blob: 9a79744d5b12dc06f44cdff594ed87297065df40 [file] [log] [blame]
/*
* Copyright (c) 2016-2020, Broadcom
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <drivers/arm/sp805.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <chimp.h>
#include <chip_id.h>
#include <cmn_plat_util.h>
#include <dmu.h>
#include <emmc_api.h>
#include <fru.h>
#ifdef USE_GPIO
#include <drivers/gpio.h>
#include <iproc_gpio.h>
#endif
#include <platform_def.h>
#include <sotp.h>
#include <swreg.h>
#include <sr_utils.h>
#ifdef USE_DDR
#include <ddr_init.h>
#else
#include <ext_sram_init.h>
#endif
#if DRIVER_OCOTP_ENABLE
#include <ocotp.h>
#endif
#include "board_info.h"
#define WORD_SIZE 8
#define SWREG_AVS_OTP_OFFSET (13 * WORD_SIZE) /* 13th row byte offset */
#define AON_GPIO_OTP_OFFSET (28 * WORD_SIZE) /* 28th row byte offset */
#define BYTES_TO_READ 8
/* OTP voltage step definitions */
#define MVOLT_STEP_MAX 0x18 /* 1v */
#define MVOLT_PER_STEP 10 /* 0.01mv per step */
#define MVOLT_BASE 760 /* 0.76v */
#define STEP_TO_UVOLTS(step) \
((MVOLT_BASE + (MVOLT_PER_STEP * (step))) * 1000)
#define GET_BITS(first, last, data) \
((data >> first) & ((1 << (last - first + 1)) - 1))
/*
* SW-REG OTP encoding:
*
* SWREG_bits[11:0] = OTP 13th row 12 bits[55:44]
* SWREG_bits[11:10] - Valid Bits (0x2 - valid, if not 0x2 - Invalid)
* SWREG_bits[9:5] - iHost03, iHost12
* SWREG_bits[4:0] - Core VDDC
*/
#define SWREG_OTP_BITS_START 12 /* 44th bit in MSB 32-bits */
#define SWREG_OTP_BITS_END 23 /* 55th bit in MSB 32-bits */
#define SWREG_VDDC_FIELD_START 0
#define SWREG_VDDC_FIELD_END 4
#define SWREG_IHOST_FIELD_START 5
#define SWREG_IHOST_FIELD_END 9
#define SWREG_VALID_BIT_START 10
#define SWREG_VALID_BIT_END 11
#define SWREG_VALID_BITS 0x2
/*
* Row 13 bit 56 is programmed as '1' today. It is not being used, so plan
* is to flip this bit to '0' for B1 rev. Hence SW can leverage this bit
* to identify Bx chip to program different sw-regulators.
*/
#define SPARE_BIT 24
#define IS_SR_B0(data) (((data) >> SPARE_BIT) & 0x1)
#if DRIVER_OCOTP_ENABLE
static struct otpc_map otp_stingray_map = {
.otpc_row_size = 2,
.data_r_offset = {0x10, 0x5c},
.data_w_offset = {0x2c, 0x64},
.word_size = 8,
.stride = 8,
};
#endif
void plat_bcm_bl2_early_platform_setup(void)
{
/* Select UART0 for AP via mux setting*/
if (PLAT_BRCM_BOOT_UART_BASE == UART0_BASE_ADDR) {
mmio_write_32(UART0_SIN_MODE_SEL_CONTROL, 1);
