| /* |
| * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <arm_gic.h> |
| #include <bl_common.h> |
| #include <debug.h> |
| #include <gic_v2.h> |
| #include <interrupt_mgmt.h> |
| #include <platform.h> |
| #include <stdint.h> |
| #include <tegra_private.h> |
| #include <tegra_def.h> |
| |
| /* Value used to initialize Non-Secure IRQ priorities four at a time */ |
| #define GICD_IPRIORITYR_DEF_VAL \ |
| (GIC_HIGHEST_NS_PRIORITY | \ |
| (GIC_HIGHEST_NS_PRIORITY << 8) | \ |
| (GIC_HIGHEST_NS_PRIORITY << 16) | \ |
| (GIC_HIGHEST_NS_PRIORITY << 24)) |
| |
| static const irq_sec_cfg_t *g_irq_sec_ptr; |
| static unsigned int g_num_irqs; |
| |
| /******************************************************************************* |
| * Place the cpu interface in a state where it can never make a cpu exit wfi as |
| * as result of an asserted interrupt. This is critical for powering down a cpu |
| ******************************************************************************/ |
| void tegra_gic_cpuif_deactivate(void) |
| { |
| unsigned int val; |
| |
| /* Disable secure, non-secure interrupts and disable their bypass */ |
| val = gicc_read_ctlr(TEGRA_GICC_BASE); |
| val &= ~(ENABLE_GRP0 | ENABLE_GRP1); |
| val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; |
| val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; |
| gicc_write_ctlr(TEGRA_GICC_BASE, val); |
| } |
| |
| /******************************************************************************* |
| * Enable secure interrupts and set the priority mask register to allow all |
| * interrupts to trickle in. |
| ******************************************************************************/ |
| static void tegra_gic_cpuif_setup(unsigned int gicc_base) |
| { |
| unsigned int val; |
| |
| val = ENABLE_GRP0 | ENABLE_GRP1 | FIQ_EN | FIQ_BYP_DIS_GRP0; |
| val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; |
| |
| gicc_write_ctlr(gicc_base, val); |
| gicc_write_pmr(gicc_base, GIC_PRI_MASK); |
| } |
| |
| /******************************************************************************* |
| * Per cpu gic distributor setup which will be done by all cpus after a cold |
| * boot/hotplug. This marks out the secure interrupts & enables them. |
| ******************************************************************************/ |
| static void tegra_gic_pcpu_distif_setup(unsigned int gicd_base) |
| { |
| unsigned int index, sec_ppi_sgi_mask = 0; |
| |
| assert(gicd_base); |
| |
| /* Setup PPI priorities doing four at a time */ |
| for (index = 0; index < 32; index += 4) { |
| gicd_write_ipriorityr(gicd_base, index, |
| GICD_IPRIORITYR_DEF_VAL); |
| } |
| |
| /* |
| * Invert the bitmask to create a mask for non-secure PPIs and |
| * SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will |
| * update the GICR_IGROUPR0 as well in case we are running on a GICv3 |
| * system. This is critical if GICD_CTLR.ARE_NS=1. |
| */ |
| gicd_write_igroupr(gicd_base, 0, ~sec_ppi_sgi_mask); |
| } |
| |
| /******************************************************************************* |
| * Global gic distributor setup which will be done by the primary cpu after a |
| * cold boot. It marks out the non secure SPIs, PPIs & SGIs and enables them. |
| * It then enables the secure GIC distributor interface. |
| ******************************************************************************/ |
| static void tegra_gic_distif_setup(unsigned int gicd_base) |
| { |
| unsigned int index, num_ints, irq_num; |
| uint8_t target_cpus; |
| uint32_t val; |
| |
| /* |
| * Mark out non-secure interrupts. Calculate number of |
| * IGROUPR registers to consider. Will be equal to the |
| * number of IT_LINES |
| */ |
