN(_CK_ICN_NIC, CK_ICN_NIC, CLK_IS_CRITICAL, 5),
STM32_DIV(_CK_ICN_LS_MCU, CK_ICN_LS_MCU, _CK_ICN_HS_MCU, 0, DIV_LSMCU),
FLEXGEN(_CK_FLEXGEN_07, CK_FLEXGEN_07, 0, 7),
FLEXGEN(_CK_FLEXGEN_08, CK_FLEXGEN_08, 0, 8),
FLEXGEN(_CK_FLEXGEN_09, CK_FLEXGEN_09, 0, 9),
FLEXGEN(_CK_FLEXGEN_10, CK_FLEXGEN_10, 0, 10),
FLEXGEN(_CK_FLEXGEN_11, CK_FLEXGEN_11, 0, 11),
FLEXGEN(_CK_FLEXGEN_12, CK_FLEXGEN_12, 0, 12),
FLEXGEN(_CK_FLEXGEN_13, CK_FLEXGEN_13, 0, 13),
FLEXGEN(_CK_FLEXGEN_14, CK_FLEXGEN_14, 0, 14),
FLEXGEN(_CK_FLEXGEN_15, CK_FLEXGEN_15, 0, 15),
FLEXGEN(_CK_FLEXGEN_16, CK_FLEXGEN_16, 0, 16),
FLEXGEN(_CK_FLEXGEN_17, CK_FLEXGEN_17, 0, 17),
FLEXGEN(_CK_FLEXGEN_18, CK_FLEXGEN_18, 0, 18),
FLEXGEN(_CK_FLEXGEN_19, CK_FLEXGEN_19, 0, 19),
FLEXGEN(_CK_FLEXGEN_20, CK_FLEXGEN_20, 0, 20),
FLEXGEN(_CK_FLEXGEN_21, CK_FLEXGEN_21, 0, 21),
FLEXGEN(_CK_FLEXGEN_22, CK_FLEXGEN_22, 0, 22),
FLEXGEN(_CK_FLEXGEN_23, CK_FLEXGEN_23, 0, 23),
FLEXGEN(_CK_FLEXGEN_24, CK_FLEXGEN_24, 0, 24),
FLEXGEN(_CK_FLEXGEN_25, CK_FLEXGEN_25, 0, 25),
FLEXGEN(_CK_FLEXGEN_26, CK_FLEXGEN_26, 0, 26),
FLEXGEN(_CK_FLEXGEN_27, CK_FLEXGEN_27, 0, 27),
FLEXGEN(_CK_FLEXGEN_28, CK_FLEXGEN_28, 0, 28),
FLEXGEN(_CK_FLEXGEN_29, CK_FLEXGEN_29, 0, 29),
FLEXGEN(_CK_FLEXGEN_30, CK_FLEXGEN_30, 0, 30),
FLEXGEN(_CK_FLEXGEN_31, CK_FLEXGEN_31, 0, 31),
FLEXGEN(_CK_FLEXGEN_32, CK_FLEXGEN_32, 0, 32),
FLEXGEN(_CK_FLEXGEN_33, CK_FLEXGEN_33, 0, 33),
FLEXGEN(_CK_FLEXGEN_34, CK_FLEXGEN_34, 0, 34),
FLEXGEN(_CK_FLEXGEN_35, CK_FLEXGEN_35, 0, 35),
FLEXGEN(_CK_FLEXGEN_36, CK_FLEXGEN_36, 0, 36),
FLEXGEN(_CK_FLEXGEN_37, CK_FLEXGEN_37, 0, 37),
FLEXGEN(_CK_FLEXGEN_38, CK_FLEXGEN_38, 0, 38),
FLEXGEN(_CK_FLEXGEN_39, CK_FLEXGEN_39, 0, 39),
FLEXGEN(_CK_FLEXGEN_40, CK_FLEXGEN_40, 0, 40),
FLEXGEN(_CK_FLEXGEN_41, CK_FLEXGEN_41, 0, 41),
FLEXGEN(_CK_FLEXGEN_42, CK_FLEXGEN_42, 0, 42),
FLEXGEN(_CK_FLEXGEN_43, CK_FLEXGEN_43, 0, 43),
FLEXGEN(_CK_FLEXGEN_44, CK_FLEXGEN_44, 0, 44),
FLEXGEN(_CK_FLEXGEN_45, CK_FLEXGEN_45, 0, 45),
FLEXGEN(_CK_FLEXGEN_46, CK_FLEXGEN_46, 0, 46),
FLEXGEN(_CK_FLEXGEN_47, CK_FLEXGEN_47, 0, 47),
FLEXGEN(_CK_FLEXGEN_48, CK_FLEXGEN_48, 0, 48),
FLEXGEN(_CK_FLEXGEN_49, CK_FLEXGEN_49, 0, 49),
FLEXGEN(_CK_FLEXGEN_50, CK_FLEXGEN_50, 0, 50),
FLEXGEN(_CK_FLEXGEN_51, CK_FLEXGEN_51, 0, 51),
FLEXGEN(_CK_FLEXGEN_52, CK_FLEXGEN_52, 0, 52),
FLEXGEN(_CK_FLEXGEN_53, CK_FLEXGEN_53, 0, 53),
FLEXGEN(_CK_FLEXGEN_54, CK_FLEXGEN_54, 0, 54),
FLEXGEN(_CK_FLEXGEN_55, CK_FLEXGEN_55, 0, 55),
FLEXGEN(_CK_FLEXGEN_56, CK_FLEXGEN_56, 0, 56),
FLEXGEN(_CK_FLEXGEN_57, CK_FLEXGEN_57, 0, 57),
FLEXGEN(_CK_FLEXGEN_58, CK_FLEXGEN_58, 0, 58),
FLEXGEN(_CK_FLEXGEN_59, CK_FLEXGEN_59, 0, 59),
FLEXGEN(_CK_FLEXGEN_60, CK_FLEXGEN_60, 0, 60),
FLEXGEN(_CK_FLEXGEN_61, CK_FLEXGEN_61, 0, 61),
FLEXGEN(_CK_FLEXGEN_62, CK_FLEXGEN_62, 0, 62),
FLEXGEN(_CK_FLEXGEN_63, CK_FLEXGEN_63, 0, 63),
STM32_DIV(_CK_ICN_APB1, CK_ICN_APB1, _CK_ICN_LS_MCU, 0, DIV_APB1),
STM32_DIV(_CK_ICN_APB2, CK_ICN_APB2, _CK_ICN_LS_MCU, 0, DIV_APB2),
STM32_DIV(_CK_ICN_APB3, CK_ICN_APB3, _CK_ICN_LS_MCU, 0, DIV_APB3),
STM32_DIV(_CK_ICN_APB4, CK_ICN_APB4, _CK_ICN_LS_MCU, 0, DIV_APB4),
STM32_DIV(_CK_ICN_APBDBG, CK_ICN_APBDBG, _CK_ICN_LS_MCU, 0, DIV_APBDBG),
/* KERNEL CLOCK */
STM32_GATE(_CK_SYSRAM, CK_BUS_SYSRAM, _CK_ICN_HS_MCU, 0, GATE_SYSRAM),
STM32_GATE(_CK_RETRAM, CK_BUS_RETRAM, _CK_ICN_HS_MCU, 0, GATE_RETRAM),
STM32_GATE(_CK_SRAM1, CK_BUS_SRAM1, _CK_ICN_HS_MCU, CLK_IS_CRITICAL, GATE_SRAM1),
STM32_GATE(_CK_SRAM2, CK_BUS_SRAM2, _CK_ICN_HS_MCU, CLK_IS_CRITICAL, GATE_SRAM2),
STM32_GATE(_CK_DDRPHYC, CK_BUS_DDRPHYC, _CK_ICN_LS_MCU, 0, GATE_DDRPHYC),
STM32_GATE(_CK_SYSCPU1, CK_BUS_SYSCPU1, _CK_ICN_LS_MCU, 0, GATE_SYSCPU1),
STM32_GATE(_CK_CRC, CK_BUS_CRC, _CK_ICN_LS_MCU, 0, GATE_CRC),
STM32_GATE(_CK_OSPIIOM, CK_BUS_OSPIIOM, _CK_ICN_LS_MCU, 0, GATE_OSPIIOM),
STM32_GATE(_CK_BKPSRAM, CK_BUS_BKPSRAM, _CK_ICN_LS_MCU, 0, GATE_BKPSRAM),
STM32_GATE(_CK_HASH, CK_BUS_HASH, _CK_ICN_LS_MCU, 0, GATE_HASH),
STM32_GATE(_CK_RNG, CK_BUS_RNG, _CK_ICN_LS_MCU, 0, GATE_RNG),
STM32_GATE(_CK_CRYP1, CK_BUS_CRYP1, _CK_ICN_LS_MCU, 0, GATE_CRYP1),