mmio_write_32(UART0_SOUT_MODE_SEL_CONTROL, 1);
}
}
#ifdef USE_NAND
static void brcm_stingray_nand_init(void)
{
unsigned int val;
unsigned int nand_idm_reset_control = 0x68e0a800;
VERBOSE(" stingray nand init start.\n");
/* Reset NAND */
VERBOSE(" - reset nand\n");
val = mmio_read_32((uintptr_t)(nand_idm_reset_control + 0x0));
mmio_write_32((uintptr_t)(nand_idm_reset_control + 0x0), val | 0x1);
udelay(500);
val = mmio_read_32((uintptr_t)(nand_idm_reset_control + 0x0));
mmio_write_32((uintptr_t)(nand_idm_reset_control + 0x0), val & ~0x1);
udelay(500);
VERBOSE(" stingray nand init done.\n");
}
#endif
#if defined(USE_PAXB) || defined(USE_PAXC) || defined(USE_SATA)
#define PCIE_RESCAL_CFG_0 0x40000130
#define PCIE_CFG_RESCAL_RSTB_R (1 << 16)
#define PCIE_CFG_RESCAL_PWRDNB_R (1 << 8)
#define PCIE_RESCAL_STATUS_0 0x4000014c
#define PCIE_STAT_PON_VALID_R (1 << 0)
#define PCIE_RESCAL_OUTPUT_STATUS 0x40000154
#define CDRU_PCIE_RESET_N_R (1 << CDRU_MISC_RESET_CONTROL__CDRU_PCIE_RESET_N_R)
#ifdef EMULATION_SETUP
static void brcm_stingray_pcie_reset(void)
{
}
#else
static void brcm_stingray_pcie_reset(void)
{
unsigned int data;
int try;
if (bcm_chimp_is_nic_mode()) {
INFO("NIC mode detected; PCIe reset/rescal not executed\n");
return;
}
mmio_clrbits_32(CDRU_MISC_RESET_CONTROL, CDRU_PCIE_RESET_N_R);
mmio_setbits_32(CDRU_MISC_RESET_CONTROL, CDRU_PCIE_RESET_N_R);
/* Release reset */
mmio_setbits_32(PCIE_RESCAL_CFG_0, PCIE_CFG_RESCAL_RSTB_R);
mdelay(1);
/* Power UP */
mmio_setbits_32(PCIE_RESCAL_CFG_0,
(PCIE_CFG_RESCAL_RSTB_R | PCIE_CFG_RESCAL_PWRDNB_R));
try = 1000;
do {
udelay(1);
data = mmio_read_32(PCIE_RESCAL_STATUS_0);
try--;
} while ((data & PCIE_STAT_PON_VALID_R) == 0x0 && (try > 0));
if (try <= 0)
ERROR("PCIE_RESCAL_STATUS_0: 0x%x\n", data);
VERBOSE("PCIE_SATA_RESCAL_STATUS_0 0x%x.\n",
mmio_read_32(PCIE_RESCAL_STATUS_0));
VERBOSE("PCIE_SATA_RESCAL_OUTPUT_STATUS 0x%x.\n",
mmio_read_32(PCIE_RESCAL_OUTPUT_STATUS));
INFO("PCIE SATA Rescal Init done\n");
}
#endif /* EMULATION_SETUP */
#endif /* USE_PAXB || USE_PAXC || USE_SATA */
#ifdef USE_PAXC
void brcm_stingray_chimp_check_and_fastboot(void)
{
int fastboot_init_result;
if (bcm_chimp_is_nic_mode())
/* Do not wait here */
return;
#if WARMBOOT_DDR_S3_SUPPORT
/*
* Currently DDR shmoo parameters and QSPI boot source are
* tied. DDR shmoo parameters are stored in QSPI, which is
* used for warmboot.
