| /* |
| * Copyright 2021 NXP |
| * SPDX-License-Identifier: BSD-3-Clause |
| * |
| */ |
| |
| #include <errno.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <common/debug.h> |
| #include "csr.h" |
| #include <ddr.h> |
| #include "ddr4fw.h" |
| #include <drivers/delay_timer.h> |
| #ifdef NXP_WARM_BOOT |
| #include <fspi_api.h> |
| #endif |
| #include "input.h" |
| #include <lib/mmio.h> |
| #include <lib/utils.h> |
| #include <lib/xlat_tables/xlat_tables_v2.h> |
| #ifdef DDR_PHY_DEBUG |
| #include "messages.h" |
| #endif |
| #ifdef NXP_WARM_BOOT |
| #include "phy.h" |
| #endif |
| #include "pie.h" |
| |
| #define TIMEOUTDEFAULT 500 |
| #define MAP_PHY_ADDR(pstate, n, instance, offset, c) \ |
| ((((pstate * n) + instance + c) << 12) + offset) |
| |
| static uint32_t map_phy_addr_space(uint32_t addr) |
| { |
| /* 23 bit addressing */ |
| uint32_t pstate = (addr & U(0x700000)) >> 20U; /* bit 22:20 */ |
| uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */ |
| uint32_t instance = (addr & U(0x00f000)) >> 12U; /* bit 15:12 */ |
| uint32_t offset = (addr & U(0x000fff)); /* bit 11:0 */ |
| |
| switch (block_type) { |
| case 0x0: /* 0x0 : ANIB */ |
| return MAP_PHY_ADDR(pstate, 12, instance, offset, 0); |
| case 0x1: /* 0x1 : DBYTE */ |
| return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30); |
| case 0x2: /* 0x2 : MASTER */ |
| return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58); |
| case 0x4: /* 0x4 : ACSM */ |
| return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c); |
| case 0x5: /* 0x5 : μCTL Memory */ |
| return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60); |
| case 0x7: /* 0x7 : PPGC */ |
| return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68); |
| case 0x9: /* 0x9 : INITENG */ |
| return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69); |
| case 0xc: /* 0xC : DRTUB */ |
| return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d); |
| case 0xd: /* 0xD : APB Only */ |
| return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e); |
| default: |
| printf("ERR: Invalid block_type = 0x%x\n", block_type); |
| return 0; |
| } |
| } |
| |
| static inline uint16_t *phy_io_addr(void *phy, uint32_t addr) |
| { |
| return phy + (map_phy_addr_space(addr) << 2); |
| } |
| |
| static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data) |
| { |
| mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data); |
| #ifdef DEBUG_PHY_IO |
| printf("0x%06x,0x%x\n", addr, data); |
| #endif |
| } |
| |
| static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr) |
| { |
| uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr)); |
| |
| #ifdef DEBUG_PHY_IO |
| printf("R: 0x%06x,0x%x\n", addr, reg); |
| #endif |
| |
| return reg; |
| } |
| |
| #ifdef NXP_APPLY_MAX_CDD |
| |
| #define CDD_VAL_READ_ADDR (0x054012) |
| #define CDD_DATA_LEN (60) |
| |
| static void read_phy_reg(uint16_t *phy, uint32_t addr, |
| uint16_t *buf, uint32_t len) |
| { |
| uint32_t i = 0U; |
| |
| for (i = 0U; i < len/2; i++) { |
| buf[i] = phy_io_read16(phy, (addr + i)); |
| } |
| } |
| |
| static uint32_t findrank(uint32_t cs_in_use) |
| { |
| uint32_t val = 0U; |
| |
| switch (cs_in_use) { |
| case U(0xf): |
| val = 4U; |
| break; |
| case U(0x3): |
| val = 2U; |
| break; |
| case U(0x1): |
| val = 1U; |
| break; |
| default: |
| printf("Error - Invalid cs_in_use value\n"); |
| } |
| return val; |
| } |
| |
| static uint8_t findmax(uint8_t *buf, uint32_t len) |
| { |
| uint8_t max = 0U; |
| uint32_t i = 0U; |
| |
| for (i = 0U; i < len; i++) { |
| if (buf[i] > max) { |
| max = buf[i]; |
| } |
| } |
| |
| return max; |
| } |
| |
| static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq, |
| uint32_t *tcfg0, uint32_t *tcfg4) |
| { |
| uint8_t cdd[CDD_DATA_LEN+4] = {0U}; |
| uint32_t i, val = 0U; |
| uint16_t *phy; |
| uint8_t buf[16] = {U(0x0)}; |
| uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U; |
| uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U; |
| uint8_t tmp = U(0x0); |
| uint8_t *c = NULL; |
| |
| for (i = 0U; i < NUM_OF_DDRC; i++) { |
| |
| phy = phy_ptr[i]; |
| if (phy == NULL) { |
| continue; |
| } |
| |
| phy_io_write16(phy, t_apbonly | |
| csr_micro_cont_mux_sel_addr, U(0x0)); |
| |
| read_phy_reg(phy, CDD_VAL_READ_ADDR, |
| (uint16_t *)&cdd, CDD_DATA_LEN); |
| |
| phy_io_write16(phy, t_apbonly | |
| csr_micro_cont_mux_sel_addr, U(0x1)); |
| |
| /* CDD values and address |
| * |
| * 0x054012 0x24 cdd[0] CDD[X][X] |
| * 0x054012 0x25 cdd[1] RR[3][2] |
| * 0x054013 0x26 cdd[2] RR[3][1] |
| * 0x054013 0x27 cdd[3] RR[3][0] |
| * 0x054014 0x28 cdd[4] RR[2][3] |
| * 0x054014 0x29 cdd[5] RR[2][1] |
| * 0x054015 0x2a cdd[6] RR[2][0] |
| * 0x054015 0x2b cdd[7] RR[1][3] |
| * 0x054016 0x2c cdd[8] RR[1][2] |
| * 0x054016 0x2d cdd[9] RR[1][0] |
| * 0x054017 0x2e cdd[10] RR[0][3] |
| * 0x054017 0x2f cdd[11] RR[0][2] |
| * 0x054018 0x30 cdd[12] RR[0][1] |
| |
| * 0x054018 0x31 cdd[13] WW[3][2] |
| * 0x054019 0x32 cdd[14] WW[3][1] |
| * 0x054019 0x33 cdd[15] WW[3][0] |
| * 0x05401a 0x34 cdd[16] WW[2][3] |
| * 0x05401a 0x35 cdd[17] WW[2][1] |
| * 0x05401b 0x36 cdd[18] WW[2][0] |
| * 0x05401b 0x37 cdd[19] WW[1][3] |
| * 0x05401c 0x38 cdd[20] WW[1][2] |
| * 0x05401c 0x39 cdd[21] WW[1][0] |
| * 0x05401d 0x3a cdd[22] WW[0][3] |
| * 0x05401d 0x3b cdd[23] WW[0][2] |
| * 0x05401e 0x3c cdd[24] WW[0][1] |
| |
| * 0x05401e 0x3d cdd[25] RW[3][3] |
| * 0x05401f 0x3e cdd[26] RW[3][2] |
| * 0x05401f 0x3f cdd[27] RW[3][1] |
| * 0x054020 0x40 cdd[28] RW[3][0] |
| * 0x054020 0x41 cdd[29] RW[2][3] |
| * 0x054021 0x42 cdd[30] RW[2][2] |
| * 0x054021 0x43 cdd[31] RW[2][1] |
| * 0x054022 0x44 cdd[32] RW[2][0] |
| * 0x054022 0x45 cdd[33] RW[1][3] |
| * 0x054023 0x46 cdd[34] RW[1][2] |
| * 0x054023 0x47 cdd[35] RW[1][1] |
| * 0x054024 0x48 cdd[36] RW[1][0] |
| * 0x054024 0x49 cdd[37] RW[0][3] |
| * 0x054025 0x4a cdd[38] RW[0][2] |
| * 0x054025 0x4b cdd[39] RW[0][1] |
| * 0x054026 0x4c cdd[40] RW[0][0] |
| |
| * 0x054026 0x4d cdd[41] WR[3][3] |
| * 0x054027 0x4e cdd[42] WR[3][2] |
| * 0x054027 0x4f cdd[43] WR[3][1] |
| * 0x054028 0x50 cdd[44] WR[3][0] |
| * 0x054028 0x51 cdd[45] WR[2][3] |
| * 0x054029 0x52 cdd[46] WR[2][2] |
| * 0x054029 0x53 cdd[47] WR[2][1] |
| * 0x05402a 0x54 cdd[48] WR[2][0] |
| * 0x05402a 0x55 cdd[49] WR[1][3] |
| * 0x05402b 0x56 cdd[50] WR[1][2] |
| * 0x05402b 0x57 cdd[51] WR[1][1] |
| * 0x05402c 0x58 cdd[52] WR[1][0] |
| * 0x05402c 0x59 cdd[53] WR[0][3] |
| * 0x05402d 0x5a cdd[54] WR[0][2] |
| * 0x05402d 0x5b cdd[55] WR[0][1] |
| * 0x05402e 0x5c cdd[56] WR[0][0] |
| * 0x05402e 0x5d cdd[57] CDD[Y][Y] |
| */ |
| |
| switch (rank) { |
| case 1U: |
| tmp = rwmax; |
| rwmax = cdd[40]; |
| if (tmp > rwmax) { |
| rwmax = tmp; |
| } |
| |
| tmp = wrmax; |
| wrmax = cdd[56]; |
| if (tmp > wrmax) { |
| wrmax = tmp; |
| } |
| |
| break; |
| |
| case 2U: |
| buf[0] = cdd[12]; |
| buf[1] = cdd[9]; |
| tmp = rrmax; |
| rrmax = findmax(buf, 2U); |
| if (tmp > rrmax) { |
| rrmax = tmp; |
| } |
| |
| buf[0] = cdd[24]; |
| buf[1] = cdd[21]; |
| tmp = wwmax; |
| wwmax = findmax(buf, 2U); |
| if (tmp > wwmax) { |
| wwmax = tmp; |
| } |
| |
| buf[0] = cdd[40]; |
| buf[1] = cdd[39]; |
| buf[2] = cdd[36]; |
| buf[3] = cdd[35]; |
| tmp = rwmax; |
| rwmax = findmax(buf, 4U); |
| if (tmp > rwmax) { |
| rwmax = tmp; |
| } |
| |
| buf[0] = cdd[56]; |
| buf[1] = cdd[55]; |
| buf[2] = cdd[52]; |
| buf[3] = cdd[51]; |
| tmp = wrmax; |
| wrmax = findmax(buf, 4U); |
| if (tmp > wrmax) { |
| wrmax = tmp; |
| } |
| |
| break; |
| |
| case 4U: |
| tmp = rrmax; |
| c = &cdd[1]; |
| rrmax = findmax(c, 12U); |
| if (tmp > rrmax) { |
| rrmax = tmp; |
| } |
| |
| tmp = wwmax; |
| c = &cdd[13]; |
| wwmax = findmax(c, 12U); |
| if (tmp > wwmax) { |
| wwmax = tmp; |
| } |
| |
| tmp = rwmax; |
| c = &cdd[25]; |
| rwmax = findmax(c, 16U); |
| if (tmp > rwmax) { |
| rwmax = tmp; |
| } |
| |
| tmp = wrmax; |
| c = &cdd[41]; |
| wrmax = findmax(c, 16U); |
| if (tmp > wrmax) { |
| wrmax = tmp; |
| } |
| |
| break; |
| |
| } |
| } |
| |
| rrmax += 3U; |
| wwmax += 4U; |
| |
| if (wwmax > 7U) { |
| wwmax = 7U; |
| } |
| |
| if (rrmax > 7U) { |
| rrmax = 7U; |
| } |
| |
| if (wrmax > U(0xf)) { |
| wrmax = 0U; |
| } |
| |
| if (rwmax > U(0x7)) { |
| rwmax = U(0x7); |
| } |
| |
| val = *tcfg0; |
| tww = (val >> 24U) & U(0x3); |
| trr = (val >> 26U) & U(0x3); |
| twr = (val >> 28U) & U(0x3); |
| trw = (val >> 30U) & U(0x3); |
| |
| val = *tcfg4; |
| tww = tww | (((val >> 8U) & U(0x1)) << 2U); |
| trr = trr | (((val >> 10U) & U(0x1)) << 2U); |
| twr = twr | (((val >> 12U) & U(0x1)) << 2U); |
| trw = trw | (((val >> 14U) & U(0x3)) << 2U); |
| |
| if (trr > rrmax) { |
| rrmax = trr; |
| } |
| |
| if (tww > wwmax) { |
| wwmax = tww; |
| } |
| |
| if (trw > rwmax) { |
| rwmax = trw; |
| } |
| |
| if (twr > wrmax) { |
| wrmax = twr; |
| } |
| |
| debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n", |
| rrmax, wwmax, rwmax, wrmax); |
| |
| val = ((wwmax & U(0x3)) << 24U) |
| | ((rrmax & U(0x3)) << 26U) |
| | ((wrmax & U(0x3)) << 28U) |
| | ((rwmax & U(0x3)) << 30U); |
| |
| *tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val); |
| |
| val = (((wwmax >> 2U) & U(0x1)) << 8U) |
| | (((rrmax >> 2U) & U(0x1)) << 10U) |
| | (((wrmax >> 2U) & U(0x1)) << 12U) |
| | (((rwmax >> 2U) & U(0x3)) << 14U); |
| |
| *tcfg4 = (*tcfg4 & U(0xffff00ff)) | val; |
| } |
| #endif |
| |
| #ifdef NXP_WARM_BOOT |
| int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store, |
| uint32_t num_of_phy, int train2d) |
| { |
| uint16_t *phy = NULL, value = 0x0; |
| uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U; |
| int i = 0, j = 0, ret = -EINVAL; |
| |
| ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE); |
| if (ret != 0) { |