STM32_GATE(_CK_CRYP2, CK_BUS_CRYP2, _CK_ICN_LS_MCU, 0, GATE_CRYP2),
STM32_GATE(_CK_SAES, CK_BUS_SAES, _CK_ICN_LS_MCU, 0, GATE_SAES),
STM32_GATE(_CK_PKA, CK_BUS_PKA, _CK_ICN_LS_MCU, 0, GATE_PKA),
STM32_GATE(_CK_GPIOA, CK_BUS_GPIOA, _CK_ICN_LS_MCU, 0, GATE_GPIOA),
STM32_GATE(_CK_GPIOB, CK_BUS_GPIOB, _CK_ICN_LS_MCU, 0, GATE_GPIOB),
STM32_GATE(_CK_GPIOC, CK_BUS_GPIOC, _CK_ICN_LS_MCU, 0, GATE_GPIOC),
STM32_GATE(_CK_GPIOD, CK_BUS_GPIOD, _CK_ICN_LS_MCU, 0, GATE_GPIOD),
STM32_GATE(_CK_GPIOE, CK_BUS_GPIOE, _CK_ICN_LS_MCU, 0, GATE_GPIOE),
STM32_GATE(_CK_GPIOF, CK_BUS_GPIOF, _CK_ICN_LS_MCU, 0, GATE_GPIOF),
STM32_GATE(_CK_GPIOG, CK_BUS_GPIOG, _CK_ICN_LS_MCU, 0, GATE_GPIOG),
STM32_GATE(_CK_GPIOH, CK_BUS_GPIOH, _CK_ICN_LS_MCU, 0, GATE_GPIOH),
STM32_GATE(_CK_GPIOI, CK_BUS_GPIOI, _CK_ICN_LS_MCU, 0, GATE_GPIOI),
STM32_GATE(_CK_GPIOJ, CK_BUS_GPIOJ, _CK_ICN_LS_MCU, 0, GATE_GPIOJ),
STM32_GATE(_CK_GPIOK, CK_BUS_GPIOK, _CK_ICN_LS_MCU, 0, GATE_GPIOK),
STM32_GATE(_CK_GPIOZ, CK_BUS_GPIOZ, _CK_ICN_LS_MCU, 0, GATE_GPIOZ),
STM32_GATE(_CK_RTC, CK_BUS_RTC, _CK_ICN_LS_MCU, 0, GATE_RTC),
STM32_GATE(_CK_DDRCP, CK_BUS_DDR, _CK_ICN_DDR, 0, GATE_DDRCP),
/* WARNING 2 CLOCKS FOR ONE GATE */
STM32_GATE(_CK_USB2OHCI, CK_BUS_USB2OHCI, _CK_ICN_HSL, 0, GATE_USB2OHCI),
STM32_GATE(_CK_USB2EHCI, CK_BUS_USB2EHCI, _CK_ICN_HSL, 0, GATE_USB2EHCI),
STM32_GATE(_CK_USB3DR, CK_BUS_USB3DR, _CK_ICN_HSL, 0, GATE_USB3DR),
STM32_GATE(_CK_BSEC, CK_BUS_BSEC, _CK_ICN_APB3, 0, GATE_BSEC),
STM32_GATE(_CK_IWDG1, CK_BUS_IWDG1, _CK_ICN_APB3, 0, GATE_IWDG1),
STM32_GATE(_CK_IWDG2, CK_BUS_IWDG2, _CK_ICN_APB3, 0, GATE_IWDG2),
STM32_GATE(_CK_DDRCAPB, CK_BUS_DDRC, _CK_ICN_APB4, 0, GATE_DDRCAPB),
STM32_GATE(_CK_DDR, CK_BUS_DDRCFG, _CK_ICN_APB4, 0, GATE_DDR),
STM32_GATE(_CK_USART2, CK_KER_USART2, _CK_FLEXGEN_08, 0, GATE_USART2),
STM32_GATE(_CK_UART4, CK_KER_UART4, _CK_FLEXGEN_08, 0, GATE_UART4),
STM32_GATE(_CK_USART3, CK_KER_USART3, _CK_FLEXGEN_09, 0, GATE_USART3),
STM32_GATE(_CK_UART5, CK_KER_UART5, _CK_FLEXGEN_09, 0, GATE_UART5),
STM32_GATE(_CK_I2C1, CK_KER_I2C1, _CK_FLEXGEN_12, 0, GATE_I2C1),
STM32_GATE(_CK_I2C2, CK_KER_I2C2, _CK_FLEXGEN_12, 0, GATE_I2C2),
STM32_GATE(_CK_I2C3, CK_KER_I2C3, _CK_FLEXGEN_13, 0, GATE_I2C3),
STM32_GATE(_CK_I2C5, CK_KER_I2C5, _CK_FLEXGEN_13, 0, GATE_I2C5),
STM32_GATE(_CK_I2C4, CK_KER_I2C4, _CK_FLEXGEN_14, 0, GATE_I2C4),
STM32_GATE(_CK_I2C6, CK_KER_I2C6, _CK_FLEXGEN_14, 0, GATE_I2C6),
STM32_GATE(_CK_I2C7, CK_KER_I2C7, _CK_FLEXGEN_15, 0, GATE_I2C7),
STM32_GATE(_CK_USART1, CK_KER_USART1, _CK_FLEXGEN_19, 0, GATE_USART1),
STM32_GATE(_CK_USART6, CK_KER_USART6, _CK_FLEXGEN_20, 0, GATE_USART6),
STM32_GATE(_CK_UART7, CK_KER_UART7, _CK_FLEXGEN_21, 0, GATE_UART7),
STM32_GATE(_CK_UART8, CK_KER_UART8, _CK_FLEXGEN_21, 0, GATE_UART8),
STM32_GATE(_CK_UART9, CK_KER_UART9, _CK_FLEXGEN_22, 0, GATE_UART9),
STM32_GATE(_CK_STGEN, CK_KER_STGEN, _CK_FLEXGEN_33, 0, GATE_STGEN),
STM32_GATE(_CK_USB3PCIEPHY, CK_KER_USB3PCIEPHY, _CK_FLEXGEN_34, 0, GATE_USB3PCIEPHY),
STM32_GATE(_CK_USBTC, CK_KER_USBTC, _CK_FLEXGEN_35, 0, GATE_USBTC),
STM32_GATE(_CK_I2C8, CK_KER_I2C8, _CK_FLEXGEN_38, 0, GATE_I2C8),
STM32_GATE(_CK_OSPI1, CK_KER_OSPI1, _CK_FLEXGEN_48, 0, GATE_OSPI1),
STM32_GATE(_CK_OSPI2, CK_KER_OSPI2, _CK_FLEXGEN_49, 0, GATE_OSPI2),
STM32_GATE(_CK_FMC, CK_KER_FMC, _CK_FLEXGEN_50, 0, GATE_FMC),
STM32_GATE(_CK_SDMMC1, CK_KER_SDMMC1, _CK_FLEXGEN_51, 0, GATE_SDMMC1),
STM32_GATE(_CK_SDMMC2, CK_KER_SDMMC2, _CK_FLEXGEN_52, 0, GATE_SDMMC2),
STM32_GATE(_CK_USB2PHY1, CK_KER_USB2PHY1, _CK_FLEXGEN_57, 0, GATE_USB2PHY1),
STM32_GATE(_CK_USB2PHY2, CK_KER_USB2PHY2, _CK_FLEXGEN_58, 0, GATE_USB2PHY2),
};
enum clksrc_id {
CLKSRC_CA35SS,
CLKSRC_PLL1,
CLKSRC_PLL2,
CLKSRC_PLL3,
CLKSRC_PLL4,
CLKSRC_PLL5,
CLKSRC_PLL6,
CLKSRC_PLL7,
CLKSRC_PLL8,
CLKSRC_XBAR_CHANNEL0,
CLKSRC_XBAR_CHANNEL1,
CLKSRC_XBAR_CHANNEL2,
CLKSRC_XBAR_CHANNEL3,
CLKSRC_XBAR_CHANNEL4,
CLKSRC_XBAR_CHANNEL5,
CLKSRC_XBAR_CHANNEL6,
CLKSRC_XBAR_CHANNEL7,
CLKSRC_XBAR_CHANNEL8,
CLKSRC_XBAR_CHANNEL9,
CLKSRC_XBAR_CHANNEL10,
CLKSRC_XBAR_CHANNEL11,
CLKSRC_XBAR_CHANNEL12,
CLKSRC_XBAR_CHANNEL13,
CLKSRC_XBAR_CHANNEL14,