* Do not reset nitro for warmboot
*/
if (is_warmboot() && (boot_source_get() == BOOT_SOURCE_QSPI))
return;
#endif /* WARMBOOT_DDR_S3_SUPPORT */
/*
* Not in NIC mode,
* initiate fastboot (if enabled)
*/
if (FASTBOOT_TYPE == CHIMP_FASTBOOT_NITRO_RESET) {
VERBOSE("Bring up Nitro/ChiMP\n");
if (boot_source_get() == BOOT_SOURCE_QSPI)
WARN("Nitro boots from QSPI when AP has booted from QSPI.\n");
brcm_stingray_set_qspi_mux(0);
VERBOSE("Nitro controls the QSPI\n");
}
fastboot_init_result = bcm_chimp_initiate_fastboot(FASTBOOT_TYPE);
if (fastboot_init_result && boot_source_get() != BOOT_SOURCE_QSPI)
ERROR("Nitro init error %d. Status: 0x%x; bpe_mod reg: 0x%x\n"
"fastboot register: 0x%x; handshake register 0x%x\n",
fastboot_init_result,
bcm_chimp_read_ctrl(CHIMP_REG_CTRL_BPE_STAT_REG),
bcm_chimp_read_ctrl(CHIMP_REG_CTRL_BPE_MODE_REG),
bcm_chimp_read_ctrl(CHIMP_REG_CTRL_FSTBOOT_PTR_REG),
bcm_chimp_read(CHIMP_REG_ECO_RESERVED));
/*
* CRMU watchdog kicks is an example, which is L1 reset,
* does not clear Nitro scratch pad ram.
* For Nitro resets: Clear the Nitro health status memory.
*/
bcm_chimp_write((CHIMP_REG_CHIMP_SCPAD + CHIMP_HEALTH_STATUS_OFFSET),
0);
}
#endif
void set_ihost_vddc_swreg(uint32_t ihost_uvolts, uint32_t vddc_uvolts)
{
NOTICE("ihost_uvolts: %duv, vddc_uvolts: %duv\n",
ihost_uvolts, vddc_uvolts);
set_swreg(VDDC_CORE, vddc_uvolts);
set_swreg(IHOST03, ihost_uvolts);
set_swreg(IHOST12, ihost_uvolts);
}
/*
* Reads SWREG AVS OTP bits (13th row) with ECC enabled and get voltage
* defined in OTP if valid OTP is found
*/
void read_avs_otp_bits(uint32_t *ihost_uvolts, uint32_t *vddc_uvolts)
{
uint32_t offset = SWREG_AVS_OTP_OFFSET;
uint32_t ihost_step, vddc_step;
uint32_t avs_bits;
uint32_t buf[2];
if (bcm_otpc_read(offset, &buf[0], BYTES_TO_READ, 1) == -1)
return;
VERBOSE("AVS OTP %d ROW: 0x%x.0x%x\n",
offset/WORD_SIZE, buf[1], buf[0]);
/* get voltage readings from AVS OTP bits */
avs_bits = GET_BITS(SWREG_OTP_BITS_START,
SWREG_OTP_BITS_END,
buf[1]);
/* check for valid otp bits */
if (GET_BITS(SWREG_VALID_BIT_START, SWREG_VALID_BIT_END, avs_bits) !=
SWREG_VALID_BITS) {
WARN("Invalid AVS OTP bits at %d row\n", offset/WORD_SIZE);
return;
}
/* get ihost and vddc step value */
vddc_step = GET_BITS(SWREG_VDDC_FIELD_START,
SWREG_VDDC_FIELD_END,
avs_bits);
ihost_step = GET_BITS(SWREG_IHOST_FIELD_START,
SWREG_IHOST_FIELD_END,
avs_bits);
if ((ihost_step > MVOLT_STEP_MAX) || (vddc_step > MVOLT_STEP_MAX)) {
WARN("OTP entry invalid\n");
return;
}
/* get voltage in micro-volts */
*ihost_uvolts = STEP_TO_UVOLTS(ihost_step);
*vddc_uvolts = STEP_TO_UVOLTS(vddc_step);
}
/*
* This api reads otp bits and program internal swreg's - ihos12, ihost03,
* vddc_core and ddr_core based on different chip. External swreg's
* programming will be done from crmu.
*
* For A2 chip:
* Read OTP row 20, bit 50. This bit will be set for A2 chip. Once A2 chip is
* found, read AVS OTP row 13, 12bits[55:44], if valid otp bits are found
* then set ihost and vddc according to avs otp bits else set them to 0.94v
* and 0.91v respectively. Also update the firmware after setting voltage.