| return -EINVAL; |
| } |
| |
| for (j = 0; j < num_of_phy; j++) { |
| /* Save training values of all PHYs */ |
| phy = phy_ptr[j]; |
| size = sizeof(training_1D_values); |
| num_of_regs = ARRAY_SIZE(training_1D_values); |
| |
| /* Enable access to the internal CSRs */ |
| phy_io_write16(phy, t_apbonly | |
| csr_micro_cont_mux_sel_addr, 0x0); |
| /* Enable clocks in case they were disabled. */ |
| phy_io_write16(phy, t_drtub | |
| csr_ucclk_hclk_enables_addr, 0x3); |
| if (train2d != 0) { |
| /* Address to store training values is |
| * to be appended for next PHY |
| */ |
| phy_store = address_to_store + (j * |
| (sizeof(training_1D_values) + |
| sizeof(training_2D_values))); |
| } else { |
| phy_store = address_to_store + (j * |
| (sizeof(training_1D_values))); |
| } |
| debug("Saving 1D Training reg val at: %d\n", phy_store); |
| for (i = 0; i < num_of_regs; i++) { |
| value = phy_io_read16(phy, training_1D_values[i].addr); |
| #ifdef DEBUG_WARM_RESET |
| debug("%d. Reg: %x, value: %x PHY: %p\n", i, |
| training_1D_values[i].addr, value, |
| phy_io_addr(phy, |
| training_1D_values[i].addr)); |
| #endif |
| training_1D_values[i].data = value; |
| } |
| /* Storing 1D training values on flash */ |
| ret = xspi_write(phy_store, (void *)training_1D_values, size); |
| if (train2d != 0) { |
| phy_store = phy_store+size; |
| size = sizeof(training_2D_values); |
| num_of_regs = ARRAY_SIZE(training_2D_values); |
| debug("Saving 2D Training reg val at:%d\n", phy_store); |
| for (i = 0; i < num_of_regs; i++) { |
| value = phy_io_read16(phy, |
| training_2D_values[i].addr); |
| training_2D_values[i].data = value; |
| #ifdef DEBUG_WARM_RESET |
| debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n", |
| i, training_2D_values[i].addr, |
| value, phy_io_addr(phy, |
| training_2D_values[i].addr)); |
| #endif |
| } |
| /* Storing 2D training values on flash */ |
| ret = xspi_write(phy_store, training_2D_values, |
| size); |
| } |
| /* Disable clocks in case they were disabled. */ |
| phy_io_write16(phy, t_drtub | |
| csr_ucclk_hclk_enables_addr, 0x0); |
| /* Disable access to the internal CSRs */ |
| phy_io_write16(phy, t_apbonly | |
| csr_micro_cont_mux_sel_addr, 0x1); |
| } |
| if (ret != 0) { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore, |
| uint32_t num_of_phy, int train2d) |
| { |
| uint16_t *phy = NULL; |
| uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U; |
| int i = 0, j = 0, ret = -EINVAL; |
| |
| debug("Restoring Training register values\n"); |
| for (j = 0; j < num_of_phy; j++) { |
| phy = phy_ptr[j]; |
| size = sizeof(training_1D_values); |
| num_of_regs = ARRAY_SIZE(training_1D_values); |
| if (train2d != 0) { |
| /* The address to restore training values is |
| * to be appended for next PHY |
| */ |
| phy_store = address_to_restore + (j * |
| (sizeof(training_1D_values) + |
| sizeof(training_2D_values))); |
| } else { |
| phy_store = address_to_restore + (j * |
| (sizeof(training_1D_values))); |
| } |
| /* Enable access to the internal CSRs */ |
| phy_io_write16(phy, t_apbonly | |
| csr_micro_cont_mux_sel_addr, 0x0); |
| /* Enable clocks in case they were disabled. */ |
| phy_io_write16(phy, t_drtub | |
| csr_ucclk_hclk_enables_addr, 0x3); |
| |
| /* Reading 1D training values from flash*/ |
| ret = xspi_read(phy_store, (uint32_t *)training_1D_values, |
| size); |
| debug("Restoring 1D Training reg val at:%08x\n", phy_store); |
| for (i = 0; i < num_of_regs; i++) { |
| phy_io_write16(phy, training_1D_values[i].addr, |
| training_1D_values[i].data); |
| #ifdef DEBUG_WARM_RESET |
| debug("%d. Reg: %x, value: %x PHY: %p\n", i, |
| training_1D_values[i].addr, |
| training_1D_values[i].data, |
| phy_io_addr(phy, |
| training_1D_values[i].addr)); |
| #endif |
| } |
| if (train2d != 0) { |
| phy_store = phy_store + size; |
| size = sizeof(training_2D_values); |
| num_of_regs = ARRAY_SIZE(training_2D_values); |
| /* Reading 2D training values from flash */ |
| ret = xspi_read(phy_store, |
| (uint32_t *)training_2D_values, size); |
| debug("Restoring 2D Training reg val at:%08x\n", |
| phy_store); |
| for (i = 0; i < num_of_regs; i++) { |
| phy_io_write16(phy, training_2D_values[i].addr, |
| training_2D_values[i].data); |
| #ifdef DEBUG_WARM_RESET |
| debug("%d. Reg: %x, value: %x PHY: %p\n", i, |
| training_2D_values[i].addr, |
| training_2D_values[i].data, |
| phy_io_addr(phy, |
| training_1D_values[i].addr)); |
| #endif |
| } |
| } |
| /* Disable clocks in case they were disabled. */ |
| phy_io_write16(phy, t_drtub | |
| csr_ucclk_hclk_enables_addr, 0x0); |
| /* Disable access to the internal CSRs */ |
| phy_io_write16(phy, t_apbonly | |
| csr_micro_cont_mux_sel_addr, 0x1); |
| } |
| if (ret != 0) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| #endif |
| |
| static void load_pieimage(uint16_t *phy, |
| enum dimm_types dimm_type) |
| { |
| int i; |
| int size; |
| const struct pie *image = NULL; |
| |
| switch (dimm_type) { |
| case UDIMM: |
| case SODIMM: |
| case NODIMM: |
| image = pie_udimm; |
| size = ARRAY_SIZE(pie_udimm); |
| break; |
| case RDIMM: |
| image = pie_rdimm; |
| size = ARRAY_SIZE(pie_rdimm); |
| break; |
| case LRDIMM: |
| image = pie_lrdimm; |
| size = ARRAY_SIZE(pie_lrdimm); |
| break; |
| default: |
| printf("Unsupported DIMM type\n"); |
| break; |
| } |
| |
| if (image != NULL) { |
| for (i = 0; i < size; i++) |
| phy_io_write16(phy, image[i].addr, image[i].data); |
| } |
| } |
| |
| static void prog_acsm_playback(uint16_t *phy, |
| const struct input *input, const void *msg) |
| { |
| int vec; |
| const struct ddr4r1d *msg_blk; |
| uint16_t acsmplayback[2][3]; |
| uint32_t f0rc0a; |
| uint32_t f0rc3x; |
| uint32_t f0rc5x; |
| |
| if (input->basic.dimm_type != RDIMM) { |
| return; |
| } |
| |
| msg_blk = msg; |
| f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0); |
| f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300); |
| f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500); |
| |
| acsmplayback[0][0] = U(0x3ff) & f0rc0a; |
| acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U; |
| acsmplayback[0][1] = U(0x3ff) & f0rc3x; |
| acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U; |
| acsmplayback[0][2] = U(0x3ff) & f0rc5x; |
| acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U; |
| for (vec = 0; vec < 3; vec++) { |
| phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr + |
| (vec << 1)), acsmplayback[0][vec]); |
| phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr + |
| (vec << 1)), acsmplayback[1][vec]); |
| } |
| } |
| |
| static void prog_acsm_ctr(uint16_t *phy, |
| const struct input *input) |
| { |
| if (input->basic.dimm_type != RDIMM) { |
| return; |
| } |
| |
| phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr, |
| 0xf << csr_acsm_cke_enb_lsb); |
| |
| phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr, |
| csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask); |
| } |
| |
| static void prog_cal_rate_run(uint16_t *phy, |
| const struct input *input) |
| { |
| int cal_rate; |
| int cal_interval; |
| int cal_once; |
| uint32_t addr; |
| |
| cal_interval = input->adv.cal_interval; |
| cal_once = input->adv.cal_once; |
| cal_rate = 0x1 << csr_cal_run_lsb | |
| cal_once << csr_cal_once_lsb | |
| cal_interval << csr_cal_interval_lsb; |
| addr = t_master | csr_cal_rate_addr; |
| phy_io_write16(phy, addr, cal_rate); |
| } |
| |
| static void prog_seq0bdly0(uint16_t *phy, |
| const struct input *input) |
| { |
| int ps_count[4]; |
| int frq; |
| uint32_t addr; |
| int lower_freq_opt = 0; |
| |
| __unused const soc_info_t *soc_info; |
| |
| frq = input->basic.frequency >> 1; |
| ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/ |
| if (input->basic.frequency < 400) { |
| lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3; |
| } else if (input->basic.frequency < 533) { |
| lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11; |
| } |
| |
| /* 1.0 * frq / 4 - lower_freq */ |
| ps_count[1] = (frq >> 2) - lower_freq_opt; |
| ps_count[2] = (frq << 1) + (frq >> 1); /* 10.0 * frq / 4 */ |
| |
| #ifdef DDR_PLL_FIX |
| soc_info = get_soc_info(); |
| if (soc_info->maj_ver == 1) { |
| ps_count[0] = 0x520; /* seq0bdly0 */ |
| ps_count[1] = 0xa41; /* seq0bdly1 */ |
| ps_count[2] = 0x668a; /* seq0bdly2 */ |
| } |
| #endif |
| if (frq > 266) { |
| ps_count[3] = 44; |
| } else if (frq > 200) { |
| ps_count[3] = 33; |
| } else { |
| ps_count[3] = 16; |
| } |
| |
| addr = t_master | csr_seq0bdly0_addr; |
| phy_io_write16(phy, addr, ps_count[0]); |
| |
| debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr)); |
| |
| addr = t_master | csr_seq0bdly1_addr; |
| phy_io_write16(phy, addr, ps_count[1]); |
| |
| debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr)); |
| |
| addr = t_master | csr_seq0bdly2_addr; |
| phy_io_write16(phy, addr, ps_count[2]); |
| |
| debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr)); |
| |
| addr = t_master | csr_seq0bdly3_addr; |
| phy_io_write16(phy, addr, ps_count[3]); |
| |
| debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr)); |
| } |
| |
| /* Only RDIMM requires msg_blk */ |
| static void i_load_pie(uint16_t **phy_ptr, |
| const struct input *input, |
| const void *msg) |
| { |
| int i; |
| uint16_t *phy; |
| |
| for (i = 0; i < NUM_OF_DDRC; i++) { |
| phy = phy_ptr[i]; |
| if (phy == NULL) { |
| continue; |
| } |
| |
| phy_io_write16(phy, |
| t_apbonly | csr_micro_cont_mux_sel_addr, |
| 0U); |
| |
| load_pieimage(phy, input->basic.dimm_type); |
| |
| prog_seq0bdly0(phy, input); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr, |
| U(0x0000)); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr, |