| num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK; |
| num_ints = (num_ints + 1) << 5; |
| for (index = MIN_SPI_ID; index < num_ints; index += 32) |
| gicd_write_igroupr(gicd_base, index, ~0); |
| |
| /* Setup SPI priorities doing four at a time */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 4) { |
| gicd_write_ipriorityr(gicd_base, index, |
| GICD_IPRIORITYR_DEF_VAL); |
| } |
| |
| /* Configure SPI secure interrupts now */ |
| if (g_irq_sec_ptr) { |
| |
| for (index = 0; index < g_num_irqs; index++) { |
| irq_num = (g_irq_sec_ptr + index)->irq; |
| target_cpus = (g_irq_sec_ptr + index)->target_cpus; |
| |
| if (irq_num >= MIN_SPI_ID) { |
| |
| /* Configure as a secure interrupt */ |
| gicd_clr_igroupr(gicd_base, irq_num); |
| |
| /* Configure SPI priority */ |
| mmio_write_8(gicd_base + GICD_IPRIORITYR + |
| irq_num, |
| GIC_HIGHEST_SEC_PRIORITY & |
| GIC_PRI_MASK); |
| |
| /* Configure as level triggered */ |
| val = gicd_read_icfgr(gicd_base, irq_num); |
| val |= (3 << ((irq_num & 0xF) << 1)); |
| gicd_write_icfgr(gicd_base, irq_num, val); |
| |
| /* Route SPI to the target CPUs */ |
| gicd_set_itargetsr(gicd_base, irq_num, |
| target_cpus); |
| |
| /* Enable this interrupt */ |
| gicd_set_isenabler(gicd_base, irq_num); |
| } |
| } |
| } |
| |
| /* |
| * Configure the SGI and PPI. This is done in a separated function |
| * because each CPU is responsible for initializing its own private |
| * interrupts. |
| */ |
| tegra_gic_pcpu_distif_setup(gicd_base); |
| |
| /* enable distributor */ |
| gicd_write_ctlr(gicd_base, ENABLE_GRP0 | ENABLE_GRP1); |
| } |
| |
| void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, unsigned int num_irqs) |
| { |
| g_irq_sec_ptr = irq_sec_ptr; |
| g_num_irqs = num_irqs; |
| |
| tegra_gic_cpuif_setup(TEGRA_GICC_BASE); |
| tegra_gic_distif_setup(TEGRA_GICD_BASE); |
| } |
| |
| /******************************************************************************* |
| * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins. |
| * The interrupt controller knows which pin/line it uses to signal a type of |
| * interrupt. This function provides a common implementation of |
| * plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use |
| * across platforms. It lets the interrupt management framework determine |
| * for a type of interrupt and security state, which line should be used in the |
| * SCR_EL3 to control its routing to EL3. The interrupt line is represented as |
| * the bit position of the IRQ or FIQ bit in the SCR_EL3. |
| ******************************************************************************/ |
| uint32_t tegra_gic_interrupt_type_to_line(uint32_t type, |
| uint32_t security_state) |
| { |
| assert(type == INTR_TYPE_S_EL1 || |
| type == INTR_TYPE_EL3 || |
| type == INTR_TYPE_NS); |
| |
| assert(sec_state_is_valid(security_state)); |
| |
| /* |
| * We ignore the security state parameter under the assumption that |
| * both normal and secure worlds are using ARM GICv2. This parameter |
| * will be used when the secure world starts using GICv3. |
| */ |
| #if ARM_GIC_ARCH == 2 |
| return gicv2_interrupt_type_to_line(TEGRA_GICC_BASE, type); |
| #else |
| #error "Invalid ARM GIC architecture version specified for platform port" |
| #endif /* ARM_GIC_ARCH */ |
| } |
| |
| #if ARM_GIC_ARCH == 2 |
| /******************************************************************************* |
| * This function returns the type of the highest priority pending interrupt at |
| * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no |
| * interrupt pending. |
| ******************************************************************************/ |
| uint32_t tegra_gic_get_pending_interrupt_type(void) |