CLKSRC_XBAR_CHANNEL15,
CLKSRC_XBAR_CHANNEL16,
CLKSRC_XBAR_CHANNEL17,
CLKSRC_XBAR_CHANNEL18,
CLKSRC_XBAR_CHANNEL19,
CLKSRC_XBAR_CHANNEL20,
CLKSRC_XBAR_CHANNEL21,
CLKSRC_XBAR_CHANNEL22,
CLKSRC_XBAR_CHANNEL23,
CLKSRC_XBAR_CHANNEL24,
CLKSRC_XBAR_CHANNEL25,
CLKSRC_XBAR_CHANNEL26,
CLKSRC_XBAR_CHANNEL27,
CLKSRC_XBAR_CHANNEL28,
CLKSRC_XBAR_CHANNEL29,
CLKSRC_XBAR_CHANNEL30,
CLKSRC_XBAR_CHANNEL31,
CLKSRC_XBAR_CHANNEL32,
CLKSRC_XBAR_CHANNEL33,
CLKSRC_XBAR_CHANNEL34,
CLKSRC_XBAR_CHANNEL35,
CLKSRC_XBAR_CHANNEL36,
CLKSRC_XBAR_CHANNEL37,
CLKSRC_XBAR_CHANNEL38,
CLKSRC_XBAR_CHANNEL39,
CLKSRC_XBAR_CHANNEL40,
CLKSRC_XBAR_CHANNEL41,
CLKSRC_XBAR_CHANNEL42,
CLKSRC_XBAR_CHANNEL43,
CLKSRC_XBAR_CHANNEL44,
CLKSRC_XBAR_CHANNEL45,
CLKSRC_XBAR_CHANNEL46,
CLKSRC_XBAR_CHANNEL47,
CLKSRC_XBAR_CHANNEL48,
CLKSRC_XBAR_CHANNEL49,
CLKSRC_XBAR_CHANNEL50,
CLKSRC_XBAR_CHANNEL51,
CLKSRC_XBAR_CHANNEL52,
CLKSRC_XBAR_CHANNEL53,
CLKSRC_XBAR_CHANNEL54,
CLKSRC_XBAR_CHANNEL55,
CLKSRC_XBAR_CHANNEL56,
CLKSRC_XBAR_CHANNEL57,
CLKSRC_XBAR_CHANNEL58,
CLKSRC_XBAR_CHANNEL59,
CLKSRC_XBAR_CHANNEL60,
CLKSRC_XBAR_CHANNEL61,
CLKSRC_XBAR_CHANNEL62,
CLKSRC_XBAR_CHANNEL63,
CLKSRC_RTC,
CLKSRC_MCO1,
CLKSRC_MCO2,
CLKSRC_NB
};
static void stm32mp2_a35_ss_on_hsi(void)
{
uintptr_t a35_ss_address = A35SSC_BASE;
uintptr_t chgclkreq_reg = a35_ss_address + A35_SS_CHGCLKREQ;
uintptr_t pll_enable_reg = a35_ss_address + A35_SS_PLL_ENABLE;
uint64_t timeout;
if ((mmio_read_32(chgclkreq_reg) & A35_SS_CHGCLKREQ_ARM_CHGCLKACK) ==
A35_SS_CHGCLKREQ_ARM_CHGCLKACK) {
/* Nothing to do, clock source is already set on bypass clock */
return;
}
mmio_setbits_32(chgclkreq_reg, A35_SS_CHGCLKREQ_ARM_CHGCLKREQ);
timeout = timeout_init_us(CLKSRC_TIMEOUT);
while ((mmio_read_32(chgclkreq_reg) & A35_SS_CHGCLKREQ_ARM_CHGCLKACK) !=
A35_SS_CHGCLKREQ_ARM_CHGCLKACK) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("Cannot switch A35 to bypass clock\n");
panic();
}
}
mmio_clrbits_32(pll_enable_reg, A35_SS_PLL_ENABLE_NRESET_SWPLL_FF);
}
#ifdef IMAGE_BL2
static void stm32mp2_clk_muxsel_on_hsi(struct stm32_clk_priv *priv)
{
mmio_clrbits_32(priv->base + RCC_MUXSELCFGR,
RCC_MUXSELCFGR_MUXSEL0_MASK |
RCC_MUXSELCFGR_MUXSEL1_MASK |
RCC_MUXSELCFGR_MUXSEL2_MASK |
RCC_MUXSELCFGR_MUXSEL3_MASK |
RCC_MUXSELCFGR_MUXSEL4_MASK |
RCC_MUXSELCFGR_MUXSEL5_MASK |
RCC_MUXSELCFGR_MUXSEL6_MASK |
RCC_MUXSELCFGR_MUXSEL7_MASK);
}
static void stm32mp2_clk_xbar_on_hsi(struct stm32_clk_priv *priv)
{
uintptr_t xbar0cfgr = priv->base + RCC_XBAR0CFGR;
uint32_t i;
for (i = 0; i < XBAR_CHANNEL_NB; i++) {
mmio_clrsetbits_32(xbar0cfgr + (0x4 * i),
RCC_XBAR0CFGR_XBAR0SEL_MASK,
XBAR_SRC_HSI);
}
}
static int stm32mp2_a35_pll1_start(void)
{
uintptr_t a35_ss_address = A35SSC_BASE;
uintptr_t pll_enable_reg = a35_ss_address + A35_SS_PLL_ENABLE;
uintptr_t chgclkreq_reg = a35_ss_address + A35_SS_CHGCLKREQ;
uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
mmio_setbits_32(pll_enable_reg, A35_SS_PLL_ENABLE_PD);
/* Wait PLL lock */
while ((mmio_read_32(pll_enable_reg) & A35_SS_PLL_ENABLE_LOCKP) == 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("PLL1 start failed @ 0x%lx: 0x%x\n",
pll_enable_reg, mmio_read_32(pll_enable_reg));
return -ETIMEDOUT;
}
}
/* De-assert reset on PLL output clock path */
mmio_setbits_32(pll_enable_reg, A35_SS_PLL_ENABLE_NRESET_SWPLL_FF);
/* Switch CPU clock to PLL clock */
mmio_clrbits_32(chgclkreq_reg, A35_SS_CHGCLKREQ_ARM_CHGCLKREQ);
/* Wait for clock change acknowledge */
timeout = timeout_init_us(CLKSRC_TIMEOUT);
while ((mmio_read_32(chgclkreq_reg) & A35_SS_CHGCLKREQ_ARM_CHGCLKACK) != 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("CA35SS switch to PLL1 failed @ 0x%lx: 0x%x\n",
chgclkreq_reg, mmio_read_32(chgclkreq_reg));
return -ETIMEDOUT;
}
}
return 0;
}
static void stm32mp2_a35_pll1_config(uint32_t fbdiv, uint32_t refdiv, uint32_t postdiv1,
uint32_t postdiv2)
{
uintptr_t a35_ss_address = A35SSC_BASE;
uintptr_t pll_freq1_reg = a35_ss_address + A35_SS_PLL_FREQ1;
uintptr_t pll_freq2_reg = a35_ss_address + A35_SS_PLL_FREQ2;