*
* For B0 chip:
* Read OTP row 13, bit 56. This bit will be set for B0 chip. Once B0 chip is
* found then set ihost and vddc to 0.95v and ddr_core to 1v. No AVS OTP bits
* are used get ihost/vddc voltages.
*
* For B1 chip:
* Read AVS OTP row 13, 12bits[55:44], if valid otp bits are found then set
* ihost and vddc according to avs otp bits else set them to 0.94v and 0.91v
* respectively.
*/
void set_swreg_based_on_otp(void)
{
/* default voltage if no valid OTP */
uint32_t vddc_uvolts = VDDC_CORE_DEF_VOLT;
uint32_t ihost_uvolts = IHOST_DEF_VOLT;
uint32_t ddrc_uvolts;
uint32_t offset;
uint32_t buf[2];
offset = SWREG_AVS_OTP_OFFSET;
if (bcm_otpc_read(offset, &buf[0], BYTES_TO_READ, 1) == -1)
return;
VERBOSE("OTP %d ROW: 0x%x.0x%x\n",
offset/WORD_SIZE, buf[1], buf[0]);
if (IS_SR_B0(buf[1])) {
/* don't read AVS OTP for B0 */
ihost_uvolts = B0_IHOST_DEF_VOLT;
vddc_uvolts = B0_VDDC_CORE_DEF_VOLT;
ddrc_uvolts = B0_DDR_VDDC_DEF_VOLT;
} else {
read_avs_otp_bits(&ihost_uvolts, &vddc_uvolts);
}
#if (IHOST_REG_TYPE == IHOST_REG_INTEGRATED) && \
(VDDC_REG_TYPE == VDDC_REG_INTEGRATED)
/* enable IHOST12 cluster before changing voltage */
NOTICE("Switching on the Regulator idx: %u\n",
SWREG_IHOST1_DIS);
mmio_clrsetbits_32(CRMU_SWREG_CTRL_ADDR,
BIT(SWREG_IHOST1_DIS),
BIT(SWREG_IHOST1_REG_RESETB));
/* wait for regulator supply gets stable */
while (!(mmio_read_32(CRMU_SWREG_STATUS_ADDR) &
(1 << SWREG_IHOST1_PMU_STABLE)))
;
INFO("Regulator supply got stable\n");
#ifndef DEFAULT_SWREG_CONFIG
swreg_firmware_update();
#endif
set_ihost_vddc_swreg(ihost_uvolts, vddc_uvolts);
#endif
if (IS_SR_B0(buf[1])) {
NOTICE("ddrc_uvolts: %duv\n", ddrc_uvolts);
set_swreg(DDR_VDDC, ddrc_uvolts);
}
}
#ifdef USE_DDR
static struct ddr_info ddr_info;
#endif
#ifdef USE_FRU
static struct fru_area_info fru_area[FRU_MAX_NR_AREAS];
static struct fru_board_info board_info;
static struct fru_time fru_tm;
static uint8_t fru_tbl[BCM_MAX_FRU_LEN];
static void board_detect_fru(void)
{
uint32_t i, result;
int ret = -1;
result = bcm_emmc_init(false);
if (!result) {
ERROR("eMMC init failed\n");
return;
}
/* go through eMMC boot partitions looking for FRU table */
for (i = EMMC_BOOT_PARTITION1; i <= EMMC_BOOT_PARTITION2; i++) {
result = emmc_partition_select(i);
if (!result) {
ERROR("Switching to eMMC part %u failed\n", i);
return;
}
result = emmc_read(BCM_FRU_TBL_OFFSET, (uintptr_t)fru_tbl,
BCM_MAX_FRU_LEN, BCM_MAX_FRU_LEN);
if (!result) {