| { |
| uint32_t id; |
| unsigned int index; |
| |
| id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK; |
| |
| /* get the interrupt type */ |
| if (id < 1022) { |
| for (index = 0; index < g_num_irqs; index++) { |
| if (id == (g_irq_sec_ptr + index)->irq) |
| return (g_irq_sec_ptr + index)->type; |
| } |
| } |
| |
| if (id == GIC_SPURIOUS_INTERRUPT) |
| return INTR_TYPE_INVAL; |
| |
| return INTR_TYPE_NS; |
| } |
| |
| /******************************************************************************* |
| * This function returns the id of the highest priority pending interrupt at |
| * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no |
| * interrupt pending. |
| ******************************************************************************/ |
| uint32_t tegra_gic_get_pending_interrupt_id(void) |
| { |
| uint32_t id; |
| |
| id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK; |
| |
| if (id < 1022) |
| return id; |
| |
| if (id == 1023) |
| return INTR_ID_UNAVAILABLE; |
| |
| /* |
| * Find out which non-secure interrupt it is under the assumption that |
| * the GICC_CTLR.AckCtl bit is 0. |
| */ |
| return gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK; |
| } |
| |
| /******************************************************************************* |
| * This functions reads the GIC cpu interface Interrupt Acknowledge register |
| * to start handling the pending interrupt. It returns the contents of the IAR. |
| ******************************************************************************/ |
| uint32_t tegra_gic_acknowledge_interrupt(void) |
| { |
| return gicc_read_IAR(TEGRA_GICC_BASE); |
| } |
| |
| /******************************************************************************* |
| * This functions writes the GIC cpu interface End Of Interrupt register with |
| * the passed value to finish handling the active interrupt |
| ******************************************************************************/ |
| void tegra_gic_end_of_interrupt(uint32_t id) |
| { |
| gicc_write_EOIR(TEGRA_GICC_BASE, id); |
| } |
| |
| /******************************************************************************* |
| * This function returns the type of the interrupt id depending upon the group |
| * this interrupt has been configured under by the interrupt controller i.e. |
| * group0 or group1. |
| ******************************************************************************/ |
| uint32_t tegra_gic_get_interrupt_type(uint32_t id) |
| { |
| uint32_t group; |
| unsigned int index; |
| |
| group = gicd_get_igroupr(TEGRA_GICD_BASE, id); |
| |
| /* get the interrupt type */ |
| if (group == GRP0) { |
| for (index = 0; index < g_num_irqs; index++) { |
| if (id == (g_irq_sec_ptr + index)->irq) |
| return (g_irq_sec_ptr + index)->type; |
| } |
| } |
| |
| return INTR_TYPE_NS; |
| } |
| |
| #else |
| #error "Invalid ARM GIC architecture version specified for platform port" |
| #endif /* ARM_GIC_ARCH */ |
| |
| uint32_t plat_ic_get_pending_interrupt_id(void) |
| { |
| return tegra_gic_get_pending_interrupt_id(); |
| } |
| |
| uint32_t plat_ic_get_pending_interrupt_type(void) |
| { |
| return tegra_gic_get_pending_interrupt_type(); |
| } |
| |
| uint32_t plat_ic_acknowledge_interrupt(void) |
| { |
| return tegra_gic_acknowledge_interrupt(); |
| } |
| |
| uint32_t plat_ic_get_interrupt_type(uint32_t id) |
| { |
| return tegra_gic_get_interrupt_type(id); |
| } |
| |
| void plat_ic_end_of_interrupt(uint32_t id) |
| { |
| tegra_gic_end_of_interrupt(id); |
| } |
| |
| uint32_t plat_interrupt_type_to_line(uint32_t type, |
| uint32_t security_state) |
| { |
| return tegra_gic_interrupt_type_to_line(type, security_state); |
| } |