mmio_clrsetbits_32(pll_freq1_reg, A35_SS_PLL_FREQ1_REFDIV_MASK,
(refdiv << A35_SS_PLL_FREQ1_REFDIV_SHIFT) &
A35_SS_PLL_FREQ1_REFDIV_MASK);
mmio_clrsetbits_32(pll_freq1_reg, A35_SS_PLL_FREQ1_FBDIV_MASK,
(fbdiv << A35_SS_PLL_FREQ1_FBDIV_SHIFT) &
A35_SS_PLL_FREQ1_FBDIV_MASK);
mmio_clrsetbits_32(pll_freq2_reg, A35_SS_PLL_FREQ2_POSTDIV1_MASK,
(postdiv1 << A35_SS_PLL_FREQ2_POSTDIV1_SHIFT) &
A35_SS_PLL_FREQ2_POSTDIV1_MASK);
mmio_clrsetbits_32(pll_freq2_reg, A35_SS_PLL_FREQ2_POSTDIV2_MASK,
(postdiv2 << A35_SS_PLL_FREQ2_POSTDIV2_SHIFT) &
A35_SS_PLL_FREQ2_POSTDIV2_MASK);
}
static int clk_stm32_pll_config_output(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll,
uint32_t *pllcfg,
uint32_t fracv)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
uintptr_t pllxcfgr2 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR2;
uintptr_t pllxcfgr3 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR3;
uintptr_t pllxcfgr4 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR4;
uintptr_t pllxcfgr6 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR6;
uintptr_t pllxcfgr7 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR7;
unsigned long refclk;
refclk = _clk_stm32_get_parent_rate(priv, pll->clk_id);
if (fracv == 0U) {
/* PLL in integer mode */
/*
* No need to check max clock, as oscillator reference clocks
* will always be less than 1.2GHz
*/
if (refclk < PLL_REFCLK_MIN) {
panic();
}
mmio_clrbits_32(pllxcfgr3, RCC_PLLxCFGR3_FRACIN_MASK);
mmio_clrbits_32(pllxcfgr4, RCC_PLLxCFGR4_DSMEN);
mmio_clrbits_32(pllxcfgr3, RCC_PLLxCFGR3_DACEN);
mmio_setbits_32(pllxcfgr3, RCC_PLLxCFGR3_SSCGDIS);
mmio_setbits_32(pllxcfgr1, RCC_PLLxCFGR1_SSMODRST);
} else {
/* PLL in frac mode */
/*
* No need to check max clock, as oscillator reference clocks
* will always be less than 1.2GHz
*/
if (refclk < PLL_FRAC_REFCLK_MIN) {
panic();
}
mmio_clrsetbits_32(pllxcfgr3, RCC_PLLxCFGR3_FRACIN_MASK,
fracv & RCC_PLLxCFGR3_FRACIN_MASK);
mmio_setbits_32(pllxcfgr3, RCC_PLLxCFGR3_SSCGDIS);
mmio_setbits_32(pllxcfgr4, RCC_PLLxCFGR4_DSMEN);
}
assert(pllcfg[REFDIV] != 0U);
mmio_clrsetbits_32(pllxcfgr2, RCC_PLLxCFGR2_FBDIV_MASK,
(pllcfg[FBDIV] << RCC_PLLxCFGR2_FBDIV_SHIFT) &
RCC_PLLxCFGR2_FBDIV_MASK);
mmio_clrsetbits_32(pllxcfgr2, RCC_PLLxCFGR2_FREFDIV_MASK,
pllcfg[REFDIV] & RCC_PLLxCFGR2_FREFDIV_MASK);
mmio_clrsetbits_32(pllxcfgr6, RCC_PLLxCFGR6_POSTDIV1_MASK,
pllcfg[POSTDIV1] & RCC_PLLxCFGR6_POSTDIV1_MASK);
mmio_clrsetbits_32(pllxcfgr7, RCC_PLLxCFGR7_POSTDIV2_MASK,
pllcfg[POSTDIV2] & RCC_PLLxCFGR7_POSTDIV2_MASK);
if ((pllcfg[POSTDIV1] == 0U) || (pllcfg[POSTDIV2] == 0U)) {
/* Bypass mode */
mmio_setbits_32(pllxcfgr4, RCC_PLLxCFGR4_BYPASS);
mmio_clrbits_32(pllxcfgr4, RCC_PLLxCFGR4_FOUTPOSTDIVEN);
} else {
mmio_clrbits_32(pllxcfgr4, RCC_PLLxCFGR4_BYPASS);
mmio_setbits_32(pllxcfgr4, RCC_PLLxCFGR4_FOUTPOSTDIVEN);
}
return 0;
}
static void clk_stm32_pll_config_csg(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll,
uint32_t *csg)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
uintptr_t pllxcfgr3 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR3;
uintptr_t pllxcfgr4 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR4;
uintptr_t pllxcfgr5 = pllxcfgr1 + RCC_OFFSET_PLLXCFGR5;
mmio_clrsetbits_32(pllxcfgr5, RCC_PLLxCFGR5_DIVVAL_MASK,
csg[DIVVAL] & RCC_PLLxCFGR5_DIVVAL_MASK);
mmio_clrsetbits_32(pllxcfgr5, RCC_PLLxCFGR5_SPREAD_MASK,
(csg[SPREAD] << RCC_PLLxCFGR5_SPREAD_SHIFT) &
RCC_PLLxCFGR5_SPREAD_MASK);
if (csg[DOWNSPREAD] != 0) {
mmio_setbits_32(pllxcfgr3, RCC_PLLxCFGR3_DOWNSPREAD);
} else {
mmio_clrbits_32(pllxcfgr3, RCC_PLLxCFGR3_DOWNSPREAD);
}
mmio_clrbits_32(pllxcfgr3, RCC_PLLxCFGR3_SSCGDIS);
mmio_clrbits_32(pllxcfgr1, RCC_PLLxCFGR1_PLLEN);
udelay(1);
mmio_setbits_32(pllxcfgr4, RCC_PLLxCFGR4_DSMEN);
mmio_setbits_32(pllxcfgr3, RCC_PLLxCFGR3_DACEN);
}
static int stm32_clk_configure_mux(struct stm32_clk_priv *priv, uint32_t data);
static inline struct stm32_pll_dt_cfg *clk_stm32_pll_get_pdata(int pll_idx)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
struct stm32_clk_platdata *pdata = priv->pdata;