ERROR("Failed to read from eMMC part %u\n", i);
return;
}
/*
* Run sanity check and checksum to make sure valid FRU table
* is detected
*/
ret = fru_validate(fru_tbl, fru_area);
if (ret < 0) {
WARN("FRU table not found in eMMC part %u\n", i);
continue;
}
/* parse DDR information from FRU table */
ret = fru_parse_ddr(fru_tbl, &fru_area[FRU_AREA_INTERNAL],
&ddr_info);
if (ret < 0) {
WARN("No FRU DDR info found in eMMC part %u\n", i);
continue;
}
/* parse board information from FRU table */
ret = fru_parse_board(fru_tbl, &fru_area[FRU_AREA_BOARD_INFO],
&board_info);
if (ret < 0) {
WARN("No FRU board info found in eMMC part %u\n", i);
continue;
}
/* if we reach here, valid FRU table is parsed */
break;
}
if (ret < 0) {
WARN("FRU table missing for this board\n");
return;
}
for (i = 0; i < BCM_MAX_NR_DDR; i++) {
INFO("DDR channel index: %d\n", ddr_info.mcb[i].idx);
INFO("DDR size %u GB\n", ddr_info.mcb[i].size_mb / 1024);
INFO("DDR ref ID by SW (Not MCB Ref ID) 0x%x\n",
ddr_info.mcb[i].ref_id);
}
fru_format_time(board_info.mfg_date, &fru_tm);
INFO("**** FRU board information ****\n");
INFO("Language 0x%x\n", board_info.lang);
INFO("Manufacturing Date %u.%02u.%02u, %02u:%02u\n",
fru_tm.year, fru_tm.month, fru_tm.day,
fru_tm.hour, fru_tm.min);
INFO("Manufacturing Date(Raw) 0x%x\n", board_info.mfg_date);
INFO("Manufacturer %s\n", board_info.manufacturer);
INFO("Product Name %s\n", board_info.product_name);
INFO("Serial number %s\n", board_info.serial_number);
INFO("Part number %s\n", board_info.part_number);
INFO("File ID %s\n", board_info.file_id);
}
#endif /* USE_FRU */
#ifdef USE_GPIO
#define INVALID_GPIO 0xffff
static const int gpio_cfg_bitmap[MAX_NR_GPIOS] = {
#ifdef BRD_DETECT_GPIO_BIT0
BRD_DETECT_GPIO_BIT0,
#else
INVALID_GPIO,
#endif
#ifdef BRD_DETECT_GPIO_BIT1
BRD_DETECT_GPIO_BIT1,
#else
INVALID_GPIO,
#endif
#ifdef BRD_DETECT_GPIO_BIT2
BRD_DETECT_GPIO_BIT2,
#else
INVALID_GPIO,
#endif
#ifdef BRD_DETECT_GPIO_BIT3
BRD_DETECT_GPIO_BIT3,
#else
INVALID_GPIO,
#endif
};
static uint8_t gpio_bitmap;
/*
* Use an odd number to avoid potential conflict with public GPIO level
* defines
*/
#define GPIO_STATE_FLOAT 15
/*
* If GPIO_SUPPORT_FLOAT_DETECTION is disabled, simply return GPIO level
*
* If GPIO_SUPPORT_FLOAT_DETECTION is enabled, add additional test for possible
* pin floating (unconnected) scenario. This support is assuming externally
* applied pull up / pull down will have a stronger pull than the internal pull
* up / pull down.