| U(0x0173)); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr, |
| U(0x0060)); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr, |
| U(0x6110)); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr, |
| U(0x2152)); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr, |
| U(0xdfbd)); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr, |
| input->basic.dimm_type == RDIMM && |
| input->adv.phy_gen2_umctl_opt == 1U ? |
| U(0x6000) : U(0xffff)); |
| phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr, |
| U(0x6152)); |
| prog_acsm_playback(phy, input, msg); /* rdimm */ |
| prog_acsm_ctr(phy, input); /* rdimm */ |
| |
| phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1)); |
| prog_cal_rate_run(phy, input); |
| |
| phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr, |
| input->basic.dimm_type == RDIMM ? U(0x2) : 0U); |
| |
| phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U); |
| } |
| } |
| |
| static void phy_gen2_init_input(struct input *input) |
| { |
| int i; |
| |
| input->adv.dram_byte_swap = 0; |
| input->adv.ext_cal_res_val = 0; |
| input->adv.tx_slew_rise_dq = 0xf; |
| input->adv.tx_slew_fall_dq = 0xf; |
| input->adv.tx_slew_rise_ac = 0xf; |
| input->adv.tx_slew_fall_ac = 0xf; |
| input->adv.mem_alert_en = 0; |
| input->adv.mem_alert_puimp = 5; |
| input->adv.mem_alert_vref_level = 0x29; |
| input->adv.mem_alert_sync_bypass = 0; |
| input->adv.cal_interval = 0x9; |
| input->adv.cal_once = 0; |
| input->adv.dis_dyn_adr_tri = 0; |
| input->adv.is2ttiming = 0; |
| input->adv.d4rx_preamble_length = 0; |
| input->adv.d4tx_preamble_length = 0; |
| |
| for (i = 0; i < 7; i++) { |
| debug("mr[%d] = 0x%x\n", i, input->mr[i]); |
| } |
| |
| debug("input->cs_d0 = 0x%x\n", input->cs_d0); |
| debug("input->cs_d1 = 0x%x\n", input->cs_d1); |
| debug("input->mirror = 0x%x\n", input->mirror); |
| debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance); |
| debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance); |
| debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance); |
| |
| for (i = 0; i < 4; i++) { |
| debug("odt[%d] = 0x%x\n", i, input->odt[i]); |
| } |
| |
| if (input->basic.dimm_type == RDIMM) { |
| for (i = 0; i < 16; i++) { |
| debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]); |
| } |
| debug("input->rcw3x = 0x%x\n", input->rcw3x); |
| } |
| } |
| |
| /* |
| * All protocols share the same base structure of message block. |
| * RDIMM and LRDIMM have more entries defined than UDIMM. |
| * Create message blocks for 1D and 2D training. |
| * Update len with message block size. |
| */ |
| static int phy_gen2_msg_init(void *msg_1d, |
| void *msg_2d, |
| const struct input *input) |
| { |
| struct ddr4u1d *msg_blk = msg_1d; |
| struct ddr4u2d *msg_blk_2d = msg_2d; |
| struct ddr4r1d *msg_blk_r; |
| struct ddr4lr1d *msg_blk_lr; |
| |
| switch (input->basic.dimm_type) { |
| case UDIMM: |
| case SODIMM: |
| case NODIMM: |
| msg_blk->dram_type = U(0x2); |
| break; |
| case RDIMM: |
| msg_blk->dram_type = U(0x4); |
| break; |
| case LRDIMM: |
| msg_blk->dram_type = U(0x5); |
| break; |
| default: |
| ERROR("Unsupported DIMM type\n"); |
| return -EINVAL; |
| } |
| msg_blk->pstate = 0U; |
| |
| /*Enable quickRd2D, a substage of read deskew, to 1D training.*/ |
| msg_blk->reserved00 = U(0x20); |
| |
| /*Enable High-Effort WrDQ1D.*/ |
| msg_blk->reserved00 |= U(0x40); |
| |
| /* Enable 1D extra effort training.*/ |
| msg_blk->reserved1c[3] = U(0x3); |
| |
| if (input->basic.dimm_type == LRDIMM) { |
| msg_blk->sequence_ctrl = U(0x3f1f); |
| } else { |
| msg_blk->sequence_ctrl = U(0x031f); |
| } |
| msg_blk->phy_config_override = 0U; |
| #ifdef DDR_PHY_DEBUG |
| msg_blk->hdt_ctrl = U(0x5); |
| #else |
| msg_blk->hdt_ctrl = U(0xc9); |
| #endif |
| msg_blk->msg_misc = U(0x0); |
| msg_blk->dfimrlmargin = U(0x1); |
| msg_blk->phy_vref = input->vref ? input->vref : U(0x61); |
| msg_blk->cs_present = input->cs_d0 | input->cs_d1; |
| msg_blk->cs_present_d0 = input->cs_d0; |
| msg_blk->cs_present_d1 = input->cs_d1; |
| if (input->mirror != 0) { |
| msg_blk->addr_mirror = U(0x0a); /* odd CS are mirrored */ |
| } |
| msg_blk->share2dvref_result = 1U; |
| |
| msg_blk->acsm_odt_ctrl0 = input->odt[0]; |
| msg_blk->acsm_odt_ctrl1 = input->odt[1]; |
| msg_blk->acsm_odt_ctrl2 = input->odt[2]; |
| msg_blk->acsm_odt_ctrl3 = input->odt[3]; |
| msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 + |
| input->basic.num_active_dbyte_dfi1) * 8; |
| msg_blk->x16present = input->basic.dram_data_width == 0x10 ? |
| msg_blk->cs_present : 0; |
| msg_blk->d4misc = U(0x1); |
| msg_blk->cs_setup_gddec = U(0x1); |
| msg_blk->rtt_nom_wr_park0 = 0U; |
| msg_blk->rtt_nom_wr_park1 = 0U; |
| msg_blk->rtt_nom_wr_park2 = 0U; |
| msg_blk->rtt_nom_wr_park3 = 0U; |
| msg_blk->rtt_nom_wr_park4 = 0U; |
| msg_blk->rtt_nom_wr_park5 = 0U; |
| msg_blk->rtt_nom_wr_park6 = 0U; |
| msg_blk->rtt_nom_wr_park7 = 0U; |
| msg_blk->mr0 = input->mr[0]; |
| msg_blk->mr1 = input->mr[1]; |
| msg_blk->mr2 = input->mr[2]; |
| msg_blk->mr3 = input->mr[3]; |
| msg_blk->mr4 = input->mr[4]; |
| msg_blk->mr5 = input->mr[5]; |
| msg_blk->mr6 = input->mr[6]; |
| if ((msg_blk->mr4 & U(0x1c0)) != 0U) { |
| ERROR("Setting DRAM CAL mode is not supported\n"); |
| } |
| |
| msg_blk->alt_cas_l = 0U; |
| msg_blk->alt_wcas_l = 0U; |
| |
| msg_blk->dramfreq = input->basic.frequency * 2U; |
| msg_blk->pll_bypass_en = input->basic.pll_bypass; |
| msg_blk->dfi_freq_ratio = input->basic.dfi_freq_ratio == 0U ? 1U : |
| input->basic.dfi_freq_ratio == 1U ? 2U : |
| 4U; |
| msg_blk->bpznres_val = input->adv.ext_cal_res_val; |
| msg_blk->disabled_dbyte = 0U; |
| |
| debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type); |
| debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl); |
| debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg); |
| debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present); |
| debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq); |
| debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en); |
| debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio); |
| debug("msg_blk->phy_odt_impedance = 0x%x\n", |
| msg_blk->phy_odt_impedance); |
| debug("msg_blk->phy_drv_impedance = 0x%x\n", |
| msg_blk->phy_drv_impedance); |
| debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val); |
| debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs); |
| debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0); |
| debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1); |
| debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2); |
| debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3); |
| |
| /* RDIMM only */ |
| if (input->basic.dimm_type == RDIMM || |
| input->basic.dimm_type == LRDIMM) { |
| msg_blk_r = (struct ddr4r1d *)msg_blk; |
| if (msg_blk_r->cs_present_d0 != 0U) { |
| msg_blk_r->f0rc00_d0 = input->rcw[0]; |
| msg_blk_r->f0rc01_d0 = input->rcw[1]; |
| msg_blk_r->f0rc02_d0 = input->rcw[2]; |
| msg_blk_r->f0rc03_d0 = input->rcw[3]; |
| msg_blk_r->f0rc04_d0 = input->rcw[4]; |
| msg_blk_r->f0rc05_d0 = input->rcw[5]; |
| msg_blk_r->f0rc06_d0 = input->rcw[6]; |
| msg_blk_r->f0rc07_d0 = input->rcw[7]; |
| msg_blk_r->f0rc08_d0 = input->rcw[8]; |
| msg_blk_r->f0rc09_d0 = input->rcw[9]; |
| msg_blk_r->f0rc0a_d0 = input->rcw[10]; |
| msg_blk_r->f0rc0b_d0 = input->rcw[11]; |
| msg_blk_r->f0rc0c_d0 = input->rcw[12]; |
| msg_blk_r->f0rc0d_d0 = input->rcw[13]; |
| msg_blk_r->f0rc0e_d0 = input->rcw[14]; |
| msg_blk_r->f0rc0f_d0 = input->rcw[15]; |
| msg_blk_r->f0rc3x_d0 = input->rcw3x; |
| } |
| if (msg_blk_r->cs_present_d1 != 0) { |
| msg_blk_r->f0rc00_d1 = input->rcw[0]; |
| msg_blk_r->f0rc01_d1 = input->rcw[1]; |
| msg_blk_r->f0rc02_d1 = input->rcw[2]; |
| msg_blk_r->f0rc03_d1 = input->rcw[3]; |
| msg_blk_r->f0rc04_d1 = input->rcw[4]; |
| msg_blk_r->f0rc05_d1 = input->rcw[5]; |
| msg_blk_r->f0rc06_d1 = input->rcw[6]; |
| msg_blk_r->f0rc07_d1 = input->rcw[7]; |
| msg_blk_r->f0rc08_d1 = input->rcw[8]; |
| msg_blk_r->f0rc09_d1 = input->rcw[9]; |
| msg_blk_r->f0rc0a_d1 = input->rcw[10]; |
| msg_blk_r->f0rc0b_d1 = input->rcw[11]; |
| msg_blk_r->f0rc0c_d1 = input->rcw[12]; |
| msg_blk_r->f0rc0d_d1 = input->rcw[13]; |
| msg_blk_r->f0rc0e_d1 = input->rcw[14]; |
| msg_blk_r->f0rc0f_d1 = input->rcw[15]; |
| msg_blk_r->f0rc3x_d1 = input->rcw3x; |
| } |
| if (input->basic.dimm_type == LRDIMM) { |
| msg_blk_lr = (struct ddr4lr1d *)msg_blk; |
| msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0; |
| msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1; |
| msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0; |
| msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1; |
| } |
| } |
| |
| /* below is different for 1D and 2D message block */ |
| if (input->basic.train2d != 0) { |
| memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d)); |
| /*High-Effort WrDQ1D is applicable to 2D traning also*/ |
| msg_blk_2d->reserved00 |= U(0x40); |
| msg_blk_2d->sequence_ctrl = U(0x0061); |
| msg_blk_2d->rx2d_train_opt = 0U; |
| msg_blk_2d->tx2d_train_opt = 0U; |
| msg_blk_2d->share2dvref_result = 1U; |
| msg_blk_2d->delay_weight2d = U(0x20); |
| msg_blk_2d->voltage_weight2d = U(0x80); |
| debug("rx2d_train_opt %d, tx2d_train_opt %d\n", |
| msg_blk_2d->rx2d_train_opt, |
| msg_blk_2d->tx2d_train_opt); |
| } |
| |
| msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) || |
| ((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U |
| : input->adv.is2ttiming; |
| |
| return 0; |
| } |
| |
| static void prog_tx_pre_drv_mode(uint16_t *phy, |
| const struct input *input) |
| { |
| int lane, byte, b_addr, c_addr, p_addr; |
| int tx_slew_rate, tx_pre_p, tx_pre_n; |
| int tx_pre_drv_mode = 0x2; |
| uint32_t addr; |