return &pdata->pll[pll_idx];
}
static int _clk_stm32_pll1_init(struct stm32_clk_priv *priv, int pll_idx,
struct stm32_pll_dt_cfg *pll_conf)
{
const struct stm32_clk_pll *pll = clk_stm32_pll_data(pll_idx);
unsigned long refclk;
int ret = 0;
stm32mp2_a35_ss_on_hsi();
ret = stm32_clk_configure_mux(priv, pll_conf->src);
if (ret != 0) {
panic();
}
refclk = _clk_stm32_get_parent_rate(priv, pll->clk_id);
/*
* No need to check max clock, as oscillator reference clocks will
* always be less than 1.2 GHz
*/
if (refclk < PLL_REFCLK_MIN) {
EARLY_ERROR("%s: %d\n", __func__, __LINE__);
panic();
}
stm32mp2_a35_pll1_config(pll_conf->cfg[FBDIV], pll_conf->cfg[REFDIV],
pll_conf->cfg[POSTDIV1], pll_conf->cfg[POSTDIV2]);
ret = stm32mp2_a35_pll1_start();
if (ret != 0) {
panic();
}
return 0;
}
static int clk_stm32_pll_wait_mux_ready(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll)
{
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
uint64_t timeout = timeout_init_us(CLKSRC_TIMEOUT);
while ((mmio_read_32(pllxcfgr1) & RCC_PLLxCFGR1_CKREFST) !=
RCC_PLLxCFGR1_CKREFST) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("PLL%d ref clock not started\n", pll->clk_id - _CK_PLL1 + 1);
return -ETIMEDOUT;
}
}
return 0;
}
static int _clk_stm32_pll_init(struct stm32_clk_priv *priv, int pll_idx,
struct stm32_pll_dt_cfg *pll_conf)
{
const struct stm32_clk_pll *pll = clk_stm32_pll_data(pll_idx);
uintptr_t pllxcfgr1 = priv->base + pll->reg_pllxcfgr1;
bool spread_spectrum = false;
int ret = 0;
_clk_stm32_pll_disable(priv, pll);
ret = stm32_clk_configure_mux(priv, pll_conf->src);
if (ret != 0) {
panic();
}
ret = clk_stm32_pll_wait_mux_ready(priv, pll);
if (ret != 0) {
panic();
}
ret = clk_stm32_pll_config_output(priv, pll, pll_conf->cfg, pll_conf->frac);
if (ret != 0) {
panic();
}
if (pll_conf->csg_enabled) {
clk_stm32_pll_config_csg(priv, pll, pll_conf->csg);
spread_spectrum = true;
}
_clk_stm32_pll_enable(priv, pll);
if (spread_spectrum) {
mmio_clrbits_32(pllxcfgr1, RCC_PLLxCFGR1_SSMODRST);
}
return 0;
}
static int clk_stm32_pll_init(struct stm32_clk_priv *priv, int pll_idx)
{
struct stm32_pll_dt_cfg *pll_conf = clk_stm32_pll_get_pdata(pll_idx);
if (pll_conf->enabled) {
if (pll_idx == _PLL1) {
return _clk_stm32_pll1_init(priv, pll_idx, pll_conf);
} else {
return _clk_stm32_pll_init(priv, pll_idx, pll_conf);
}
}
return 0;
}
static int stm32mp2_clk_pll_configure(struct stm32_clk_priv *priv)
{
enum pll_id i;
int err;
for (i = _PLL1; i < _PLL_NB; i++) {
err = clk_stm32_pll_init(priv, i);
if (err) {
return err;
}
}
return 0;
}
static int wait_predivsr(uint16_t channel)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
uintptr_t rcc_base = priv->base;
uintptr_t previvsr;
uint32_t channel_bit;
uint64_t timeout;
if (channel < __WORD_BIT) {
previvsr = rcc_base + RCC_PREDIVSR1;
channel_bit = BIT(channel);
} else {
previvsr = rcc_base + RCC_PREDIVSR2;
channel_bit = BIT(channel - __WORD_BIT);
}
timeout = timeout_init_us(CLKDIV_TIMEOUT);
while ((mmio_read_32(previvsr) & channel_bit) != 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("Pre divider status: %x\n",
mmio_read_32(previvsr));
return -ETIMEDOUT;
}
}
return 0;
}
static int wait_findivsr(uint16_t channel)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
uintptr_t rcc_base = priv->base;
uintptr_t finvivsr;
uint32_t channel_bit;
uint64_t timeout;
if (channel < __WORD_BIT) {
finvivsr = rcc_base + RCC_FINDIVSR1;
channel_bit = BIT(channel);
} else {
finvivsr = rcc_base + RCC_FINDIVSR2;
channel_bit = BIT(channel - __WORD_BIT);
}
timeout = timeout_init_us(CLKDIV_TIMEOUT);
while ((mmio_read_32(finvivsr) & channel_bit) != 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("Final divider status: %x\n",
mmio_read_32(finvivsr));
return -ETIMEDOUT;
}
}
return 0;
}
static int wait_xbar_sts(uint16_t channel)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
uintptr_t rcc_base = priv->base;
uintptr_t xbar_cfgr = rcc_base + RCC_XBAR0CFGR + (0x4U * channel);
uint64_t timeout;
timeout = timeout_init_us(CLKDIV_TIMEOUT);
