blob: 6e8251d5306c88ce79ebe0e933213873b36361ba [file] [log] [blame]
/*
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
#include "gicv3_private.h"
/*
* Accessor to read the GIC Distributor IGRPMODR corresponding to the
* interrupt `id`, 32 interrupt IDs at a time.
*/
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned n = id >> IGRPMODR_SHIFT;
return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
}
/*
* Accessor to write the GIC Distributor IGRPMODR corresponding to the
* interrupt `id`, 32 interrupt IDs at a time.
*/
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
{
unsigned n = id >> IGRPMODR_SHIFT;
mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
}
/*
* Accessor to get the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
return (reg_val >> bit_num) & 0x1;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
}
/*
* Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
* interrupt `id`, 4 interrupts IDs at a time.
*/
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
{
unsigned n = id >> IPRIORITYR_SHIFT;
return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
}
/*
* Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
* interrupt `id`, 4 interrupts IDs at a time.
*/
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
{
unsigned n = id >> IPRIORITYR_SHIFT;
mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
}
/*
* Accessor to get the bit corresponding to interrupt ID
* from GIC Re-distributor IGROUPR0.
*/
unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
unsigned int reg_val = gicr_read_igroupr0(base);
return (reg_val >> bit_num) & 0x1;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor IGROUPR0.
*/
void gicr_set_igroupr0(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
unsigned int reg_val = gicr_read_igroupr0(base);
gicr_write_igroupr0(base, reg_val | (1 << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Re-distributor IGROUPR0.
*/
void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
unsigned int reg_val = gicr_read_igroupr0(base);
gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
}
/*
* Accessor to get the bit corresponding to interrupt ID
* from GIC Re-distributor IGRPMODR0.
*/
unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
unsigned int reg_val = gicr_read_igrpmodr0(base);
return (reg_val >> bit_num) & 0x1;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor IGRPMODR0.
*/
void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
unsigned int reg_val = gicr_read_igrpmodr0(base);
gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Re-distributor IGRPMODR0.
*/
void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
unsigned int reg_val = gicr_read_igrpmodr0(base);
gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor ISENABLER0.
*/
void gicr_set_isenabler0(uintptr_t base, unsigned int id)
{
unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
gicr_write_isenabler0(base, (1 << bit_num));
}
/******************************************************************************
* This function marks the core as awake in the re-distributor and
* ensures that the interface is active.
*****************************************************************************/
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
{
/*
* The WAKER_PS_BIT should be changed to 0
* only when WAKER_CA_BIT is 1.
*/
assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
/* Mark the connected core as awake */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 0 */
while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
;
}
/******************************************************************************
* This function marks the core as asleep in the re-distributor and ensures
* that the interface is quiescent.
*****************************************************************************/
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
{
/* Mark the connected core as asleep */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 1 */
while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
;
}
/*******************************************************************************
* This function probes the Redistributor frames when the driver is initialised
* and saves their base addresses. These base addresses are used later to
* initialise each Redistributor interface.
******************************************************************************/
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
unsigned int rdistif_num,
uintptr_t gicr_base,
mpidr_hash_fn mpidr_to_core_pos)
{
unsigned long mpidr;
unsigned int proc_num;
unsigned long long typer_val;
uintptr_t rdistif_base = gicr_base;
assert(rdistif_base_addrs);
/*
* Iterate over the Redistributor frames. Store the base address of each
* frame in the platform provided array. Use the "Processor Number"
* field to index into the array if the platform has not provided a hash
* function to convert an MPIDR (obtained from the "Affinity Value"
* field into a linear index.
*/
do {
typer_val = gicr_read_typer(rdistif_base);
if (mpidr_to_core_pos) {
mpidr = mpidr_from_gicr_typer(typer_val);
proc_num = mpidr_to_core_pos(mpidr);
} else {
proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
TYPER_PROC_NUM_MASK;
}
assert(proc_num < rdistif_num);
rdistif_base_addrs[proc_num] = rdistif_base;
rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
} while (!(typer_val & TYPER_LAST_BIT));
}
/*******************************************************************************
* Helper function to configure the default attributes of SPIs.
******************************************************************************/
void gicv3_spis_configure_defaults(uintptr_t gicd_base)
{
unsigned int index, num_ints;
num_ints = gicd_read_typer(gicd_base);
num_ints &= TYPER_IT_LINES_NO_MASK;
num_ints = (num_ints + 1) << 5;
/*
* Treat all SPIs as G1NS by default. The number of interrupts is
* calculated as 32 * (IT_LINES + 1). We do 32 at a time.