| |
| /* Program TxPreDrvMode with 0x2 */ |
| /* FIXME: TxPreDrvMode depends on DramType? */ |
| tx_pre_p = input->adv.tx_slew_rise_dq; |
| tx_pre_n = input->adv.tx_slew_fall_dq; |
| tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb | |
| tx_pre_p << csr_tx_pre_p_lsb | |
| tx_pre_n << csr_tx_pre_n_lsb; |
| p_addr = 0; |
| for (byte = 0; byte < input->basic.num_dbyte; byte++) { |
| c_addr = byte << 12; |
| for (lane = 0; lane <= 1; lane++) { |
| b_addr = lane << 8; |
| addr = p_addr | t_dbyte | c_addr | b_addr | |
| csr_tx_slew_rate_addr; |
| phy_io_write16(phy, addr, tx_slew_rate); |
| } |
| } |
| } |
| |
| static void prog_atx_pre_drv_mode(uint16_t *phy, |
| const struct input *input) |
| { |
| int anib, c_addr; |
| int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode, |
| ck_anib_inst[2]; |
| uint32_t addr; |
| |
| atx_pre_n = input->adv.tx_slew_fall_ac; |
| atx_pre_p = input->adv.tx_slew_rise_ac; |
| |
| if (input->basic.num_anib == 8) { |
| ck_anib_inst[0] = 1; |
| ck_anib_inst[1] = 1; |
| } else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 || |
| input->basic.num_anib == 13) { |
| ck_anib_inst[0] = 4; |
| ck_anib_inst[1] = 5; |
| } else { |
| ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib); |
| return; |
| } |
| |
| for (anib = 0; anib < input->basic.num_anib; anib++) { |
| c_addr = anib << 12; |
| if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) { |
| atx_pre_drv_mode = 0; |
| } else { |
| atx_pre_drv_mode = 3; |
| } |
| atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb | |
| atx_pre_n << csr_atx_pre_n_lsb | |
| atx_pre_p << csr_atx_pre_p_lsb; |
| addr = t_anib | c_addr | csr_atx_slew_rate_addr; |
| phy_io_write16(phy, addr, atx_slew_rate); |
| } |
| } |
| |
| static void prog_enable_cs_multicast(uint16_t *phy, |
| const struct input *input) |
| { |
| uint32_t addr = t_master | csr_enable_cs_multicast_addr; |
| |
| if (input->basic.dimm_type != RDIMM && |
| input->basic.dimm_type != LRDIMM) { |
| return; |
| } |
| |
| phy_io_write16(phy, addr, input->adv.cast_cs_to_cid); |
| } |
| |
| static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy, |
| unsigned int ip_rev, |
| const struct input *input, |
| const struct ddr4lr1d *msg) |
| { |
| const struct ddr4lr1d *msg_blk; |
| uint16_t dfi_xxdestm0 = 0U; |
| uint16_t dfi_xxdestm1 = 0U; |
| uint16_t dfi_xxdestm2 = 0U; |
| uint16_t dfi_xxdestm3 = 0U; |
| uint16_t dfi_rd_data_cs_dest_map; |
| uint16_t dfi_wr_data_cs_dest_map; |
| __unused const soc_info_t *soc_info; |
| |
| #ifdef ERRATA_DDR_A011396 |
| /* Only apply to DDRC 5.05.00 */ |
| soc_info = get_soc_info(NXP_DCFG_ADDR); |
| if ((soc_info->maj_ver == 1U) && (ip_rev == U(0x50500))) { |
| phy_io_write16(phy, |
| t_master | csr_dfi_rd_data_cs_dest_map_addr, |
| 0U); |
| return; |
| } |
| #endif |
| |
| msg_blk = msg; |
| |
| switch (input->basic.dimm_type) { |
| case UDIMM: |
| case SODIMM: |
| case NODIMM: |
| if ((msg_blk->msg_misc & U(0x40)) != 0U) { |
| dfi_rd_data_cs_dest_map = U(0xa0); |
| dfi_wr_data_cs_dest_map = U(0xa0); |
| |
| phy_io_write16(phy, |
| t_master | csr_dfi_rd_data_cs_dest_map_addr, |
| dfi_rd_data_cs_dest_map); |
| phy_io_write16(phy, |
| t_master | csr_dfi_wr_data_cs_dest_map_addr, |
| dfi_wr_data_cs_dest_map); |
| } |
| break; |
| case LRDIMM: |
| if (msg->cs_present_d1 != 0U) { |
| dfi_xxdestm2 = 1U; |
| dfi_xxdestm3 = 1U; |
| } |
| |
| dfi_rd_data_cs_dest_map = |
| dfi_xxdestm0 << csr_dfi_rd_destm0_lsb | |
| dfi_xxdestm1 << csr_dfi_rd_destm1_lsb | |
| dfi_xxdestm2 << csr_dfi_rd_destm2_lsb | |
| dfi_xxdestm3 << csr_dfi_rd_destm3_lsb; |
| dfi_wr_data_cs_dest_map = |
| dfi_xxdestm0 << csr_dfi_wr_destm0_lsb | |
| dfi_xxdestm1 << csr_dfi_wr_destm1_lsb | |
| dfi_xxdestm2 << csr_dfi_wr_destm2_lsb | |
| dfi_xxdestm3 << csr_dfi_wr_destm3_lsb; |
| phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr, |
| dfi_rd_data_cs_dest_map); |
| phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr, |
| dfi_wr_data_cs_dest_map); |
| |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void prog_pll_ctrl(uint16_t *phy, |
| const struct input *input) |
| { |
| uint32_t addr; |
| int pll_ctrl1 = 0x21; /* 000100001b */ |
| int pll_ctrl4 = 0x17f; /* 101111111b */ |
| int pll_test_mode = 0x24; /* 00100100b */ |
| |
| addr = t_master | csr_pll_ctrl1_addr; |
| phy_io_write16(phy, addr, pll_ctrl1); |
| |
| debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr)); |
| |
| addr = t_master | csr_pll_test_mode_addr; |
| phy_io_write16(phy, addr, pll_test_mode); |
| |
| debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr)); |
| |
| addr = t_master | csr_pll_ctrl4_addr; |
| phy_io_write16(phy, addr, pll_ctrl4); |
| |
| debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr)); |
| } |
| |
| static void prog_pll_ctrl2(uint16_t *phy, |
| const struct input *input) |
| { |
| int pll_ctrl2; |
| uint32_t addr = t_master | csr_pll_ctrl2_addr; |
| |
| if (input->basic.frequency / 2 < 235) { |
| pll_ctrl2 = 0x7; |
| } else if (input->basic.frequency / 2 < 313) { |
| pll_ctrl2 = 0x6; |
| } else if (input->basic.frequency / 2 < 469) { |
| pll_ctrl2 = 0xb; |
| } else if (input->basic.frequency / 2 < 625) { |
| pll_ctrl2 = 0xa; |
| } else if (input->basic.frequency / 2 < 938) { |
| pll_ctrl2 = 0x19; |
| } else if (input->basic.frequency / 2 < 1067) { |
| pll_ctrl2 = 0x18; |
| } else { |
| pll_ctrl2 = 0x19; |
| } |
| |
| phy_io_write16(phy, addr, pll_ctrl2); |
| |
| debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr)); |
| } |
| |
| static void prog_dll_lck_param(uint16_t *phy, const struct input *input) |
| { |
| uint32_t addr = t_master | csr_dll_lockparam_addr; |
| |
| phy_io_write16(phy, addr, U(0x212)); |
| debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr)); |
| } |
| |
| static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input) |
| { |
| uint32_t addr = t_master | csr_dll_gain_ctl_addr; |
| |
| phy_io_write16(phy, addr, U(0x61)); |
| debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr)); |
| } |
| |
| static void prog_pll_pwr_dn(uint16_t *phy, |
| const struct input *input) |
| { |
| uint32_t addr; |
| |
| addr = t_master | csr_pll_pwr_dn_addr; |
| phy_io_write16(phy, addr, 0U); |
| |
| debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr)); |
| } |
| |
| static void prog_ard_ptr_init_val(uint16_t *phy, |
| const struct input *input) |
| { |
| int ard_ptr_init_val; |
| uint32_t addr = t_master | csr_ard_ptr_init_val_addr; |
| |
| if (input->basic.frequency >= 933) { |
| ard_ptr_init_val = 0x2; |
| } else { |
| ard_ptr_init_val = 0x1; |
| } |
| |
| phy_io_write16(phy, addr, ard_ptr_init_val); |
| } |
| |
| static void prog_dqs_preamble_control(uint16_t *phy, |
| const struct input *input) |
| { |
| int data; |
| uint32_t addr = t_master | csr_dqs_preamble_control_addr; |
| const int wdqsextension = 0; |
| const int lp4sttc_pre_bridge_rx_en = 0; |
| const int lp4postamble_ext = 0; |
| const int lp4tgl_two_tck_tx_dqs_pre = 0; |
| const int position_dfe_init = 2; |
| const int dll_rx_preamble_mode = 1; |
| int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length; |
| int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length; |
| |
| data = wdqsextension << csr_wdqsextension_lsb | |
| lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb | |
| lp4postamble_ext << csr_lp4postamble_ext_lsb | |
| lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb | |
| position_dfe_init << csr_position_dfe_init_lsb | |
| two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb | |
| two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb; |
| phy_io_write16(phy, addr, data); |
| |
| data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb; |
| addr = t_master | csr_dbyte_dll_mode_cntrl_addr; |
| phy_io_write16(phy, addr, data); |
| } |
| |
| static void prog_proc_odt_time_ctl(uint16_t *phy, |
| const struct input *input) |
| { |
| int proc_odt_time_ctl; |
| uint32_t addr = t_master | csr_proc_odt_time_ctl_addr; |
| |
| if (input->adv.wdqsext != 0) { |
| proc_odt_time_ctl = 0x3; |
| } else if (input->basic.frequency <= 933) { |
| proc_odt_time_ctl = 0xa; |
| } else if (input->basic.frequency <= 1200) { |
| if (input->adv.d4rx_preamble_length == 1) { |
| proc_odt_time_ctl = 0x2; |
| } else { |
| proc_odt_time_ctl = 0x6; |
| } |
| } else { |
| if (input->adv.d4rx_preamble_length == 1) { |
| proc_odt_time_ctl = 0x3; |
| } else { |
| proc_odt_time_ctl = 0x7; |
| } |
| } |
| phy_io_write16(phy, addr, proc_odt_time_ctl); |
| } |
| |
| static const struct impedance_mapping map[] = { |
| { 29, 0x3f }, |
| { 31, 0x3e }, |
| { 33, 0x3b }, |
| { 36, 0x3a }, |
| { 39, 0x39 }, |
| { 42, 0x38 }, |
| { 46, 0x1b }, |
| { 51, 0x1a }, |
| { 57, 0x19 }, |
| { 64, 0x18 }, |
| { 74, 0x0b }, |
| { 88, 0x0a }, |
| { 108, 0x09 }, |
| { 140, 0x08 }, |
| { 200, 0x03 }, |
| { 360, 0x02 }, |
| { 481, 0x01 }, |
| {} |
| }; |
| |
| static int map_impedance(int strength) |
| { |
| const struct impedance_mapping *tbl = map; |
| int val = 0; |
| |
| if (strength == 0) { |
| return 0; |
| } |
| |
| while (tbl->ohm != 0U) { |
| if (strength < tbl->ohm) { |
| val = tbl->code; |
| break; |
| } |
| tbl++; |
| } |
| |
| return val; |
| } |
| |
| static int map_odtstren_p(int strength, int hard_macro_ver) |
| { |
| int val = -1; |
| |
| if (hard_macro_ver == 4) { |
| if (strength == 0) { |
| val = 0; |
| } else if (strength == 120) { |
| val = 0x8; |
| } else if (strength == 60) { |
| val = 0x18; |
| } else if (strength == 40) { |
| val = 0x38; |
| } else { |
| printf("error: unsupported ODTStrenP %d\n", strength); |
| } |
| } else { |
| val = map_impedance(strength); |
| } |
| |
| return val; |
| } |
| |
| static void prog_tx_odt_drv_stren(uint16_t *phy, |