while ((mmio_read_32(xbar_cfgr) & RCC_XBAR0CFGR_XBAR0STS) != 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("XBAR%uCFGR: %x\n", channel,
mmio_read_32(xbar_cfgr));
return -ETIMEDOUT;
}
}
return 0;
}
static void flexclkgen_config_channel(uint16_t channel, unsigned int clk_src,
unsigned int prediv, unsigned int findiv)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
uintptr_t rcc_base = priv->base;
if (wait_predivsr(channel) != 0) {
panic();
}
mmio_clrsetbits_32(rcc_base + RCC_PREDIV0CFGR + (0x4U * channel),
RCC_PREDIV0CFGR_PREDIV0_MASK,
prediv);
if (wait_predivsr(channel) != 0) {
panic();
}
if (wait_findivsr(channel) != 0) {
panic();
}
mmio_clrsetbits_32(rcc_base + RCC_FINDIV0CFGR + (0x4U * channel),
RCC_FINDIV0CFGR_FINDIV0_MASK,
findiv);
if (wait_findivsr(channel) != 0) {
panic();
}
if (wait_xbar_sts(channel) != 0) {
panic();
}
mmio_clrsetbits_32(rcc_base + RCC_XBAR0CFGR + (0x4U * channel),
RCC_XBARxCFGR_XBARxSEL_MASK,
clk_src);
mmio_setbits_32(rcc_base + RCC_XBAR0CFGR + (0x4U * channel),
RCC_XBARxCFGR_XBARxEN);
if (wait_xbar_sts(channel) != 0) {
panic();
}
}
static int stm32mp2_clk_flexgen_configure(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
uint32_t i;
for (i = 0U; i < pdata->nflexgen; i++) {
uint32_t val = pdata->flexgen[i];
uint32_t cmd, cmd_data;
unsigned int channel, clk_src, pdiv, fdiv;
cmd = (val & CMD_MASK) >> CMD_SHIFT;
cmd_data = val & ~CMD_MASK;
if (cmd != CMD_FLEXGEN) {
continue;
}
channel = (cmd_data & FLEX_ID_MASK) >> FLEX_ID_SHIFT;
clk_src = (cmd_data & FLEX_SEL_MASK) >> FLEX_SEL_SHIFT;
pdiv = (cmd_data & FLEX_PDIV_MASK) >> FLEX_PDIV_SHIFT;
fdiv = (cmd_data & FLEX_FDIV_MASK) >> FLEX_FDIV_SHIFT;
switch (channel) {
case 33U: /* STGEN */
break;
default:
flexclkgen_config_channel(channel, clk_src, pdiv, fdiv);
break;
}
}
return 0;
}
static void stm32_enable_oscillator_hse(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_HSE];
bool digbyp = osci->digbyp;
bool bypass = osci->bypass;
bool css = osci->css;
if (_clk_stm32_get_rate(priv, _CK_HSE) == 0U) {
return;
}
clk_oscillator_set_bypass(priv, _CK_HSE, digbyp, bypass);
_clk_stm32_enable(priv, _CK_HSE);
clk_oscillator_set_css(priv, _CK_HSE, css);
}
static void stm32_enable_oscillator_lse(struct stm32_clk_priv *priv)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, _CK_LSE);
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_LSE];
bool digbyp = osci->digbyp;
bool bypass = osci->bypass;
uint8_t drive = osci->drive;
if (_clk_stm32_get_rate(priv, _CK_LSE) == 0U) {
return;
}
/* Do not reconfigure LSE if already enabled */
if (_clk_stm32_gate_is_enabled(priv, osc_data->gate_id)) {
return;
}
clk_oscillator_set_bypass(priv, _CK_LSE, digbyp, bypass);
clk_oscillator_set_drive(priv, _CK_LSE, drive);
_clk_stm32_gate_enable(priv, osc_data->gate_id);
}
static int stm32mp2_clk_switch_to_hsi(struct stm32_clk_priv *priv)
{
stm32mp2_a35_ss_on_hsi();
stm32mp2_clk_muxsel_on_hsi(priv);
stm32mp2_clk_xbar_on_hsi(priv);
return 0;
}
static int stm32_clk_oscillators_wait_lse_ready(struct stm32_clk_priv *priv)
{
int ret = 0;
if (_clk_stm32_get_rate(priv, _CK_LSE) != 0U) {
ret = clk_oscillator_wait_ready_on(priv, _CK_LSE);
}
return ret;
}
static void stm32_enable_oscillator_msi(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_MSI];
int err;
err = clk_stm32_osc_msi_set_rate(priv, _CK_MSI, osci->freq, 0);
if (err != 0) {
EARLY_ERROR("Invalid rate %lu MHz for MSI ! (4 or 16 only)\n",
osci->freq / 1000000U);
panic();
}
_clk_stm32_enable(priv, _CK_MSI);
}
static void stm32_clk_oscillators_enable(struct stm32_clk_priv *priv)
{
stm32_enable_oscillator_hse(priv);
stm32_enable_oscillator_lse(priv);
stm32_enable_oscillator_msi(priv);
_clk_stm32_enable(priv, _CK_LSI);
}
static int stm32_clk_configure_div(struct stm32_clk_priv *priv, uint32_t data)
{
int div_id = (data & DIV_ID_MASK) >> DIV_ID_SHIFT;
int div_n = (data & DIV_DIVN_MASK) >> DIV_DIVN_SHIFT;
return clk_stm32_set_div(priv, div_id, div_n);
}
static int stm32_clk_configure_mux(struct stm32_clk_priv *priv, uint32_t data)
{
int mux_id = (data & MUX_ID_MASK) >> MUX_ID_SHIFT;