*/
for (index = MIN_SPI_ID; index < num_ints; index += 32)
gicd_write_igroupr(gicd_base, index, ~0U);
/* Setup the default SPI priorities doing four at a time */
for (index = MIN_SPI_ID; index < num_ints; index += 4)
gicd_write_ipriorityr(gicd_base,
index,
GICD_IPRIORITYR_DEF_VAL);
/*
* Treat all SPIs as level triggered by default, write 16 at
* a time
*/
for (index = MIN_SPI_ID; index < num_ints; index += 16)
gicd_write_icfgr(gicd_base, index, 0);
}
/*******************************************************************************
* Helper function to configure secure G0 and G1S SPIs.
******************************************************************************/
void gicv3_secure_spis_configure(uintptr_t gicd_base,
unsigned int num_ints,
const unsigned int *sec_intr_list,
unsigned int int_grp)
{
unsigned int index, irq_num;
uint64_t gic_affinity_val;
assert((int_grp == INT_TYPE_G1S) || (int_grp == INT_TYPE_G0));
/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
assert(num_ints ? (uintptr_t)sec_intr_list : 1);
for (index = 0; index < num_ints; index++) {
irq_num = sec_intr_list[index];
if (irq_num >= MIN_SPI_ID) {
/* Configure this interrupt as a secure interrupt */
gicd_clr_igroupr(gicd_base, irq_num);
/* Configure this interrupt as G0 or a G1S interrupt */
if (int_grp == INT_TYPE_G1S)
gicd_set_igrpmodr(gicd_base, irq_num);
else
gicd_clr_igrpmodr(gicd_base, irq_num);
/* Set the priority of this interrupt */
gicd_write_ipriorityr(gicd_base,
irq_num,
GIC_HIGHEST_SEC_PRIORITY);
/* Target SPIs to the primary CPU */
gic_affinity_val =
gicd_irouter_val_from_mpidr(read_mpidr(), 0);
gicd_write_irouter(gicd_base,
irq_num,
gic_affinity_val);
/* Enable this interrupt */
gicd_set_isenabler(gicd_base, irq_num);
}
}
}
/*******************************************************************************
* Helper function to configure the default attributes of SPIs.
******************************************************************************/
void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
{
unsigned int index;
/*
* Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
* more scalable approach as it avoids clearing the enable bits in the
* GICD_CTLR
*/
gicr_write_icenabler0(gicr_base, ~0);
gicr_wait_for_pending_write(gicr_base);
/* Treat all SGIs/PPIs as G1NS by default. */
gicr_write_igroupr0(gicr_base, ~0U);
/* Setup the default PPI/SGI priorities doing four at a time */
for (index = 0; index < MIN_SPI_ID; index += 4)
gicr_write_ipriorityr(gicr_base,
index,
GICD_IPRIORITYR_DEF_VAL);
/* Configure all PPIs as level triggered by default */
gicr_write_icfgr1(gicr_base, 0);
}
/*******************************************************************************
* Helper function to configure secure G0 and G1S SPIs.
******************************************************************************/
void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
unsigned int num_ints,
const unsigned int *sec_intr_list,
unsigned int int_grp)
{
unsigned int index, irq_num;
assert((int_grp == INT_TYPE_G1S) || (int_grp == INT_TYPE_G0));
/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
assert(num_ints ? (uintptr_t)sec_intr_list : 1);
for (index = 0; index < num_ints; index++) {
irq_num = sec_intr_list[index];
if (irq_num < MIN_SPI_ID) {
/* Configure this interrupt as a secure interrupt */
gicr_clr_igroupr0(gicr_base, irq_num);
/* Configure this interrupt as G0 or a G1S interrupt */
if (int_grp == INT_TYPE_G1S)
gicr_set_igrpmodr0(gicr_base, irq_num);
else
gicr_clr_igrpmodr0(gicr_base, irq_num);
/* Set the priority of this interrupt */
gicr_write_ipriorityr(gicr_base,
irq_num,
GIC_HIGHEST_SEC_PRIORITY);
/* Enable this interrupt */
gicr_set_isenabler0(gicr_base, irq_num);
}
}
}