| const struct input *input) |
| { |
| int lane, byte, b_addr, c_addr; |
| int tx_odt_drv_stren; |
| int odtstren_p, odtstren_n; |
| uint32_t addr; |
| |
| odtstren_p = map_odtstren_p(input->adv.odtimpedance, |
| input->basic.hard_macro_ver); |
| if (odtstren_p < 0) { |
| return; |
| } |
| |
| odtstren_n = 0; /* always high-z */ |
| tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p; |
| for (byte = 0; byte < input->basic.num_dbyte; byte++) { |
| c_addr = byte << 12; |
| for (lane = 0; lane <= 1; lane++) { |
| b_addr = lane << 8; |
| addr = t_dbyte | c_addr | b_addr | |
| csr_tx_odt_drv_stren_addr; |
| phy_io_write16(phy, addr, tx_odt_drv_stren); |
| } |
| } |
| } |
| |
| static int map_drvstren_fsdq_p(int strength, int hard_macro_ver) |
| { |
| int val = -1; |
| |
| if (hard_macro_ver == 4) { |
| if (strength == 0) { |
| val = 0x07; |
| } else if (strength == 120) { |
| val = 0x0F; |
| } else if (strength == 60) { |
| val = 0x1F; |
| } else if (strength == 40) { |
| val = 0x3F; |
| } else { |
| printf("error: unsupported drv_stren_fSDq_p %d\n", |
| strength); |
| } |
| } else { |
| val = map_impedance(strength); |
| } |
| |
| return val; |
| } |
| |
| static int map_drvstren_fsdq_n(int strength, int hard_macro_ver) |
| { |
| int val = -1; |
| |
| if (hard_macro_ver == 4) { |
| if (strength == 0) { |
| val = 0x00; |
| } else if (strength == 120) { |
| val = 0x08; |
| } else if (strength == 60) { |
| val = 0x18; |
| } else if (strength == 40) { |
| val = 0x38; |
| } else { |
| printf("error: unsupported drvStrenFSDqN %d\n", |
| strength); |
| } |
| } else { |
| val = map_impedance(strength); |
| } |
| |
| return val; |
| } |
| |
| static void prog_tx_impedance_ctrl1(uint16_t *phy, |
| const struct input *input) |
| { |
| int lane, byte, b_addr, c_addr; |
| int tx_impedance_ctrl1; |
| int drv_stren_fsdq_p, drv_stren_fsdq_n; |
| uint32_t addr; |
| |
| drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance, |
| input->basic.hard_macro_ver); |
| drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance, |
| input->basic.hard_macro_ver); |
| tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb | |
| drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb; |
| |
| for (byte = 0; byte < input->basic.num_dbyte; byte++) { |
| c_addr = byte << 12; |
| for (lane = 0; lane <= 1; lane++) { |
| b_addr = lane << 8; |
| addr = t_dbyte | c_addr | b_addr | |
| csr_tx_impedance_ctrl1_addr; |
| phy_io_write16(phy, addr, tx_impedance_ctrl1); |
| } |
| } |
| } |
| |
| static int map_adrv_stren_p(int strength, int hard_macro_ver) |
| { |
| int val = -1; |
| |
| if (hard_macro_ver == 4) { |
| if (strength == 120) { |
| val = 0x1c; |
| } else if (strength == 60) { |
| val = 0x1d; |
| } else if (strength == 40) { |
| val = 0x1f; |
| } else { |
| printf("error: unsupported aDrv_stren_p %d\n", |
| strength); |
| } |
| } else { |
| if (strength == 120) { |
| val = 0x00; |
| } else if (strength == 60) { |
| val = 0x01; |
| } else if (strength == 40) { |
| val = 0x03; |
| } else if (strength == 30) { |
| val = 0x07; |
| } else if (strength == 24) { |
| val = 0x0f; |
| } else if (strength == 20) { |
| val = 0x1f; |
| } else { |
| printf("error: unsupported aDrv_stren_p %d\n", |
| strength); |
| } |
| } |
| |
| return val; |
| } |
| |
| static int map_adrv_stren_n(int strength, int hard_macro_ver) |
| { |
| int val = -1; |
| |
| if (hard_macro_ver == 4) { |
| if (strength == 120) { |
| val = 0x00; |
| } else if (strength == 60) { |
| val = 0x01; |
| } else if (strength == 40) { |
| val = 0x03; |
| } else { |
| printf("Error: unsupported ADrvStrenP %d\n", strength); |
| } |
| } else { |
| if (strength == 120) { |
| val = 0x00; |
| } else if (strength == 60) { |
| val = 0x01; |
| } else if (strength == 40) { |
| val = 0x03; |
| } else if (strength == 30) { |
| val = 0x07; |
| } else if (strength == 24) { |
| val = 0x0f; |
| } else if (strength == 20) { |
| val = 0x1f; |
| } else { |
| printf("Error: unsupported ADrvStrenP %d\n", strength); |
| } |
| } |
| |
| return val; |
| } |
| |
| static void prog_atx_impedance(uint16_t *phy, |
| const struct input *input) |
| { |
| int anib, c_addr; |
| int atx_impedance; |
| int adrv_stren_p; |
| int adrv_stren_n; |
| uint32_t addr; |
| |
| if (input->basic.hard_macro_ver == 4 && |
| input->adv.atx_impedance == 20) { |
| printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n"); |
| return; |
| } |
| |
| adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance, |
| input->basic.hard_macro_ver); |
| adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance, |
| input->basic.hard_macro_ver); |
| atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb | |
| adrv_stren_p << csr_adrv_stren_p_lsb; |
| for (anib = 0; anib < input->basic.num_anib; anib++) { |
| c_addr = anib << 12; |
| addr = t_anib | c_addr | csr_atx_impedance_addr; |
| phy_io_write16(phy, addr, atx_impedance); |
| } |
| } |
| |
| static void prog_dfi_mode(uint16_t *phy, |
| const struct input *input) |
| { |
| int dfi_mode; |
| uint32_t addr; |
| |
| if (input->basic.dfi1exists == 1) { |
| dfi_mode = 0x5; /* DFI1 exists but disabled */ |
| } else { |
| dfi_mode = 0x1; /* DFI1 does not physically exists */ |
| } |
| addr = t_master | csr_dfi_mode_addr; |
| phy_io_write16(phy, addr, dfi_mode); |
| } |
| |
| static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input) |
| { |
| uint32_t addr; |
| |
| addr = t_master | csr_acx4_anib_dis_addr; |
| phy_io_write16(phy, addr, 0x0); |
| debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr)); |
| } |
| |
| static void prog_dfi_camode(uint16_t *phy, |
| const struct input *input) |
| { |
| int dfi_camode = 2; |
| uint32_t addr = t_master | csr_dfi_camode_addr; |
| |
| phy_io_write16(phy, addr, dfi_camode); |
| } |
| |
| static void prog_cal_drv_str0(uint16_t *phy, |
| const struct input *input) |
| { |
| int cal_drv_str0; |
| int cal_drv_str_pd50; |
| int cal_drv_str_pu50; |
| uint32_t addr; |
| |
| cal_drv_str_pu50 = input->adv.ext_cal_res_val; |
| cal_drv_str_pd50 = cal_drv_str_pu50; |
| cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb | |
| cal_drv_str_pd50; |
| addr = t_master | csr_cal_drv_str0_addr; |
| phy_io_write16(phy, addr, cal_drv_str0); |
| } |
| |
| static void prog_cal_uclk_info(uint16_t *phy, |
| const struct input *input) |
| { |
| int cal_uclk_ticks_per1u_s; |
| uint32_t addr; |
| |
| cal_uclk_ticks_per1u_s = input->basic.frequency >> 1; |
| if (cal_uclk_ticks_per1u_s < 24) { |
| cal_uclk_ticks_per1u_s = 24; |
| } |
| |
| addr = t_master | csr_cal_uclk_info_addr; |
| phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s); |
| } |
| |
| static void prog_cal_rate(uint16_t *phy, |
| const struct input *input) |
| { |
| int cal_rate; |
| int cal_interval; |
| int cal_once; |
| uint32_t addr; |
| |
| cal_interval = input->adv.cal_interval; |
| cal_once = input->adv.cal_once; |
| cal_rate = cal_once << csr_cal_once_lsb | |
| cal_interval << csr_cal_interval_lsb; |
| addr = t_master | csr_cal_rate_addr; |
| phy_io_write16(phy, addr, cal_rate); |
| } |
| |
| static void prog_vref_in_global(uint16_t *phy, |
| const struct input *input, |
| const struct ddr4u1d *msg) |
| { |
| int vref_in_global; |
| int global_vref_in_dac = 0; |
| int global_vref_in_sel = 0; |
| uint32_t addr; |
| |
| /* |
| * phy_vref_prcnt = msg->phy_vref / 128.0 |
| * global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005; |
| */ |
| global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) / |
| (5 * 128); |
| |
| vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb | |
| global_vref_in_sel; |
| addr = t_master | csr_vref_in_global_addr; |
| phy_io_write16(phy, addr, vref_in_global); |
| } |
| |
| static void prog_dq_dqs_rcv_cntrl(uint16_t *phy, |
| const struct input *input) |
| { |
| int lane, byte, b_addr, c_addr; |
| int dq_dqs_rcv_cntrl; |
| int gain_curr_adj_defval = 0xb; |
| int major_mode_dbyte = 3; |
| int dfe_ctrl_defval = 0; |
| int ext_vref_range_defval = 0; |
| int sel_analog_vref = 1; |
| uint32_t addr; |
| |
| dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb | |
| major_mode_dbyte << csr_major_mode_dbyte_lsb | |
| dfe_ctrl_defval << csr_dfe_ctrl_lsb | |
| ext_vref_range_defval << csr_ext_vref_range_lsb | |
| sel_analog_vref << csr_sel_analog_vref_lsb; |
| for (byte = 0; byte < input->basic.num_dbyte; byte++) { |
| c_addr = byte << 12; |
| for (lane = 0; lane <= 1; lane++) { |
| b_addr = lane << 8; |
| addr = t_dbyte | c_addr | b_addr | |
| csr_dq_dqs_rcv_cntrl_addr; |
| phy_io_write16(phy, addr, dq_dqs_rcv_cntrl); |
| } |
| } |
| } |
| |
| static void prog_mem_alert_control(uint16_t *phy, |
| const struct input *input) |
| { |
| int mem_alert_control; |
| int mem_alert_control2; |
| int malertpu_en; |
| int malertrx_en; |
| int malertvref_level; |
| int malertpu_stren; |
| int malertsync_bypass; |
| int malertdisable_val_defval = 1; |
| uint32_t addr; |
| |
| if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) { |
| malertpu_en = 1; |
| malertrx_en = 1; |
| malertpu_stren = input->adv.mem_alert_puimp; |
| malertvref_level = input->adv.mem_alert_vref_level; |
| malertsync_bypass = input->adv.mem_alert_sync_bypass; |
| mem_alert_control = malertdisable_val_defval << 14 | |
| malertrx_en << 13 | |
| malertpu_en << 12 | |
| malertpu_stren << 8 | |
| malertvref_level; |
| mem_alert_control2 = malertsync_bypass << |
| csr_malertsync_bypass_lsb; |
| addr = t_master | csr_mem_alert_control_addr; |
| phy_io_write16(phy, addr, mem_alert_control); |
| addr = t_master | csr_mem_alert_control2_addr; |
| phy_io_write16(phy, addr, mem_alert_control2); |
| } |
| } |
| |
| static void prog_dfi_freq_ratio(uint16_t *phy, |
| const struct input *input) |