int sel = (data & MUX_SEL_MASK) >> MUX_SEL_SHIFT;
return clk_mux_set_parent(priv, mux_id, sel);
}
static int stm32_clk_configure_clk_get_binding_id(struct stm32_clk_priv *priv, uint32_t data)
{
unsigned long binding_id = ((unsigned long)data & CLK_ID_MASK) >> CLK_ID_SHIFT;
return clk_get_index(priv, binding_id);
}
static int stm32_clk_configure_clk(struct stm32_clk_priv *priv, uint32_t data)
{
int sel = (data & CLK_SEL_MASK) >> CLK_SEL_SHIFT;
bool enable = ((data & CLK_ON_MASK) >> CLK_ON_SHIFT) != 0U;
int clk_id = 0;
int ret = 0;
clk_id = stm32_clk_configure_clk_get_binding_id(priv, data);
if (clk_id < 0) {
return clk_id;
}
if (sel != CLK_NOMUX) {
ret = _clk_stm32_set_parent_by_index(priv, clk_id, sel);
if (ret != 0) {
return ret;
}
}
if (enable) {
clk_stm32_enable_call_ops(priv, clk_id);
} else {
clk_stm32_disable_call_ops(priv, clk_id);
}
return 0;
}
static int stm32_clk_configure(struct stm32_clk_priv *priv, uint32_t val)
{
uint32_t cmd = (val & CMD_MASK) >> CMD_SHIFT;
uint32_t cmd_data = val & ~CMD_MASK;
int ret = -1;
switch (cmd) {
case CMD_DIV:
ret = stm32_clk_configure_div(priv, cmd_data);
break;
case CMD_MUX:
ret = stm32_clk_configure_mux(priv, cmd_data);
break;
case CMD_CLK:
ret = stm32_clk_configure_clk(priv, cmd_data);
break;
default:
EARLY_ERROR("%s: cmd unknown ! : 0x%x\n", __func__, val);
break;
}
return ret;
}
static int stm32_clk_bus_configure(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
uint32_t i;
for (i = 0; i < pdata->nbusclk; i++) {
int ret;
ret = stm32_clk_configure(priv, pdata->busclk[i]);
if (ret != 0) {
return ret;
}
}
return 0;
}
static int stm32_clk_kernel_configure(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
uint32_t i;
for (i = 0U; i < pdata->nkernelclk; i++) {
int ret;
ret = stm32_clk_configure(priv, pdata->kernelclk[i]);
if (ret != 0) {
return ret;
}
}
return 0;
}
static int stm32mp2_init_clock_tree(void)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
int ret;
/* Set timer with STGEN without changing its clock source */
stm32mp_stgen_restore_rate();
generic_delay_timer_init();
stm32_clk_oscillators_enable(priv);
/* Come back to HSI */
ret = stm32mp2_clk_switch_to_hsi(priv);
if (ret != 0) {
panic();
}
ret = stm32mp2_clk_pll_configure(priv);
if (ret != 0) {
panic();
}
/* Wait LSE ready before to use it */
ret = stm32_clk_oscillators_wait_lse_ready(priv);
if (ret != 0) {
panic();
}
ret = stm32mp2_clk_flexgen_configure(priv);
if (ret != 0) {
panic();
}
ret = stm32_clk_bus_configure(priv);
if (ret != 0) {
panic();
}
ret = stm32_clk_kernel_configure(priv);
if (ret != 0) {
panic();
}
return 0;
}
static int clk_stm32_parse_oscillator_fdt(void *fdt, int node, const char *name,
struct stm32_osci_dt_cfg *osci)
{
int subnode = 0;
/* Default value oscillator not found, freq=0 */
osci->freq = 0;
fdt_for_each_subnode(subnode, fdt, node) {
const char *cchar = NULL;
const fdt32_t *cuint = NULL;
int ret = 0;
cchar = fdt_get_name(fdt, subnode, &ret);
if (cchar == NULL) {
return ret;
}
if (strncmp(cchar, name, (size_t)ret) ||
fdt_get_status(subnode) == DT_DISABLED) {
continue;
}
cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret);
if (cuint == NULL) {
return ret;
}
osci->freq = fdt32_to_cpu(*cuint);
if (fdt_getprop(fdt, subnode, "st,bypass", NULL) != NULL) {
osci->bypass = true;
}
if (fdt_getprop(fdt, subnode, "st,digbypass", NULL) != NULL) {
osci->digbyp = true;
}
if (fdt_getprop(fdt, subnode, "st,css", NULL) != NULL) {
osci->css = true;
}
osci->drive = fdt_read_uint32_default(fdt, subnode, "st,drive", LSEDRV_MEDIUM_HIGH);
return 0;
}
return 0;
}
static int stm32_clk_parse_fdt_all_oscillator(void *fdt, struct stm32_clk_platdata *pdata)
{
int fdt_err = 0;
uint32_t i = 0;
int node = 0;
node = fdt_path_offset(fdt, "/clocks");
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
for (i = 0; i < pdata->nosci; i++) {
const char *name = NULL;
name = clk_stm32_get_oscillator_name((enum stm32_osc)i);
if (name == NULL) {
continue;
}
fdt_err = clk_stm32_parse_oscillator_fdt(fdt, node, name, &pdata->osci[i]);
