blob: 155f842e26fb6f41360061bd4e0230e608f1208d [file] [log] [blame]
/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform.h>
#include <string.h>
#include "psci_private.h"
/*
* SPD power management operations, expected to be supplied by the registered
* SPD on successful SP initialization
*/
const spd_pm_ops_t *psci_spd_pm;
/*******************************************************************************
* Grand array that holds the platform's topology information for state
* management of affinity instances. Each node (aff_map_node) in the array
* corresponds to an affinity instance e.g. cluster, cpu within an mpidr
******************************************************************************/
aff_map_node_t psci_aff_map[PSCI_NUM_AFFS]
__attribute__ ((section("tzfw_coherent_mem")));
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
const plat_pm_ops_t *psci_plat_pm_ops;
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr. It iterates through the nodes to find the highest
* affinity level which is marked as physically powered off.
******************************************************************************/
uint32_t psci_find_max_phys_off_afflvl(uint32_t start_afflvl,
uint32_t end_afflvl,
aff_map_node_t *mpidr_nodes[])
{
uint32_t max_afflvl = PSCI_INVALID_DATA;
for (; start_afflvl <= end_afflvl; start_afflvl++) {
if (mpidr_nodes[start_afflvl] == NULL)
continue;
if (psci_get_phys_state(mpidr_nodes[start_afflvl]) ==
PSCI_STATE_OFF)
max_afflvl = start_afflvl;
}
return max_afflvl;
}
/*******************************************************************************
* This function saves the highest affinity level which is in OFF state. The
* affinity instance with which the level is associated is determined by the
* caller.
******************************************************************************/
void psci_set_max_phys_off_afflvl(uint32_t afflvl)
{
set_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl, afflvl);
/*
* Ensure that the saved value is flushed to main memory and any
* speculatively pre-fetched stale copies are invalidated from the
* caches of other cpus in the same coherency domain. This ensures that
* the value can be safely read irrespective of the state of the data
* cache.
*/
flush_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl);
}
/*******************************************************************************
* This function reads the saved highest affinity level which is in OFF
* state. The affinity instance with which the level is associated is determined
* by the caller.
******************************************************************************/
uint32_t psci_get_max_phys_off_afflvl(void)
{
/*
* Ensure that the last update of this value in this cpu's cache is
* flushed to main memory and any speculatively pre-fetched stale copies
* are invalidated from the caches of other cpus in the same coherency
* domain. This ensures that the value is always read from the main
* memory when it was written before the data cache was enabled.
*/
flush_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl);
return get_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl);
}
/*******************************************************************************
* Routine to return the maximum affinity level to traverse to after a cpu has
* been physically powered up. It is expected to be called immediately after
* reset from assembler code.
******************************************************************************/
int get_power_on_target_afflvl()
{
int afflvl;
#if DEBUG
unsigned int state;
aff_map_node_t *node;
/* Retrieve our node from the topology tree */
node = psci_get_aff_map_node(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
MPIDR_AFFLVL0);
assert(node);
/*
* Sanity check the state of the cpu. It should be either suspend or "on
* pending"
*/
state = psci_get_state(node);
assert(state == PSCI_STATE_SUSPEND || state == PSCI_STATE_ON_PENDING);
#endif
/*
* Assume that this cpu was suspended and retrieve its target affinity
* level. If it is invalid then it could only have been turned off
* earlier. get_max_afflvl() will return the highest affinity level a
* cpu can be turned off to.
*/
afflvl = psci_get_suspend_afflvl();
if (afflvl == PSCI_INVALID_DATA)
afflvl = get_max_afflvl();
return afflvl;
}
/*******************************************************************************
* Simple routine to retrieve the maximum affinity level supported by the
* platform and check that it makes sense.
******************************************************************************/
int get_max_afflvl(void)
{
int aff_lvl;
aff_lvl = plat_get_max_afflvl();
assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);
return aff_lvl;
}
/*******************************************************************************
* Simple routine to set the id of an affinity instance at a given level in the
* mpidr.
******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
unsigned char aff_inst,
int aff_lvl)
{
unsigned long aff_shift;
assert(aff_lvl <= MPIDR_AFFLVL3);
/*
* Decide the number of bits to shift by depending upon
* the affinity level
*/
aff_shift = get_afflvl_shift(aff_lvl);
/* Clear the existing affinity instance & set the new one*/
mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
mpidr |= aff_inst << aff_shift;
return mpidr;
}
/*******************************************************************************
* This function sanity checks a range of affinity levels.
******************************************************************************/
int psci_check_afflvl_range(int start_afflvl, int end_afflvl)
{
/* Sanity check the parameters passed */
if (end_afflvl > get_max_afflvl())
return PSCI_E_INVALID_PARAMS;
if (start_afflvl < MPIDR_AFFLVL0)
return PSCI_E_INVALID_PARAMS;
if (end_afflvl < start_afflvl)
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr and the state which each node should transition
* to. It updates the state of each node between the specified affinity levels.