| { |
| int dfi_freq_ratio; |
| uint32_t addr = t_master | csr_dfi_freq_ratio_addr; |
| |
| dfi_freq_ratio = input->basic.dfi_freq_ratio; |
| phy_io_write16(phy, addr, dfi_freq_ratio); |
| } |
| |
| static void prog_tristate_mode_ca(uint16_t *phy, |
| const struct input *input) |
| { |
| int tristate_mode_ca; |
| int dis_dyn_adr_tri; |
| int ddr2tmode; |
| int ck_dis_val_def = 1; |
| uint32_t addr = t_master | csr_tristate_mode_ca_addr; |
| |
| dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri; |
| ddr2tmode = input->adv.is2ttiming; |
| tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb | |
| ddr2tmode << csr_ddr2tmode_lsb | |
| dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb; |
| phy_io_write16(phy, addr, tristate_mode_ca); |
| } |
| |
| static void prog_dfi_xlat(uint16_t *phy, |
| const struct input *input) |
| { |
| uint16_t loop_vector; |
| int dfifreqxlat_dat; |
| int pllbypass_dat; |
| uint32_t addr; |
| |
| /* fIXME: Shall unused P1, P2, P3 be bypassed? */ |
| pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */ |
| for (loop_vector = 0; loop_vector < 8; loop_vector++) { |
| if (loop_vector == 0) { |
| dfifreqxlat_dat = pllbypass_dat + 0x5555; |
| } else if (loop_vector == 7) { |
| dfifreqxlat_dat = 0xf000; |
| } else { |
| dfifreqxlat_dat = 0x5555; |
| } |
| addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector); |
| phy_io_write16(phy, addr, dfifreqxlat_dat); |
| } |
| } |
| |
| static void prog_dbyte_misc_mode(uint16_t *phy, |
| const struct input *input, |
| const struct ddr4u1d *msg) |
| { |
| int dbyte_misc_mode; |
| int dq_dqs_rcv_cntrl1; |
| int dq_dqs_rcv_cntrl1_1; |
| int byte, c_addr; |
| uint32_t addr; |
| |
| dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb; |
| dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb | |
| 0x1 << csr_power_down_rcvr_dqs_lsb | |
| 0x1 << csr_rx_pad_standby_en_lsb; |
| dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb | |
| csr_rx_pad_standby_en_mask); |
| for (byte = 0; byte < input->basic.num_dbyte; byte++) { |
| c_addr = byte << 12; |
| if (byte <= input->basic.num_active_dbyte_dfi0 - 1) { |
| /* disable RDBI lane if not used. */ |
| if ((input->basic.dram_data_width != 4) && |
| (((msg->mr5 >> 12) & 0x1) == 0)) { |
| addr = t_dbyte |
| | c_addr |
| | csr_dq_dqs_rcv_cntrl1_addr; |
| phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1); |
| } |
| } else { |
| addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr; |
| phy_io_write16(phy, addr, dbyte_misc_mode); |
| addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr; |
| phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1); |
| } |
| } |
| } |
| |
| static void prog_master_x4config(uint16_t *phy, |
| const struct input *input) |
| { |
| int master_x4config; |
| int x4tg; |
| uint32_t addr = t_master | csr_master_x4config_addr; |
| |
| x4tg = input->basic.dram_data_width == 4 ? 0xf : 0; |
| master_x4config = x4tg << csr_x4tg_lsb; |
| phy_io_write16(phy, addr, master_x4config); |
| } |
| |
| static void prog_dmipin_present(uint16_t *phy, |
| const struct input *input, |
| const struct ddr4u1d *msg) |
| { |
| int dmipin_present; |
| uint32_t addr = t_master | csr_dmipin_present_addr; |
| |
| dmipin_present = (msg->mr5 >> 12) & 0x1; |
| phy_io_write16(phy, addr, dmipin_present); |
| } |
| |
| static void prog_dfi_phyupd(uint16_t *phy, |
| const struct input *input) |
| { |
| int dfiphyupd_dat; |
| uint32_t addr; |
| |
| addr = t_master | (csr_dfiphyupd_addr); |
| dfiphyupd_dat = phy_io_read16(phy, addr) & |
| ~csr_dfiphyupd_threshold_mask; |
| |
| phy_io_write16(phy, addr, dfiphyupd_dat); |
| } |
| |
| static void prog_cal_misc2(uint16_t *phy, |
| const struct input *input) |
| { |
| int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat; |
| uint32_t addr; |
| |
| addr = t_master | (csr_cal_misc2_addr); |
| cal_misc2_dat = phy_io_read16(phy, addr) | |
| (1 << csr_cal_misc2_err_dis); |
| |
| phy_io_write16(phy, addr, cal_misc2_dat); |
| |
| addr = t_master | (csr_cal_offsets_addr); |
| |
| cal_drv_pdth_data = 0x9 << 6; |
| cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask) |
| | cal_drv_pdth_data; |
| |
| phy_io_write16(phy, addr, cal_offsets_dat); |
| } |
| |
| static int c_init_phy_config(uint16_t **phy_ptr, |
| unsigned int ip_rev, |
| const struct input *input, |
| const void *msg) |
| { |
| int i; |
| uint16_t *phy; |
| __unused const soc_info_t *soc_info; |
| |
| for (i = 0; i < NUM_OF_DDRC; i++) { |
| phy = phy_ptr[i]; |
| if (phy == NULL) { |
| continue; |
| } |
| |
| debug("Initialize PHY %d config\n", i); |
| prog_dfi_phyupd(phy, input); |
| prog_cal_misc2(phy, input); |
| prog_tx_pre_drv_mode(phy, input); |
| prog_atx_pre_drv_mode(phy, input); |
| prog_enable_cs_multicast(phy, input); /* rdimm and lrdimm */ |
| prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg); |
| prog_pll_ctrl2(phy, input); |
| #ifdef DDR_PLL_FIX |
| soc_info = get_soc_info(); |
| debug("SOC_SI_REV = %x\n", soc_info->maj_ver); |
| if (soc_info->maj_ver == 1) { |
| prog_pll_pwr_dn(phy, input); |
| |
| /*Enable FFE aka TxEqualizationMode for rev1 SI*/ |
| phy_io_write16(phy, 0x010048, 0x1); |
| } |
| #endif |
| prog_ard_ptr_init_val(phy, input); |
| prog_dqs_preamble_control(phy, input); |
| prog_dll_lck_param(phy, input); |
| prog_dll_gain_ctl(phy, input); |
| prog_proc_odt_time_ctl(phy, input); |
| prog_tx_odt_drv_stren(phy, input); |
| prog_tx_impedance_ctrl1(phy, input); |
| prog_atx_impedance(phy, input); |
| prog_dfi_mode(phy, input); |
| prog_dfi_camode(phy, input); |
| prog_cal_drv_str0(phy, input); |
| prog_cal_uclk_info(phy, input); |
| prog_cal_rate(phy, input); |
| prog_vref_in_global(phy, input, msg); |
| prog_dq_dqs_rcv_cntrl(phy, input); |
| prog_mem_alert_control(phy, input); |
| prog_dfi_freq_ratio(phy, input); |
| prog_tristate_mode_ca(phy, input); |
| prog_dfi_xlat(phy, input); |
| prog_dbyte_misc_mode(phy, input, msg); |
| prog_master_x4config(phy, input); |
| prog_dmipin_present(phy, input, msg); |
| prog_acx4_anib_dis(phy, input); |
| } |
| |
| return 0; |
| } |
| |
| static uint32_t get_mail(uint16_t *phy, int stream) |
| { |
| int timeout; |
| uint32_t mail = 0U; |
| |
| timeout = TIMEOUTDEFAULT; |
| while (((--timeout) != 0) && |
| ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs) |
| & uct_write_prot_shadow_mask) != 0)) { |
| mdelay(10); |
| } |
| if (timeout == 0) { |
| ERROR("Timeout getting mail from PHY\n"); |
| return 0xFFFF; |
| } |
| |
| mail = phy_io_read16(phy, t_apbonly | |
| csr_uct_write_only_shadow); |
| if (stream != 0) { |
| mail |= phy_io_read16(phy, t_apbonly | |
| csr_uct_dat_write_only_shadow) << 16; |
| } |
| |
| /* Ack */ |
| phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0); |
| |
| timeout = TIMEOUTDEFAULT; |
| while (((--timeout) != 0) && |
| ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs) |
| & uct_write_prot_shadow_mask) == 0)) { |
| mdelay(1); |
| } |
| if (timeout == 0) { |
| ERROR("Timeout ack PHY mail\n"); |
| } |
| |
| /* completed */ |
| phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U); |
| |
| return mail; |
| } |
| |
| #ifdef DDR_PHY_DEBUG |
| static const char *lookup_msg(uint32_t index, int train2d) |
| { |
| int i; |
| int size; |
| const struct phy_msg *messages; |
| const char *ptr = NULL; |
| |
| if (train2d != 0) { |
| messages = messages_2d; |
| size = ARRAY_SIZE(messages_2d); |
| } else { |
| messages = messages_1d; |
| size = ARRAY_SIZE(messages_1d); |
| } |
| for (i = 0; i < size; i++) { |
| if (messages[i].index == index) { |
| ptr = messages[i].msg; |
| break; |
| } |
| } |
| |
| return ptr; |
| } |
| #endif |
| |
| #define MAX_ARGS 32 |
| static void decode_stream_message(uint16_t *phy, int train2d) |
| { |
| uint32_t index __unused; |
| |
| __unused const char *format; |
| __unused uint32_t args[MAX_ARGS]; |
| __unused int i; |
| |
| #ifdef DDR_PHY_DEBUG |
| index = get_mail(phy, 1); |
| if ((index & 0xffff) > MAX_ARGS) { /* up to MAX_ARGS args so far */ |
| printf("Program error in %s\n", __func__); |
| } |
| for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) { |
| args[i] = get_mail(phy, 1); |
| } |
| |
| format = lookup_msg(index, train2d); |
| if (format != NULL) { |
| printf("0x%08x: ", index); |
| printf(format, args[0], args[1], args[2], args[3], args[4], |
| args[5], args[6], args[7], args[8], args[9], args[10], |
| args[11], args[12], args[13], args[14], args[15], |
| args[16], args[17], args[18], args[19], args[20], |
| args[21], args[22], args[23], args[24], args[25], |
| args[26], args[27], args[28], args[29], args[30], |
| args[31]); |
| } |
| #endif |
| } |
| |
| static int wait_fw_done(uint16_t *phy, int train2d) |
| { |
| uint32_t mail = 0U; |
| |
| while (mail == U(0x0)) { |
| mail = get_mail(phy, 0); |
| switch (mail) { |
| case U(0x7): |
| debug("%s Training completed\n", train2d ? "2D" : "1D"); |
| break; |
| case U(0xff): |
| debug("%s Training failure\n", train2d ? "2D" : "1D"); |
| break; |
| case U(0x0): |
| debug("End of initialization\n"); |
| mail = 0U; |
| break; |
| case U(0x1): |
| debug("End of fine write leveling\n"); |
| mail = 0U; |
| break; |
| case U(0x2): |
| debug("End of read enable training\n"); |
| mail = 0U; |
| break; |
| case U(0x3): |
| debug("End of read delay center optimization\n"); |
| mail = 0U; |
| break; |
| case U(0x4): |
| debug("End of write delay center optimization\n"); |
| mail = 0U; |
| break; |
| case U(0x5): |
| debug("End of 2D read delay/voltage center optimztn\n"); |
| mail = 0U; |
| break; |
| case U(0x6): |
| debug("End of 2D write delay/voltage center optmztn\n"); |
| mail = 0U; |
| break; |
| case U(0x8): |
| decode_stream_message(phy, train2d); |