if (fdt_err < 0) {
panic();
}
}
return 0;
}
static int clk_stm32_parse_pll_fdt(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
{
const fdt32_t *cuint = NULL;
int subnode_pll = 0;
uint32_t val = 0;
int err = 0;
cuint = fdt_getprop(fdt, subnode, "st,pll", NULL);
if (!cuint) {
return -FDT_ERR_NOTFOUND;
}
subnode_pll = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (subnode_pll < 0) {
return -FDT_ERR_NOTFOUND;
}
err = fdt_read_uint32_array(fdt, subnode_pll, "cfg", (int)PLLCFG_NB, pll->cfg);
if (err != 0) {
return err;
}
err = fdt_read_uint32_array(fdt, subnode_pll, "csg", (int)PLLCSG_NB, pll->csg);
pll->csg_enabled = (err == 0);
if (err == -FDT_ERR_NOTFOUND) {
err = 0;
}
if (err != 0) {
return err;
}
pll->enabled = true;
pll->frac = fdt_read_uint32_default(fdt, subnode_pll, "frac", 0);
pll->src = UINT32_MAX;
err = fdt_read_uint32(fdt, subnode_pll, "src", &val);
if (err == 0) {
pll->src = val;
}
return 0;
}
#define RCC_PLL_NAME_SIZE 12
static int stm32_clk_parse_fdt_all_pll(void *fdt, int node, struct stm32_clk_platdata *pdata)
{
unsigned int i = 0;
for (i = _PLL1; i < pdata->npll; i++) {
struct stm32_pll_dt_cfg *pll = pdata->pll + i;
char name[RCC_PLL_NAME_SIZE];
int subnode = 0;
int err = 0;
snprintf(name, sizeof(name), "st,pll-%u", i + 1);
subnode = fdt_subnode_offset(fdt, node, name);
if (!fdt_check_node(subnode)) {
continue;
}
err = clk_stm32_parse_pll_fdt(fdt, subnode, pll);
if (err != 0) {
panic();
}
}
return 0;
}
static int stm32_clk_parse_fdt(struct stm32_clk_platdata *pdata)
{
void *fdt = NULL;
int node;
int err;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
if (node < 0) {
panic();
}
err = stm32_clk_parse_fdt_all_oscillator(fdt, pdata);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_all_pll(fdt, node, pdata);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_by_name(fdt, node, "st,busclk", pdata->busclk, &pdata->nbusclk);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_by_name(fdt, node, "st,flexgen", pdata->flexgen,
&pdata->nflexgen);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_by_name(fdt, node, "st,kerclk", pdata->kernelclk,
&pdata->nkernelclk);
if (err != 0) {
return err;
}
return 0;
}
#endif /* IMAGE_BL2 */
static struct stm32_osci_dt_cfg mp25_osci[NB_OSCILLATOR];
static struct stm32_pll_dt_cfg mp25_pll[_PLL_NB];
#define DT_FLEXGEN_CLK_MAX 64
static uint32_t mp25_flexgen[DT_FLEXGEN_CLK_MAX];
#define DT_BUS_CLK_MAX 6
static uint32_t mp25_busclk[DT_BUS_CLK_MAX];
#define DT_KERNEL_CLK_MAX 20
static uint32_t mp25_kernelclk[DT_KERNEL_CLK_MAX];
static struct stm32_clk_platdata stm32mp25_pdata = {
.osci = mp25_osci,
.nosci = NB_OSCILLATOR,
.pll = mp25_pll,
.npll = _PLL_NB,
.flexgen = mp25_flexgen,
.nflexgen = DT_FLEXGEN_CLK_MAX,
.busclk = mp25_busclk,
.nbusclk = DT_BUS_CLK_MAX,
.kernelclk = mp25_kernelclk,
.nkernelclk = DT_KERNEL_CLK_MAX,
};
static uint8_t refcounts_mp25[CK_LAST];
static struct stm32_clk_priv stm32mp25_clock_data = {
.base = RCC_BASE,
.num = ARRAY_SIZE(stm32mp25_clk),
.clks = stm32mp25_clk,
.parents = parent_mp25,
.nb_parents = ARRAY_SIZE(parent_mp25),
.gates = gates_mp25,
.nb_gates = ARRAY_SIZE(gates_mp25),
.div = dividers_mp25,
.nb_div = ARRAY_SIZE(dividers_mp25),
.osci_data = stm32mp25_osc_data,
.nb_osci_data = ARRAY_SIZE(stm32mp25_osc_data),
.gate_refcounts = refcounts_mp25,
.pdata = &stm32mp25_pdata,
.ops_array = ops_array_mp25,
};
int stm32mp2_clk_init(void)
{
uintptr_t base = RCC_BASE;
int ret;
#ifdef IMAGE_BL2
ret = stm32_clk_parse_fdt(&stm32mp25_pdata);
if (ret != 0) {
return ret;
}
#endif
ret = clk_stm32_init(&stm32mp25_clock_data, base);
if (ret != 0) {
return ret;
}
#ifdef IMAGE_BL2
ret = stm32mp2_init_clock_tree();
if (ret != 0) {
return ret;
}
clk_stm32_enable_critical_clocks();
#endif
return 0;
}
int stm32mp2_pll1_disable(void)
{
#ifdef IMAGE_BL2
return -EPERM;
#else
uintptr_t a35_ss_address = A35SSC_BASE;
uintptr_t pll_enable_reg = a35_ss_address + A35_SS_PLL_ENABLE;
stm32mp2_a35_ss_on_hsi();
mmio_clrbits_32(pll_enable_reg, A35_SS_PLL_ENABLE_PD);
return 0;
#endif
}