blob: a325fd4feb2716ceff07c2ae9f2a39c948218b11 [file] [log] [blame]
/*
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bakery_lock.h>
#include <cpu_data.h>
#include <platform.h>
#include <string.h>
/*
* Functions in this file implement Bakery Algorithm for mutual exclusion with the
* bakery lock data structures in cacheable and Normal memory.
*
* ARM architecture offers a family of exclusive access instructions to
* efficiently implement mutual exclusion with hardware support. However, as
* well as depending on external hardware, these instructions have defined
* behavior only on certain memory types (cacheable and Normal memory in
* particular; see ARMv8 Architecture Reference Manual section B2.10). Use cases
* in trusted firmware are such that mutual exclusion implementation cannot
* expect that accesses to the lock have the specific type required by the
* architecture for these primitives to function (for example, not all
* contenders may have address translation enabled).
*
* This implementation does not use mutual exclusion primitives. It expects
* memory regions where the locks reside to be cacheable and Normal.
*
* Note that the ARM architecture guarantees single-copy atomicity for aligned
* accesses regardless of status of address translation.
*/
/* Convert a ticket to priority */
#define PRIORITY(t, pos) (((t) << 8) | (pos))
#define CHOOSING_TICKET 0x1
#define CHOOSING_DONE 0x0
#define bakery_is_choosing(info) (info & 0x1)
#define bakery_ticket_number(info) ((info >> 1) & 0x7FFF)
#define make_bakery_data(choosing, number) \
(((choosing & 0x1) | (number << 1)) & 0xFFFF)
/* This macro assumes that the bakery_info array is located at the offset specified */
#define get_my_bakery_info(offset, id) \
(((bakery_info_t *) (((uint8_t *)_cpu_data()) + offset)) + id)
#define get_bakery_info_by_index(offset, id, ix) \
(((bakery_info_t *) (((uint8_t *)_cpu_data_by_index(ix)) + offset)) + id)
#define write_cache_op(addr, cached) \
do { \
(cached ? dccvac((uint64_t)addr) :\
dcivac((uint64_t)addr));\
dsbish();\
} while (0)
#define read_cache_op(addr, cached) if (cached) \
dccivac((uint64_t)addr)
static unsigned int bakery_get_ticket(int id, unsigned int offset,
unsigned int me, int is_cached)
{
unsigned int my_ticket, their_ticket;
unsigned int they;
bakery_info_t *my_bakery_info, *their_bakery_info;
/*
* Obtain a reference to the bakery information for this cpu and ensure
* it is not NULL.
*/
my_bakery_info = get_my_bakery_info(offset, id);
assert(my_bakery_info);
/*
* Tell other contenders that we are through the bakery doorway i.e.
* going to allocate a ticket for this cpu.
*/
my_ticket = 0;
my_bakery_info->lock_data = make_bakery_data(CHOOSING_TICKET, my_ticket);
write_cache_op(my_bakery_info, is_cached);
/*
* Iterate through the bakery information of each contender to allocate
* the highest ticket number for this cpu.
*/
for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
if (me == they)
continue;
/*
* Get a reference to the other contender's bakery info and
* ensure that a stale copy is not read.
*/
their_bakery_info = get_bakery_info_by_index(offset, id, they);
assert(their_bakery_info);
read_cache_op(their_bakery_info, is_cached);
/*
* Update this cpu's ticket number if a higher ticket number is
* seen
*/
their_ticket = bakery_ticket_number(their_bakery_info->lock_data);
if (their_ticket > my_ticket)
my_ticket = their_ticket;
}
/*
* Compute ticket; then signal to other contenders waiting for us to
* finish calculating our ticket value that we're done
*/
++my_ticket;
my_bakery_info->lock_data = make_bakery_data(CHOOSING_DONE, my_ticket);
write_cache_op(my_bakery_info, is_cached);
return my_ticket;
}
void bakery_lock_get(unsigned int id, unsigned int offset)
{
unsigned int they, me, is_cached;
unsigned int my_ticket, my_prio, their_ticket;
bakery_info_t *their_bakery_info;
uint16_t their_bakery_data;
me = platform_get_core_pos(read_mpidr_el1());
is_cached = read_sctlr_el3() & SCTLR_C_BIT;
/* Get a ticket */
my_ticket = bakery_get_ticket(id, offset, me, is_cached);
/*
* Now that we got our ticket, compute our priority value, then compare
* with that of others, and proceed to acquire the lock
*/
my_prio = PRIORITY(my_ticket, me);
for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
if (me == they)
continue;
/*
* Get a reference to the other contender's bakery info and
* ensure that a stale copy is not read.
*/
their_bakery_info = get_bakery_info_by_index(offset, id, they);
assert(their_bakery_info);
read_cache_op(their_bakery_info, is_cached);
their_bakery_data = their_bakery_info->lock_data;
/* Wait for the contender to get their ticket */
while (bakery_is_choosing(their_bakery_data)) {
read_cache_op(their_bakery_info, is_cached);
their_bakery_data = their_bakery_info->lock_data;
}
/*
* If the other party is a contender, they'll have non-zero
* (valid) ticket value. If they do, compare priorities
*/
their_ticket = bakery_ticket_number(their_bakery_data);
if (their_ticket && (PRIORITY(their_ticket, they) < my_prio)) {
/*
* They have higher priority (lower value). Wait for
* their ticket value to change (either release the lock
* to have it dropped to 0; or drop and probably content
* again for the same lock to have an even higher value)
*/
do {
wfe();
read_cache_op(their_bakery_info, is_cached);
} while (their_ticket
== bakery_ticket_number(their_bakery_info->lock_data));
}
}
}
void bakery_lock_release(unsigned int id, unsigned int offset)
{
bakery_info_t *my_bakery_info;
unsigned int is_cached = read_sctlr_el3() & SCTLR_C_BIT;
my_bakery_info = get_my_bakery_info(offset, id);
my_bakery_info->lock_data = 0;
write_cache_op(my_bakery_info, is_cached);
sev();
}