| mail = 0U; |
| break; |
| case U(0x9): |
| debug("End of max read latency training\n"); |
| mail = 0U; |
| break; |
| case U(0xa): |
| debug("End of read dq deskew training\n"); |
| mail = 0U; |
| break; |
| case U(0xc): |
| debug("End of LRDIMM Specific training, including:\n"); |
| debug("/tDWL, MREP, MRD and MWD\n"); |
| mail = 0U; |
| break; |
| case U(0xd): |
| debug("End of CA training\n"); |
| mail = 0U; |
| break; |
| case U(0xfd): |
| debug("End of MPR read delay center optimization\n"); |
| mail = 0U; |
| break; |
| case U(0xfe): |
| debug("End of Write leveling coarse delay\n"); |
| mail = 0U; |
| break; |
| case U(0xffff): |
| debug("Timed out\n"); |
| break; |
| default: |
| mail = 0U; |
| break; |
| } |
| } |
| |
| if (mail == U(0x7)) { |
| return 0; |
| } else if (mail == U(0xff)) { |
| return -EIO; |
| } else if (mail == U(0xffff)) { |
| return -ETIMEDOUT; |
| } |
| |
| debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail); |
| |
| return -EINVAL; |
| } |
| |
| static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input) |
| { |
| int ret = -EINVAL; |
| int i; |
| uint16_t *phy; |
| |
| for (i = 0; i < NUM_OF_DDRC; i++) { |
| phy = phy_ptr[i]; |
| if (phy == NULL) { |
| continue; |
| } |
| debug("Applying PLL optimal settings\n"); |
| prog_pll_ctrl2(phy, input); |
| prog_pll_ctrl(phy, input); |
| phy_io_write16(phy, |
| t_apbonly | csr_micro_cont_mux_sel_addr, |
| 0x1); |
| phy_io_write16(phy, |
| t_apbonly | csr_micro_reset_addr, |
| csr_reset_to_micro_mask | |
| csr_stall_to_micro_mask); |
| phy_io_write16(phy, |
| t_apbonly | csr_micro_reset_addr, |
| csr_stall_to_micro_mask); |
| phy_io_write16(phy, |
| t_apbonly | csr_micro_reset_addr, |
| 0); |
| |
| ret = wait_fw_done(phy, train2d); |
| if (ret == -ETIMEDOUT) { |
| ERROR("Wait timed out: Firmware execution on PHY %d\n", |
| i); |
| } |
| } |
| return ret; |
| } |
| |
| static inline int send_fw(uint16_t *phy, |
| uint32_t dst, |
| uint16_t *img, |
| uint32_t size) |
| { |
| uint32_t i; |
| |
| if ((size % 2U) != 0U) { |
| ERROR("Wrong image size 0x%x\n", size); |
| return -EINVAL; |
| } |
| |
| for (i = 0U; i < size / 2; i++) { |
| phy_io_write16(phy, dst + i, *(img + i)); |
| } |
| |
| return 0; |
| } |
| |
| static int load_fw(uint16_t **phy_ptr, |
| struct input *input, |
| int train2d, |
| void *msg, |
| size_t len, |
| uintptr_t phy_gen2_fw_img_buf, |
| int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *), |
| uint32_t warm_boot_flag) |
| { |
| uint32_t imem_id, dmem_id; |
| uintptr_t image_buf; |
| uint32_t size; |
| int ret; |
| int i; |
| uint16_t *phy; |
| |
| switch (input->basic.dimm_type) { |
| case UDIMM: |
| case SODIMM: |
| case NODIMM: |
| imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID : |
| DDR_IMEM_UDIMM_1D_IMAGE_ID; |
| dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID : |
| DDR_DMEM_UDIMM_1D_IMAGE_ID; |
| break; |
| case RDIMM: |
| imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID : |
| DDR_IMEM_RDIMM_1D_IMAGE_ID; |
| dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID : |
| DDR_DMEM_RDIMM_1D_IMAGE_ID; |
| break; |
| default: |
| ERROR("Unsupported DIMM type\n"); |
| return -EINVAL; |
| } |
| |
| size = PHY_GEN2_MAX_IMAGE_SIZE; |
| image_buf = (uintptr_t)phy_gen2_fw_img_buf; |
| mmap_add_dynamic_region(phy_gen2_fw_img_buf, |
| phy_gen2_fw_img_buf, |
| PHY_GEN2_MAX_IMAGE_SIZE, |
| MT_MEMORY | MT_RW | MT_SECURE); |
| ret = img_loadr(imem_id, &image_buf, &size); |
| if (ret != 0) { |
| ERROR("Failed to load %d firmware.\n", imem_id); |
| return ret; |
| } |
| debug("Loaded Imaged id %d of size %x at address %lx\n", |
| imem_id, size, image_buf); |
| |
| for (i = 0; i < NUM_OF_DDRC; i++) { |
| phy = phy_ptr[i]; |
| if (phy == NULL) { |
| continue; |
| } |
| |
| if (warm_boot_flag != DDR_WARM_BOOT) { |
| if (train2d == 0) { |
| phy_io_write16(phy, t_master | |
| csr_mem_reset_l_addr, |
| csr_protect_mem_reset_mask); |
| } |
| } |
| /* Enable access to the internal CSRs */ |
| phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0); |
| |
| ret = send_fw(phy, PHY_GEN2_IMEM_ADDR, |
| (uint16_t *)image_buf, size); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| |
| size = PHY_GEN2_MAX_IMAGE_SIZE; |
| image_buf = (uintptr_t)phy_gen2_fw_img_buf; |
| ret = img_loadr(dmem_id, &image_buf, &size); |
| if (ret != 0) { |
| ERROR("Failed to load %d firmware.\n", dmem_id); |
| return ret; |
| } |
| debug("Loaded Imaged id %d of size %x at address %lx\n", |
| dmem_id, size, image_buf); |
| image_buf += len; |
| size -= len; |
| |
| for (i = 0; i < NUM_OF_DDRC; i++) { |
| phy = phy_ptr[i]; |
| if (phy == NULL) { |
| continue; |
| } |
| |
| ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2, |
| (uint16_t *)image_buf, size); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void parse_odt(const unsigned int val, |
| const int read, |
| const int i, |
| const unsigned int cs_d0, |
| const unsigned int cs_d1, |
| unsigned int *odt) |
| { |
| int shift = read ? 4 : 0; |
| int j; |
| |
| if (i < 0 || i > 3) { |
| printf("Error: invalid chip-select value\n"); |
| } |
| switch (val) { |
| case DDR_ODT_CS: |
| odt[i] |= (1 << i) << shift; |
| break; |
| case DDR_ODT_ALL_OTHER_CS: |
| for (j = 0; j < DDRC_NUM_CS; j++) { |
| if (i == j) { |
| continue; |
| } |
| if (((cs_d0 | cs_d1) & (1 << j)) == 0) { |
| continue; |
| } |
| odt[j] |= (1 << i) << shift; |
| } |
| break; |
| case DDR_ODT_CS_AND_OTHER_DIMM: |
| odt[i] |= (1 << i) << 4; |
| /* fallthrough */ |
| case DDR_ODT_OTHER_DIMM: |
| for (j = 0; j < DDRC_NUM_CS; j++) { |
| if ((((cs_d0 & (1 << i)) != 0) && |
| ((cs_d1 & (1 << j)) != 0)) || |
| (((cs_d1 & (1 << i)) != 0) && |
| ((cs_d0 & (1 << j)) != 0))) { |
| odt[j] |= (1 << i) << shift; |
| } |
| } |
| break; |
| case DDR_ODT_ALL: |
| for (j = 0; j < DDRC_NUM_CS; j++) { |
| if (((cs_d0 | cs_d1) & (1 << j)) == 0) { |
| continue; |
| } |
| odt[j] |= (1 << i) << shift; |
| } |
| break; |
| case DDR_ODT_SAME_DIMM: |
| for (j = 0; j < DDRC_NUM_CS; j++) { |
| if ((((cs_d0 & (1 << i)) != 0) && |
| ((cs_d0 & (1 << j)) != 0)) || |
| (((cs_d1 & (1 << i)) != 0) && |
| ((cs_d1 & (1 << j)) != 0))) { |
| odt[j] |= (1 << i) << shift; |
| } |
| } |
| break; |
| case DDR_ODT_OTHER_CS_ONSAMEDIMM: |
| for (j = 0; j < DDRC_NUM_CS; j++) { |
| if (i == j) { |
| continue; |
| } |
| if ((((cs_d0 & (1 << i)) != 0) && |
| ((cs_d0 & (1 << j)) != 0)) || |
| (((cs_d1 & (1 << i)) != 0) && |
| ((cs_d1 & (1 << j)) != 0))) { |
| odt[j] |= (1 << i) << shift; |
| } |
| } |
| break; |
| case DDR_ODT_NEVER: |
| break; |
| default: |
| break; |
| } |
| } |
| |
| #ifdef DEBUG_DDR_INPUT_CONFIG |
| char *dram_types_str[] = { |
| "DDR4", |
| "DDR3", |
| "LDDDR4", |
| "LPDDR3", |
| "LPDDR2", |
| "DDR5" |
| }; |
| |
| char *dimm_types_str[] = { |
| "UDIMM", |
| "SODIMM", |
| "RDIMM", |
| "LRDIMM", |
| "NODIMM", |
| }; |
| |
| |
| static void print_jason_format(struct input *input, |
| struct ddr4u1d *msg_1d, |
| struct ddr4u2d *msg_2d) |
| { |
| |
| printf("\n{"); |
| printf("\n \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]); |
| printf("\n \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]); |
| printf("\n \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver); |
| printf("\n \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte); |
| printf("\n \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0); |
| printf("\n \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib); |
| printf("\n \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0); |
| printf("\n \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates); |
| printf("\n \"frequency\": \"%d\",", input->basic.frequency); |
| printf("\n \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio); |
| printf("\n \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio); |
| printf("\n \"dfi1_exists\": \"0x%04x\",", (unsigned int)input->basic.dfi1exists); |
| printf("\n \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width); |
| printf("\n \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap); |
| printf("\n \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val); |
| printf("\n \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq); |
| printf("\n \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq); |
| printf("\n \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac); |
| printf("\n \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac); |
| printf("\n \"odt_impedance\": \"%d\",", input->adv.odtimpedance); |
| printf("\n \"tx_impedance\": \"%d\",", input->adv.tx_impedance); |
| printf("\n \"atx_impedance\": \"%d\",", input->adv.atx_impedance); |
| printf("\n \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en); |
| printf("\n \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp); |
| printf("\n \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level); |
| printf("\n \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass); |
| printf("\n \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval); |
| printf("\n \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once); |
| printf("\n \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri); |
| printf("\n \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming); |
| printf("\n \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length); |
| printf("\n \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length); |
| printf("\n \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc); |
| printf("\n \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00); |
| printf("\n \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl); |
| printf("\n \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present); |