******************************************************************************/
void psci_do_afflvl_state_mgmt(uint32_t start_afflvl,
uint32_t end_afflvl,
aff_map_node_t *mpidr_nodes[],
uint32_t state)
{
uint32_t level;
for (level = start_afflvl; level <= end_afflvl; level++) {
if (mpidr_nodes[level] == NULL)
continue;
psci_set_state(mpidr_nodes[level], state);
}
}
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr. It picks up locks for each affinity level bottom
* up in the range specified.
******************************************************************************/
void psci_acquire_afflvl_locks(int start_afflvl,
int end_afflvl,
aff_map_node_t *mpidr_nodes[])
{
int level;
for (level = start_afflvl; level <= end_afflvl; level++) {
if (mpidr_nodes[level] == NULL)
continue;
bakery_lock_get(&mpidr_nodes[level]->lock);
}
}
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr. It releases the lock for each affinity level top
* down in the range specified.
******************************************************************************/
void psci_release_afflvl_locks(int start_afflvl,
int end_afflvl,
aff_map_node_t *mpidr_nodes[])
{
int level;
for (level = end_afflvl; level >= start_afflvl; level--) {
if (mpidr_nodes[level] == NULL)
continue;
bakery_lock_release(&mpidr_nodes[level]->lock);
}
}
/*******************************************************************************
* Simple routine to determine whether an affinity instance at a given level
* in an mpidr exists or not.
******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
aff_map_node_t *node;
node = psci_get_aff_map_node(mpidr, level);
if (node && (node->state & PSCI_AFF_PRESENT))
return PSCI_E_SUCCESS;
else
return PSCI_E_INVALID_PARAMS;
}
/*******************************************************************************
* This function determines the full entrypoint information for the requested
* PSCI entrypoint on power on/resume and saves this in the non-secure CPU
* cpu_context, ready for when the core boots.
******************************************************************************/
int psci_save_ns_entry(uint64_t mpidr,
uint64_t entrypoint, uint64_t context_id,
uint32_t ns_scr_el3, uint32_t ns_sctlr_el1)
{
uint32_t ep_attr, mode, sctlr, daif, ee;
entry_point_info_t ep;
sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if (sctlr & SCTLR_EE_BIT) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(&ep, PARAM_EP, VERSION_1, ep_attr);
ep.pc = entrypoint;
memset(&ep.args, 0, sizeof(ep.args));
ep.args.arg0 = context_id;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
if (ns_scr_el3 & SCR_RW_BIT) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if (entrypoint & 0x1)
return PSCI_E_INVALID_PARAMS;
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
ep.spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
} else {
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
ep.spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
}
/* initialise an entrypoint to set up the CPU context */
cm_init_context(mpidr, &ep);
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function takes a pointer to an affinity node in the topology tree and
* returns its state. State of a non-leaf node needs to be calculated.
******************************************************************************/
unsigned short psci_get_state(aff_map_node_t *node)
{
assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);
/* A cpu node just contains the state which can be directly returned */
if (node->level == MPIDR_AFFLVL0)
return (node->state >> PSCI_STATE_SHIFT) & PSCI_STATE_MASK;
/*
* For an affinity level higher than a cpu, the state has to be
* calculated. It depends upon the value of the reference count
* which is managed by each node at the next lower affinity level
* e.g. for a cluster, each cpu increments/decrements the reference
* count. If the reference count is 0 then the affinity level is
* OFF else ON.
*/
if (node->ref_count)
return PSCI_STATE_ON;
else
return PSCI_STATE_OFF;
}
/*******************************************************************************
* This function takes a pointer to an affinity node in the topology tree and
* a target state. State of a non-leaf node needs to be converted to a reference
* count. State of a leaf node can be set directly.
******************************************************************************/
void psci_set_state(aff_map_node_t *node, unsigned short state)
{
assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);
/*
* For an affinity level higher than a cpu, the state is used
* to decide whether the reference count is incremented or
* decremented. Entry into the ON_PENDING state does not have
* effect.
*/
if (node->level > MPIDR_AFFLVL0) {
switch (state) {
case PSCI_STATE_ON:
node->ref_count++;
break;
case PSCI_STATE_OFF:
case PSCI_STATE_SUSPEND:
node->ref_count--;
break;
case PSCI_STATE_ON_PENDING:
/*
* An affinity level higher than a cpu will not undergo
* a state change when it is about to be turned on
*/
return;
default:
assert(0);
}
} else {
node->state &= ~(PSCI_STATE_MASK << PSCI_STATE_SHIFT);
node->state |= (state & PSCI_STATE_MASK) << PSCI_STATE_SHIFT;
}
}
/*******************************************************************************
* An affinity level could be on, on_pending, suspended or off. These are the
* logical states it can be in. Physically either it is off or on. When it is in
* the state on_pending then it is about to be turned on. It is not possible to
* tell whether that's actually happenned or not. So we err on the side of
* caution & treat the affinity level as being turned off.