*/
static uint8_t gpio_get_state(int gpio)
{
uint8_t val;
/* set direction to GPIO input */
gpio_set_direction(gpio, GPIO_DIR_IN);
#ifndef GPIO_SUPPORT_FLOAT_DETECTION
if (gpio_get_value(gpio) == GPIO_LEVEL_HIGH)
val = GPIO_LEVEL_HIGH;
else
val = GPIO_LEVEL_LOW;
return val;
#else
/*
* Enable internal pull down. If GPIO level is still high, there must
* be an external pull up
*/
gpio_set_pull(gpio, GPIO_PULL_DOWN);
if (gpio_get_value(gpio) == GPIO_LEVEL_HIGH) {
val = GPIO_LEVEL_HIGH;
goto exit;
}
/*
* Enable internal pull up. If GPIO level is still low, there must
* be an external pull down
*/
gpio_set_pull(gpio, GPIO_PULL_UP);
if (gpio_get_value(gpio) == GPIO_LEVEL_LOW) {
val = GPIO_LEVEL_LOW;
goto exit;
}
/* if reached here, the pin must be not connected */
val = GPIO_STATE_FLOAT;
exit:
/* make sure internall pull is disabled */
if (gpio_get_pull(gpio) != GPIO_PULL_NONE)
gpio_set_pull(gpio, GPIO_PULL_NONE);
return val;
#endif
}
static void board_detect_gpio(void)
{
unsigned int i, val;
int gpio;
iproc_gpio_init(IPROC_GPIO_S_BASE, IPROC_GPIO_NR,
IPROC_IOPAD_MODE_BASE, HSLS_IOPAD_BASE);
gpio_bitmap = 0;
for (i = 0; i < MAX_NR_GPIOS; i++) {
if (gpio_cfg_bitmap[i] == INVALID_GPIO)
continue;
/*
* Construct the bitmap based on GPIO value. Floating pin
* detection is a special case. As soon as a floating pin is
* detected, a special value of MAX_GPIO_BITMAP_VAL is
* assigned and we break out of the loop immediately
*/
gpio = gpio_cfg_bitmap[i];
val = gpio_get_state(gpio);
if (val == GPIO_STATE_FLOAT) {
gpio_bitmap = MAX_GPIO_BITMAP_VAL;
break;
}
if (val == GPIO_LEVEL_HIGH)
gpio_bitmap |= BIT(i);
}
memcpy(&ddr_info, &gpio_ddr_info[gpio_bitmap], sizeof(ddr_info));
INFO("Board detection GPIO bitmap = 0x%x\n", gpio_bitmap);
}
#endif /* USE_GPIO */
static void bcm_board_detect(void)
{
#ifdef DDR_LEGACY_MCB_SUPPORTED
/* Loading default DDR info */
memcpy(&ddr_info, &default_ddr_info, sizeof(ddr_info));
#endif
#ifdef USE_FRU
board_detect_fru();
#endif
#ifdef USE_GPIO
board_detect_gpio();
#endif
}
static void dump_persistent_regs(void)
{
NOTICE("pr0: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG0));
NOTICE("pr1: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG1));
NOTICE("pr2: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG2));
NOTICE("pr3: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG3));
NOTICE("pr4: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG4));
NOTICE("pr5: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG5));
NOTICE("pr6: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG6));
NOTICE("pr7: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG7));
NOTICE("pr8: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG8));
NOTICE("pr9: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG9));
NOTICE("pr10: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG10));
NOTICE("pr11: %x\n", mmio_read_32(CRMU_IHOST_SW_PERSISTENT_REG11));
}
void plat_bcm_bl2_plat_arch_setup(void)
{
if (chip_get_rev_id_major() == CHIP_REV_MAJOR_AX) {
if (!(sotp_mem_read(SOTP_ATF_CFG_ROW_ID, SOTP_ROW_NO_ECC) &
SOTP_ATF_WATCHDOG_ENABLE_MASK)) {
/*
* Stop sp805 watchdog timer immediately.
* It might has been set up by MCU patch earlier for
* eMMC workaround.
*
* Note the watchdog timer started in CRMU has a very
* short timeout and needs to be stopped immediately.
* Down below we restart it with a much longer timeout
* for BL2 and BL31
*/
sp805_stop(ARM_SP805_TWDG_BASE);
}
}
#if !BRCM_DISABLE_TRUSTED_WDOG
/*
* start secure watchdog for BL2 and BL31.
* Note that UART download can take a longer time,
* so do not allow watchdog for UART download,
* as this boot source is not a standard modus operandi.