| printf("\n \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref); |
| printf("\n \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin); |
| printf("\n \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror); |
| printf("\n \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f)); |
| printf("\n \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f)); |
| printf("\n \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f)); |
| printf("\n \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f)); |
| printf("\n \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0)); |
| printf("\n \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0)); |
| printf("\n \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0)); |
| printf("\n \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0)); |
| printf("\n \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc); |
| printf("\n \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result); |
| printf("\n \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl); |
| printf("\n \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0); |
| printf("\n \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1); |
| printf("\n \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2); |
| printf("\n \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3); |
| printf("\n \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4); |
| printf("\n \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5); |
| printf("\n \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6); |
| printf("\n \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l); |
| printf("\n \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l); |
| printf("\n \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl); |
| printf("\n \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0); |
| printf("\n \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1); |
| printf("\n \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2); |
| printf("\n \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3); |
| printf("\n \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4); |
| printf("\n \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5); |
| printf("\n \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6); |
| printf("\n \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7); |
| printf("\n}"); |
| printf("\n"); |
| } |
| #endif |
| |
| int compute_ddr_phy(struct ddr_info *priv) |
| { |
| const unsigned long clk = priv->clk; |
| const struct memctl_opt *popts = &priv->opt; |
| const struct ddr_conf *conf = &priv->conf; |
| const struct dimm_params *dimm_param = &priv->dimm; |
| struct ddr_cfg_regs *regs = &priv->ddr_reg; |
| int ret; |
| static struct input input; |
| static struct ddr4u1d msg_1d; |
| static struct ddr4u2d msg_2d; |
| unsigned int i; |
| unsigned int odt_rd, odt_wr; |
| __unused const soc_info_t *soc_info; |
| #ifdef NXP_APPLY_MAX_CDD |
| unsigned int tcfg0, tcfg4, rank; |
| #endif |
| |
| if (dimm_param == NULL) { |
| ERROR("Empty DIMM parameters.\n"); |
| return -EINVAL; |
| } |
| |
| zeromem(&input, sizeof(input)); |
| zeromem(&msg_1d, sizeof(msg_1d)); |
| zeromem(&msg_2d, sizeof(msg_2d)); |
| |
| input.basic.dram_type = DDR4; |
| /* FIXME: Add condition for LRDIMM */ |
| input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM; |
| input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 + |
| dimm_param->ec_sdram_width / 8; |
| input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte; |
| input.basic.num_rank_dfi0 = dimm_param->n_ranks; |
| input.basic.dram_data_width = dimm_param->device_width; |
| input.basic.hard_macro_ver = 0xa; |
| input.basic.num_pstates = 1; |
| input.basic.dfi_freq_ratio = 1; |
| input.basic.num_anib = 0xc; |
| input.basic.train2d = popts->skip2d ? 0 : 1; |
| input.basic.frequency = (int) (clk / 2000000ul); |
| debug("frequency = %dMHz\n", input.basic.frequency); |
| input.cs_d0 = conf->cs_on_dimm[0]; |
| #if DDRC_NUM_DIMM > 1 |
| input.cs_d1 = conf->cs_on_dimm[1]; |
| #endif |
| input.mirror = dimm_param->mirrored_dimm; |
| input.mr[0] = regs->sdram_mode[0] & U(0xffff); |
| input.mr[1] = regs->sdram_mode[0] >> 16U; |
| input.mr[2] = regs->sdram_mode[1] >> 16U; |
| input.mr[3] = regs->sdram_mode[1] & U(0xffff); |
| input.mr[4] = regs->sdram_mode[8] >> 16U; |
| input.mr[5] = regs->sdram_mode[8] & U(0xffff); |
| input.mr[6] = regs->sdram_mode[9] >> 16U; |
| input.vref = popts->vref_phy; |
| debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U); |
| for (i = 0U; i < DDRC_NUM_CS; i++) { |
| if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) { |
| continue; |
| } |
| odt_rd = (regs->cs[i].config >> 20U) & U(0x7); |
| odt_wr = (regs->cs[i].config >> 16U) & U(0x7); |
| parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1, |
| input.odt); |
| parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1, |
| input.odt); |
| } |
| |
| /* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */ |
| if (dimm_param->rdimm != 0U) { |
| regs->sdram_cfg[0] &= ~(1 << 28U); |
| regs->sdram_cfg[1] &= ~(1 << 2U); |
| input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf); |
| input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf); |
| input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf); |
| input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf); |
| input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf); |
| input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf); |
| input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf); |
| input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf); |
| input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf); |
| input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf); |
| input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf); |
| input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf); |
| input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf); |
| input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf); |
| input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf); |
| input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf); |
| input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff); |
| } |
| |
| input.adv.odtimpedance = popts->odt ? popts->odt : 60; |
| input.adv.tx_impedance = popts->phy_tx_impedance ? |
| popts->phy_tx_impedance : 28; |
| input.adv.atx_impedance = popts->phy_atx_impedance ? |
| popts->phy_atx_impedance : 30; |
| |
| debug("Initializing input adv data structure\n"); |
| phy_gen2_init_input(&input); |
| |
| debug("Initializing message block\n"); |
| ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input); |
| if (ret != 0) { |
| ERROR("Init msg failed (error code %d)\n", ret); |
| return ret; |
| } |
| |
| ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d); |
| if (ret != 0) { |
| ERROR("Init PHY failed (error code %d)\n", ret); |
| return ret; |
| } |
| #ifdef NXP_WARM_BOOT |
| debug("Warm boot flag value %0x\n", priv->warm_boot_flag); |
| if (priv->warm_boot_flag == DDR_WARM_BOOT) { |
| debug("Restoring the Phy training data\n"); |
| // Restore the training data |
| ret = restore_phy_training_values(priv->phy, |
| PHY_TRAINING_REGS_ON_FLASH, |
| priv->num_ctlrs, |
| input.basic.train2d); |
| if (ret != 0) { |
| ERROR("Restoring of training data failed %d\n", ret); |
| return ret; |
| } |
| } else { |
| #endif |
| |
| debug("Load 1D firmware\n"); |
| ret = load_fw(priv->phy, &input, 0, &msg_1d, |
| sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf, |
| priv->img_loadr, priv->warm_boot_flag); |
| if (ret != 0) { |
| ERROR("Loading firmware failed (error code %d)\n", ret); |
| return ret; |
| } |
| |
| debug("Execute firmware\n"); |
| ret = g_exec_fw(priv->phy, 0, &input); |
| if (ret != 0) { |
| ERROR("Execution FW failed (error code %d)\n", ret); |
| } |
| |
| #ifdef NXP_APPLY_MAX_CDD |
| soc_info = get_soc_info(NXP_DCFG_ADDR); |
| if (soc_info->maj_ver == 2) { |
| tcfg0 = regs->timing_cfg[0]; |
| tcfg4 = regs->timing_cfg[4]; |
| rank = findrank(conf->cs_in_use); |
| get_cdd_val(priv->phy, rank, input.basic.frequency, |
| &tcfg0, &tcfg4); |
| regs->timing_cfg[0] = tcfg0; |
| regs->timing_cfg[4] = tcfg4; |
| } |
| #endif |
| |
| if ((ret == 0) && (input.basic.train2d != 0)) { |
| /* 2D training starts here */ |
| debug("Load 2D firmware\n"); |
| ret = load_fw(priv->phy, &input, 1, &msg_2d, |
| sizeof(struct ddr4u2d), |
| priv->phy_gen2_fw_img_buf, |
| priv->img_loadr, |
| priv->warm_boot_flag); |
| if (ret != 0) { |
| ERROR("Loading fw failed (err code %d)\n", ret); |
| } else { |
| debug("Execute 2D firmware\n"); |
| ret = g_exec_fw(priv->phy, 1, &input); |
| if (ret != 0) { |
| ERROR("Execution FW failed (err %d)\n", |
| ret); |
| } |
| } |
| } |
| #ifdef NXP_WARM_BOOT |
| if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED && |
| ret == 0) { |
| debug("save the phy training data\n"); |
| //Save training data TBD |
| ret = save_phy_training_values(priv->phy, |
| PHY_TRAINING_REGS_ON_FLASH, |
| priv->num_ctlrs, |
| input.basic.train2d); |
| if (ret != 0) { |
| ERROR("Saving training data failed."); |
| ERROR("Warm boot will fail. Error=%d.\n", ret); |
| } |
| } |
| } /* else */ |
| #endif |
| |
| if (ret == 0) { |
| debug("Load PIE\n"); |
| i_load_pie(priv->phy, &input, &msg_1d); |
| |
| NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n", |
| input.basic.dimm_type == RDIMM ? "RDIMM" : |
| input.basic.dimm_type == LRDIMM ? "LRDIMM" : |
| "UDIMM", |
| dimm_param->n_ranks, |
| dimm_param->primary_sdram_width, |
| dimm_param->device_width); |
| } |
| #ifdef DEBUG_DDR_INPUT_CONFIG |
| print_jason_format(&input, &msg_1d, &msg_2d); |
| #endif |
| |
| return ret; |
| } |