******************************************************************************/
unsigned short psci_get_phys_state(aff_map_node_t *node)
{
unsigned int state;
state = psci_get_state(node);
return get_phys_state(state);
}
/*******************************************************************************
* This function takes an array of pointers to affinity instance nodes in the
* topology tree and calls the physical power on handler for the corresponding
* affinity levels
******************************************************************************/
static int psci_call_power_on_handlers(aff_map_node_t *mpidr_nodes[],
int start_afflvl,
int end_afflvl,
afflvl_power_on_finisher_t *pon_handlers)
{
int rc = PSCI_E_INVALID_PARAMS, level;
aff_map_node_t *node;
for (level = end_afflvl; level >= start_afflvl; level--) {
node = mpidr_nodes[level];
if (node == NULL)
continue;
/*
* If we run into any trouble while powering up an
* affinity instance, then there is no recovery path
* so simply return an error and let the caller take
* care of the situation.
*/
rc = pon_handlers[level](node);
if (rc != PSCI_E_SUCCESS)
break;
}
return rc;
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* traverses through all the affinity levels performing generic, architectural,
* platform setup and state management e.g. for a cluster that's been powered
* on, it will call the platform specific code which will enable coherency at
* the interconnect level. For a cpu it could mean turning on the MMU etc.
*
* The state of all the relevant affinity levels is changed after calling the
* affinity level specific handlers as their actions would depend upon the state
* the affinity level is exiting from.
*
* The affinity level specific handlers are called in descending order i.e. from
* the highest to the lowest affinity level implemented by the platform because
* to turn on affinity level X it is neccesary to turn on affinity level X + 1
* first.
******************************************************************************/
void psci_afflvl_power_on_finish(int start_afflvl,
int end_afflvl,
afflvl_power_on_finisher_t *pon_handlers)
{
mpidr_aff_map_nodes_t mpidr_nodes;
int rc;
unsigned int max_phys_off_afflvl;
/*
* Collect the pointers to the nodes in the topology tree for
* each affinity instance in the mpidr. If this function does
* not return successfully then either the mpidr or the affinity
* levels are incorrect. Either case is an irrecoverable error.
*/
rc = psci_get_aff_map_nodes(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
start_afflvl,
end_afflvl,
mpidr_nodes);
if (rc != PSCI_E_SUCCESS)
panic();
/*
* This function acquires the lock corresponding to each affinity
* level so that by the time all locks are taken, the system topology
* is snapshot and state management can be done safely.
*/
psci_acquire_afflvl_locks(start_afflvl,
end_afflvl,
mpidr_nodes);
max_phys_off_afflvl = psci_find_max_phys_off_afflvl(start_afflvl,
end_afflvl,
mpidr_nodes);
assert(max_phys_off_afflvl != PSCI_INVALID_DATA);
/*
* Stash the highest affinity level that will come out of the OFF or
* SUSPEND states.
*/
psci_set_max_phys_off_afflvl(max_phys_off_afflvl);
/* Perform generic, architecture and platform specific handling */
rc = psci_call_power_on_handlers(mpidr_nodes,
start_afflvl,
end_afflvl,
pon_handlers);
if (rc != PSCI_E_SUCCESS)
panic();
/*
* This function updates the state of each affinity instance
* corresponding to the mpidr in the range of affinity levels
* specified.
*/
psci_do_afflvl_state_mgmt(start_afflvl,
end_afflvl,
mpidr_nodes,
PSCI_STATE_ON);
/*
* Invalidate the entry for the highest affinity level stashed earlier.
* This ensures that any reads of this variable outside the power
* up/down sequences return PSCI_INVALID_DATA
*/
psci_set_max_phys_off_afflvl(PSCI_INVALID_DATA);
/*
* This loop releases the lock corresponding to each affinity level
* in the reverse order to which they were acquired.
*/
psci_release_afflvl_locks(start_afflvl,
end_afflvl,
mpidr_nodes);
}
/*******************************************************************************
* This function initializes the set of hooks that PSCI invokes as part of power
* management operation. The power management hooks are expected to be provided
* by the SPD, after it finishes all its initialization
******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
psci_spd_pm = pm;
}
/*******************************************************************************
* This function prints the state of all affinity instances present in the
* system
******************************************************************************/
void psci_print_affinity_map(void)
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
aff_map_node_t *node;
unsigned int idx;
/* This array maps to the PSCI_STATE_X definitions in psci.h */
static const char *psci_state_str[] = {
"ON",
"OFF",
"ON_PENDING",
"SUSPEND"
};
INFO("PSCI Affinity Map:\n");
for (idx = 0; idx < PSCI_NUM_AFFS ; idx++) {
node = &psci_aff_map[idx];
if (!(node->state & PSCI_AFF_PRESENT)) {
continue;
}
INFO(" AffInst: Level %u, MPID 0x%lx, State %s\n",
node->level, node->mpidr,
psci_state_str[psci_get_state(node)]);
}
#endif
}