*/
if (boot_source_get() != BOOT_SOURCE_UART)
sp805_start(ARM_SP805_TWDG_BASE, ARM_TWDG_LOAD_VAL);
#endif
#ifdef BCM_ELOG
/* Ensure logging is started out fresh in BL2. */
mmio_write_32(BCM_ELOG_BL2_BASE, 0);
#endif
/*
* In BL2, since we have very limited space to store logs, we only
* save logs that are >= the WARNING level.
*/
bcm_elog_init((void *)BCM_ELOG_BL2_BASE, BCM_ELOG_BL2_SIZE,
LOG_LEVEL_WARNING);
dump_persistent_regs();
/* Read CRMU mailbox 0 */
NOTICE("RESET (reported by CRMU): 0x%x\n",
mmio_read_32(CRMU_READ_MAIL_BOX0));
/*
* All non-boot-source PADs are in forced input-mode at
* reset so clear the force on non-boot-source PADs using
* CDRU register.
*/
mmio_clrbits_32((uintptr_t)CDRU_CHIP_IO_PAD_CONTROL,
(1 << CDRU_CHIP_IO_PAD_CONTROL__CDRU_IOMUX_FORCE_PAD_IN_R));
#if DRIVER_OCOTP_ENABLE
bcm_otpc_init(&otp_stingray_map);
#endif
set_swreg_based_on_otp();
#if IHOST_PLL_FREQ != 0
bcm_set_ihost_pll_freq(0x0, IHOST_PLL_FREQ);
#endif
#ifdef INCLUDE_EMMC_DRIVER_ERASE_CODE
/* The erasable unit of the eMMC is the "Erase Group";
* Erase group is measured in write blocks which are the
* basic writable units of the Device.
* The size of the Erase Group is a Device specific parameter
*/
emmc_erase(EMMC_ERASE_START_BLOCK, EMMC_ERASE_BLOCK_COUNT,
EMMC_ERASE_PARTITION);
#endif
bcm_board_detect();
#ifdef DRIVER_EMMC_ENABLE
/* Initialize the card, if it is not */
if (bcm_emmc_init(true) < 0)
WARN("eMMC Card Initialization Failed!!!\n");
#endif
#if BL2_TEST_I2C
i2c_test();
#endif
#ifdef USE_DDR
ddr_initialize(&ddr_info);
ddr_secure_region_config(SECURE_DDR_BASE_ADDRESS,
SECURE_DDR_END_ADDRESS);
#ifdef NITRO_SECURE_ACCESS
ddr_secure_region_config(DDR_NITRO_SECURE_REGION_START,
DDR_NITRO_SECURE_REGION_END);
#endif
#else
ext_sram_init();
#endif
#if BL2_TEST_MEM
ddr_test();
#endif
#ifdef USE_NAND
brcm_stingray_nand_init();
#endif
#if defined(USE_PAXB) || defined(USE_PAXC) || defined(USE_SATA)
brcm_stingray_pcie_reset();
#endif
#ifdef USE_PAXC
if (boot_source_get() != BOOT_SOURCE_QSPI)
brcm_stingray_chimp_check_and_fastboot();
#endif
#if ((!CLEAN_DDR || MMU_DISABLED))
/*
* Now DDR has been initialized. We want to copy all the logs in SRAM
* into DDR so we will have much more space to store the logs in the
* next boot stage
*/
bcm_elog_copy_log((void *)BCM_ELOG_BL31_BASE,
MIN(BCM_ELOG_BL2_SIZE, BCM_ELOG_BL31_SIZE)
);
/*
* We are not yet at the end of BL2, but we can stop log here so we do
* not need to add 'bcm_elog_exit' to the standard BL2 code. The
* benefit of capturing BL2 logs after this is very minimal in a
* production system
* NOTE: BL2 logging must be exited before going forward to setup
* page tables
*/
bcm_elog_exit();
#endif
}